Lambda-Lifting in Quadratic Time *

Olivier Danvy Ulrik P. Schultz
BRICS | ISIS Katrinebjerg
Department of Computer Science
University of Aarhus *

June 17, 2004

*A preliminary version of this article was presented at FLOPS’02 [17].
"Basic Research in Computer Science (www.brics.dk),

funded by the Danish National Research Foundation.

HT-parken, Aabogade 34, DK-8200 Aarhus N, Denmark.

E-mail addresses: {danvy,ups}@daimi.au.dk

Home pages: http://www.daimi.au.dk/"{danvy,ups}

1

Abstract

Lambda-lifting is a program transformation that is used in com-
pilers, partial evaluators, and program transformers. In this article,
we show how to reduce its complexity from cubic time to quadratic
time, and we present a flow-sensitive lambda-lifter that also works in
quadratic time.

Lambda-lifting transforms a block-structured program into a set of
recursive equations, one for each local function in the source program.
Each equation carries extra parameters to account for the free vari-
ables of the corresponding local function and of all its callees. It is the
search for these extra parameters that yields the cubic factor in the
traditional formulation of lambda-lifting, which is due to Johnsson.
This search is carried out by computing a transitive closure.

To reduce the complexity of lambda-lifting, we partition the call
graph of the source program into strongly connected components,
based on the simple observation that all functions in each compo-
nent need the same extra parameters and thus a transitive closure is
not needed. We therefore simplify the search for extra parameters by
treating each strongly connected component instead of each function
as a unit, thereby reducing the time complexity of lambda-lifting from
O(n3) to O(n?), where n is the size of the program.

Since a lambda-lifter can output programs of size O(n?), our algo-
rithm is asympotically optimal.

Keywords
Block structure, lexical scope, functional programming, inner classes in Java.

Accepted to the Journal of Functional and Logic Programming (JFLP 55).

Contents

1 Lambda-lifting 5
1.1 Setting and background D
1.2 Two examples to illustrate lambda-lifting 7
1.3 Two examples to illustrate the time complexity of lambda-lifting 11
1.4 Overview e 13
1.5 Notation and assumptions 14
2 Lambda-lifting in cubic time 15
2.1 Johnsson’s parameter-lifting algorithm 15
2.2 An alternative specification based on graphs 17
2.3 Exampleo 17
3 Lambda-lifting in quadratic time 20
3.1 Thebasicidea 20
3.2 The new algorithm 21
3.3 Revisiting the example of Section 2.3 23
3.4 Complexity analysis 23
3.5 Lower bound and optimality 24
4 Flow-sensitive lambda-lifting in quadratic time 25
4.1 A simple example of aliasing 25
4.2 Handling aliasing 26
4.3 Revisiting the example of Section 4.1 27
5 Related work 27
5.1 Supercombinator conversion 27
5.2 Closure conversion 28
5.3 Lambda-dropping 29
5.4 Flow sensitivity, revisited 31
5.5 Mixed styleo 31
5.6 Correctness iSSUes 32
5.7 Typingissues Lo 32
6 Lambda-lifting in Java 33
6.1 Javainner classes L. 33
6.2 A simple example of inner classes 34
6.3 Time complexity 37

7 Conclusion 38

List of Figures

1 Syntax of source programs 14
2 Graph and list procedures 14
3 Johnsson’s parameter-lifting algorithm (part 1/2) — time O(n?). 16
4 Johnsson’s parameter-lifting algorithm (part 2/2) — time O(n3). 17
) Block floating: block structure is flattened 18
6 Three mutually recursive functions 19
7 Dependencies between the local functions in Figure 6 19
8 Lambda-lifted counterpart of Figure 6. 20
9 The improved parameter lifting algorithm — time O(n?) . . . 22
10 Lower-bound example 24
11 The program of Figure 10, after parameter-lifting 25
12 Inner classes with free variables in Java 35
13 ML counterpart of Figure 12 35
14 The program of Figure 12, after compilation and decompilation 36
15 ML counterpart of Figure 14 37

1 Lambda-lifting

1.1 Setting and background

Lambda-lifting: what. In the mid 1980’s, Augustsson, Hughes, Johns-
son, and Peyton Jones devised ‘lambda-lifting’, a meaning-preserving trans-
formation from block-structured functional programs to recursive equations [7,

26, 27, 39].
recursive equations

lambda
lifting

block-structured program

Recursive equations provide a propitious format for graph reduction because
they are scope free.

Lambda-lifting: where. Today, a number of systems use lambda-lifting
as an intermediate phase: the PAKCS implementation of Curry [23, 24],
the Stratego optimizer [44], the Escher compiler [19, Section 3.2.3.1], the
PreScheme compiler [37], the Pell-Mell partial evaluator [32], the Schism par-
tial evaluator [13], and the Similix partial evaluator [10] all lambda-lift source
programs and generate scope-free recursive equations. Compilers such as
Larceny [12] and Moby [40] use local, incremental versions of lambda-lifting
in their optimizations, and so did an experimental version of the Glasgow
Haskell Compiler [41]. Program generators such as Bakewell and Runciman’s
least general common generalization operate on lambda-lifted programs [§]
and so does Ohori’s logical abstract machine [36]. Graunke, Findler, Kr-
ishnamurthi, and Felleisen also use lambda-lifting to restructure functional
programs for the web [22].

Lambda-lifting, however, is not restricted to functional programs. In
Section 6, we show how it is used to compile inner classes in Java.

Lambda-lifting: when. In a compiler, the effectiveness of lambda-lifting
hinges on the tension between passing many actual parameters vs. passing few
actual parameters, and between referring to a formal parameter vs. referring
to a free variable.

