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Abstract. A technique for assessing the impact of lossy wavelet-based image
compression on signal detection tasks is presented.  A medical image’s value is
based on its ability to support clinical decisions, including detecting and diag-
nosing abnormalities.  However, image quality of compressed images is often
stated in terms of mathematical metrics such as mean square error.  The pre-
sented technique provides a more suitable measure of image degradation by
building on the channelized Hotelling observer model, which has been shown to
predict human performance of signal detection tasks in noise-limited images.
The technique first decomposes an image into its constituent wavelet subbands.
Channel responses for the individual subbands are computed, combined, and
processed with a Hotelling observer model to provide a measure of signal de-
tectability versus compression ratio.  This allows a user to determine how much
compression can be tolerated before image detectability drops below a certain
threshold.

1 Introduction

Lossy image compression used to reduce the size of large medical image files de-
grades image quality.  Often, quality metrics such as mean square error or peak sig-
nal-to-noise ratio are used to assess image quality.  However, these metrics do not
adequately measure the true value of a medical image, namely, its ability to support
clinical decisions, including detecting and diagnosing abnormalities.

Human observers can be used to determine image quality for performing signal
detection tasks, but the trials require many human observers assessing many images to
make the results statistically relevant.  These trials are thus very time consuming and
expensive.  Model observers can be used as a human surrogate if the models can be
shown to accurately predict human performance.

2 Model Observers

Model observers are used to predict human observer performance in detecting signals
in noise limited images that are representative of nuclear-medicine images [1],[2].
Model observers reduce an image to a decision variable that is compared to a decision
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threshold to decide whether a signal is present or not.  For a signal in Gaussian noise,
the ideal observer is given by:

( ) ( ) xKx xx
t1 µλ !

∆= −                                              (1)

where x is the image represented  as a vector, xK  is the image covariance matrix, and

xµ!∆  is a vector containing the difference between the mean “signal present” image

and the mean “signal not present” image.  ( )xλ  is the decision variable produced by
this decorrelating matched filter.

If the image’s probability density function is unknown, the first and second order
statistics can still be used to generate the covariance matrix and mean difference vec-
tor of (1).  Though no longer an ideal observer, the decision variable can still predict
human observer performance.  This model observer is known as the Hotelling ob-
server.

A difficulty with using the Hotelling observer is the generation of an invertible co-
variance matrix.  For an image with k pixels, the covariance matrix will have k2 ele-
ments, and require k sample images to ensure the matrix is nonsingular [2].  Even for
modest sized images, the required number of sample images becomes quite large and
inverting the covariance matrix becomes computationally intensive.

A channelized Hotelling observer solves the problem associated with the covari-
ance matrix.  The channelized Hotelling observer operates on channel responses of
the image rather than on the image itself [2]-[4].  The channel responses are generated
by

xT t=η!                                                         (2)

where the columns of T contain the channel templates associated with different spa-
tial frequency bands.  The channel templates can be chosen to mimic the human vis-
ual system or to optimize results relative to the ideal observer.  The channel re-

sponses, η! , are then processed with the Hotelling observer, using 1−
ηK  and ηµ!∆  to

generate the decision variable.
In a two-alternative-forced-choice test, samples of “signal present” and “signal not

present” images are used to compute observer performance.  Decision variables for
the samples are obtained, and the decision threshold is varied to obtain receiver oper-
ating characteristic (ROC) curves.  The area under the ROC curves (AUC) is a meas-
ure of observer performance and can be used to assess image quality.

The channelized Hotelling observer model has been shown to predict human ob-
server performance in a number of tasks, including predicting degraded performance
when lossy image compression is employed [5].  The compression studies looked at a
limited number of compression ratios by compressing the entire image and evaluating
the degraded image with the model.  Since all image samples must be com-
pressed/decompressed for each value of compression ratio, most practical problems
can examine only a limited number of ratios.

3 Wavelet Compression

JPEG 2000 uses wavelets to compress images [6].  A wavelet compression algorithm
first analyzes a signal, decomposing it into high-pass and low-pass subbands.  The
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high-pass subband coefficients have lower entropy than the original signal samples,
and entropy coding these coefficients yields compression gain [7].  Following the
wavelet analysis, the bitmaps of the subband coefficients are entropy coded sepa-
rately.  The encoded bitmaps are then arranged and transmitted to deliver the spatial
(subband) resolution and SNR (bitmaps) required.  As subbands and bitmaps are dis-
carded from the compressed file, the compression ratio increases and image quality
decreases.

In one dimension, wavelet analysis is implemented with linear subband filters:
[ ]n0h  represents the low-pass subband filter and [ ]n1h represents the high-pass sub-

band filter.
[ ] [ ] [ ] [ ] [ ]!

∈
= −=∗=

Zl
kn

llknnk xhxhX 22 020                           (3)

and
[ ] [ ] [ ] [ ] [ ]!

∈
= −=∗=+

Zl
kn

llknnk xhxhX 212 121                        (4)

where [ ]nx  are the original signal samples, [ ]nX  are the wavelet coefficients, and Z is
the set of all integers.

Evaluating a convolution at even indices is equivalent to a filter followed by down-
sampling by 2 [7].  Therefore, [ ]k2X  and [ ]12 +kX  can be obtained from a two-

channel analysis filter bank with filters 0H and 1H  followed by downsampling by 2.

The channel filter responses are denoted by [ ]kv  and [ ]ku , where
[ ] [ ]12 += kk Xv                                                  (5)

[ ] [ ]kk 2Xu = .                                                   (6)

[ ]kv  and [ ]ku  are the high-pass and low-pass coefficients respectively.
The original signal is synthesized, or reconstructed, from the subband coefficients

using filters g0[n] and g1[n]:

[ ] [ ] [ ] [ ] [ ]! !
∈ ∈

−+−=
Zk Zk

knkknkn 22 10 gvgux .                       (7)

where [ ] [ ]nn ii −= hg , i=0,1.
For two levels of analysis where the low-pass coefficients are analyzed a second

time, the coefficients are found as follows:

[ ] [ ] [ ]!
∈

−=
Zl

llkk xhv 211                                                (8)

[ ] [ ] [ ]!
∈

−=
Zl

llkk xhu 201                                               (9)

[ ] [ ] [ ]!
∈

−=
Zl

llkk 112 2 uhv                                            (10)

[ ] [ ] [ ]!
∈

−=
Zl

llkk 102 2 uhu .                                         (11)
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The subscripts on the subband coefficient vectors indicate the number of analysis
steps the signal has experienced. v1, v2, and u2 would then be coded and transmitted in
a compressed file.

Following the multiple analysis steps, the original signal is traditionally recon-
structed by synthesizing the coefficients in the reverse order that they were analyzed.
For the above example, the low-pass coefficients for the first subband are synthesized
from the high-pass and low-pass coefficients of the second subband

[ ] [ ] [ ] [ ] [ ]! !
∈ ∈

−+−=
Zk Zk

knkknkn 22 12021 gvguu .                    (12)

The original signal can then be recovered using the high-pass and low-pass coeffi-
cients of the first subband:

[ ] [ ] [ ] [ ] [ ]! !
∈ ∈

−+−=
Zk Zk

knkknkn 22 1101 gvgux .                      (13)

The convolution is a linear operation and follows the distributive property.  That is:

[ ] [ ] [ ]( ) [ ] [ ] [ ]( )!
∈

= +−=+∗
Zl

kn
lllknnn 2

2
bafbaf                      (14)

 [ ] [ ] [ ] [ ]!!
∈∈

−+−=
ZlZl

llkllk bfaf 22                               (15)

The low-pass coefficients of the first subband can then be computed as follows:

[ ] [ ] [ ] [ ] [ ]! !
∈ ∈

−+−=
Zk Zk

knkknkn 22 12021 gvguu                      (16)

[ ] [ ]nn 2121 vu += .                                            (17)

[ ]njku  and [ ]njkv  represent the high-pass and low-pass coefficients for the jth sub-

band, synthesized to the kth subband level.  When k is zero, the coefficients represent
the subband contributions to the original signal.

Substituting (17) into (13), and taking advantage of the distributive property of the
convolution, the original signal can be reconstructed as follows:

[ ] [ ] [ ] [ ] [ ]! !
∈ ∈

−+−=
Zk Zk

knkknkn 22 1101 gvgux                   (18)

 [ ] [ ]( ) [ ] [ ] [ ]! !
∈ ∈

−+−+=
Zk Zk

knkknkk 22 1102121 gvgvu               (19)

               [ ] [ ] [ ] [ ] [ ] [ ]knkknkknk
ZlZk Zk

222 11021021 −+−+−= !! !
∈∈ ∈

gvgvgu       (20)

 [ ] [ ] [ ]nnn 102020 vvu ++= .                                   (21)

Hence, the original signal can be reconstructed by summing the individual subband
contributions to the original signal.

Images are two-dimensional data sets.  They can be analyzed with 1-D wavelets
with a two-step method.  First, the rows of the image are analyzed with filters H0 and
H1.  The resulting coefficients then are analyzed across the columns.  This analysis
produces four subbands for each level of analysis.  One subband contains the low-
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pass coefficients (LL).  Others contain high-pass coefficients in the horizontal direc-
tion (HL), the vertical direction (LH), and the diagonal direction (HH).  Subsequent
analysis can be performed on the low-pass coefficients [7].  The analysis of an image
using two levels of decomposition is shown in Fig. 1.

Taking advantage of the distributive property of the convolution, the subband coef-
ficients that result from image analysis can be reconstructed so the high-pass and low-
pass coefficients from each subband are synthesized separately.   Fig. 2 illustrates
how the high-pass coefficients from each subband can be synthesized so their contri-
bution to the original image can be obtained. The individual subband contributions
can then be summed to recover the original image:  x=u20+v20+v10.  Since the subband
coefficients are themselves linear combinations of bitmaps, a synthesis could also be
constructed to provide bitmap contributions rather than subband contributions.

4 Subband-Channelized Hotelling Observer

The standard channelized Hotelling observer, as mentioned in Section 2, is imple-
mented by first passing a signal through a set of channels to obtain channel responses.
The channel responses are then analyzed with a Hotelling observer to determine
whether a signal is present.

Consider an image x.  The channel responses are given by

xT t=η! .                                                     (22)

where the column vectors of T each represent channel templates with different spec-
tral profiles.  The channel responses, η! , are then processed by a Hotelling observer to

obtain a decision variable, ( )ηλ !
,

( ) ( ) ηµηλ ηη
!!! t

∆= −1K .                                           (23)

ηK  is the covariance matrix of the channel responses η! .  ηµ!∆ is the difference be-

tween the channel responses of the two classes of images: “signal present” and “signal
not present”.

Section 3 showed an image could be analyzed and synthesized to obtain the indi-
vidual subband or bitmap contributions.  For the case that considers only subband
contributions, the image is represented as a sum of subband contributions:

1020304040 vvvvux ++++=                                  (24)

for four levels of wavelet analysis.
Substituting (24) into (22),

( )1020304040 vvvvuT ++++= tη!                                    (25)

      1020304040 vTvTvTvTuT ttttt ++++=                                (26)

1020304040 vvvvu ηηηηη !!!!!
++++=                                   (27)

Equation (27) shows the channel response of an image can be represented as a sum
of channel responses of the image’s subband components.  Effects of lossy compres-
sion can be measured by removing channel responses of component subbands.  For
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example, if the first subband high-pass coefficients are not included in the compressed

image file, use the following to compute 1−
ηK , ηµ!∆ , and ( )ηλ !

:

20304040 vvvu ηηηηη !!!!!
+++= .                                    (28)

2D Wavelet Analysis
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Fig. 1. Analysis of 2-D images

2D Wavelet Synthesis
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Fig. 2. Subband synthesis of 2-D image

5 Simulation and Results

To demonstrate the utility of the subband-channelized Hotelling observer model, the
AUCs of sample images are computed for various compression ratios. Four hundred
simulated images were used with a correlated Gaussian noise background.  Half of the
images contained a signal, represented as a disk with a Gaussian intensity profile.
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Five channel profiles were used, defined by Laguerre-Gauss functions as described in
[8].  A simple Haar wavelet was used to generate the subbands; four levels of analysis
were performed.  It was assumed that spatial resolution progression was used to ar-
range the bitmaps, so compression is achieved by sequentially removing the four
high-pass subbands.  Compression ratios were computed using the bitmap entropies
of each subband.  Fig. 3 shows the AUC vs. compression ratios for the images. The
figure clearly shows the degradation in image quality relative to the signal detection
task as spatial resolution decreases and compression ratios increase, allowing the user
to choose the tradeoff between compression ratio and signal detection performance.

100 101 102 103
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95
AUC v s. Compression Ratio 

Compression Ratio 

A
re

a 
un

de
r 

th
e 

R
O

C
 c

ur
ve

 

Fig. 3. Model observer performance

6 Conclusions

A technique for efficiently calculating observer performance of nuclear medicine
images degraded by lossy compression has been presented.  The technique is based on
the channelized Hotelling observer model, which has been shown to predict human
observer performance for detection tasks with noise-limited images.  The new tech-
nique uses channel responses of the subbands to compute observer performance rather
than the channel responses of the image itself.

Plotting the AUC versus compression ratio for compression that decreases spatial
resolution shows the utility of this technique.  The plot allows one to determine an
acceptable compression ratio for an image based on the required signal detectability.
While results were shown for a subband-channelized Hotelling observer, the tech-
nique is extendable to a bitmap-channelized model since the subband coefficients
themselves are linear combinations of bitmaps.  The bitmap-channelized model will
provide greater flexibility and control over the image quality assessment.  It will per-
mit the assessment of image compression based on either SNR or mixed progression
offered by JPEG 2000, in addition to the compression based on spatial resolution
progression shown in Section 5.

Should the standard channelized Hotelling observer be used for this assessment,
each compression ratio value would require a separate compression/decompression of
the image samples.  But by having to synthesize the wavelet coefficients only once,



654      B.M. Schmanske and M.H. Loew

this subband technique, and its bitmap extension, offers a computationally efficient
means of assessing image quality for the optimization of lossy compression in signal
detection tasks.
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