In practice, though, programmers often stay away both from recursive
equations and from maximally nested programs. Instead, they write in a
mixed style that both abides by Perlis’s epigram “If you have a procedure
with ten parameters, you probably missed some.” and by Turner’s recommen-
dation that good Miranda style means little nesting. In this mixed style, and
to paraphrase another of Perlis’s epigrams, one man’s parameter is another
man’s free variable.

Lambda-lifting: how. Lambda-lifting operates in two stages: parameter
lifting and block floating.

scope-free
recursive equations

block
floating

lambda scope-insensitive
lifting ‘block-structured program

- parameter

- lifting

' scope-sensitive
block-structured program

A block-structured program is scope-sensitive because of free variables in lo-
cal functions. Parameter lifting makes a program scope-insensitive by pass-
ing extra variables to each function. These variables account both for the
free variables of each function but also for variables occurring free further in
the call path. Block floating flattens block structure by making each local
function a global recursive equation.

Parameter lifting: Parameter-lifting a program amounts to making all the
free variables of a function formal parameters of this function. All
callers of the function must thus be passed these variables as arguments
as well. A set of solutions pairing each function with a least set of
additional parameters is built by traversing the program. Each block
of locally defined functions gives rise to a collection of set equations
describing which variables should be passed as arguments to its local
functions. The names of functions, however, are not included in the

6

sets, since all functions become globally visible when the lambda-lifting
transformation is complete. The solution of each set equation extends
the current set of solutions, which is then used to analyze the header
(i.e., the local declarations) and the body of the block.

Block floating: After parameter lifting, a program is scope insensitive. Block
floating is thus straightforward: the program is merely traversed, all
local functions are collected and all blocks are replaced by their bodies.
The collected function definitions are then appended to the program
as global mutually recursive functions, making all functions globally
visible.

1.2 Two examples to illustrate lambda-lifting

We first illustrate first-order lambda-lifting with the classical foldr func-
tional, and then higher-order lambda-lifting with a use of foldr to calculate
the value of a polynomial. Throughout, we use Standard ML [34].

Example 1: We consider the classical fold function for lists, defined with
a local function.

(* foldr : (’a * ’b -> ’b) * ’b *x ’a list -> ’b %)
fun foldr (f, b, xs)
= let (* walk : ’a list -> ’b %)
fun walk nil
=b
| walk (x :: xs)
= f (x, walk xs)
in walk xs
end

This program is block structured because of the local function walk. It is

scope sensitive because walk has two free variables, £ and b.
Parameter-lifting this scope-sensitive block-structured program param-

eterizes walk with £ and b. The result is the following scope-insensitive

block-structured program:

(* foldr : (’a * ’b -> ’b) * ’b * ’a list -> ’b %)
fun foldr (f, b, xs)
= let (* walk : (’a * ’b => ’b) * ’b -> ’a list -> ’b %)
fun walk (f, b) nil
=Db
| walk (£, b) (x :: xs)
= f (x, walk (f, b) xs)
in walk (f, b) xs
end

This program is block structured because of the local function walk. It is
scope insensitive because walk is closed.

Block-floating this scope-insensitive block-structured program yields two
scope-free recursive equations. One corresponds to the original entry point,
foldr, and the other to the local function, walk:

(x foldr : (’a * ’b => ’b) * ’b *x ’a list -> ’b *)
fun foldr (f, b, xs)

= foldr_walk (f, b) xs
(x* foldr_walk : (’a * ’b => ’b) * ’b -> ’a list -> ’b x*)
and foldr_walk (f, b) nil

=D

| foldr_walk (f, b) (x :: xs)
= f (x, foldr_walk (f, b) xs)

Example 2: We represent the polynomial ¢y + ¢z + cox?® + c32® + ... +
cp,x™ as the list of coefficients [co, ¢1, 2, ¢3, ..., ¢,;]. Calculating the value of a
polynomial at some x is done by traversing the list of coefficients as follows:

(* wval_of_pol : int list * int -> int x*)
fun val_of_pol (cs, x)
= let (* walk : int * int list -> int %)
fun walk (x_n, nil)
=0
| walk (x_n, c :: cs)
= ¢ * x_n + walk (x * x_n, cs)
in walk (1, cs)
end

We can also express this function with foldr, naming all anonymous func-
tions. The result is the following scope-sensitive block-structured program:

(* wval_of_pol : int list * int -> int *)
fun val_of_pol (cs, x)
= let (¥ coms : int * int -> int *)
fun cons (c, a)
= let (* aux : int -> int *)
fun aux x_n
=c*xn+a (x* x_n)
in aux
end
(* null : int -> int *)
fun null x_n
=0
in foldr (comns, null, cs) 1
end

Three local functions occur: cons, which has one free variable, x; aux, which
has three free variables, c, a, and x; and null, which is closed.

Parameter-lifting this scope-sensitive block-structured program parame-
terizes cons with x and aux with c, a, and x. The result is the following
scope-insensitive block-structured program:

(* val_of_pol : int list * int -> int *)
fun val_of_pol (cs, x)
= let (¥ cons : int -> int * int -> int %)
fun cons x (c, a)
= let (¥ aux : int * int * int -> int -> int *)
fun aux (c, a, x) x_n
=cx*xx_n+a (x * x_n)
in aux (c, a, x)
end
(* null : int -> int %)
fun null x_n
=0
in foldr (cons x, null, cs) 1
end

This program is block structured because of the local functions cons, aux,
and null. It is scope insensitive because each of these functions is closed.

9

Block-floating this scope-insensitive block-structured program yields four
scope-free recursive equations. One corresponds to the original entry point
and the three others to the local functions:

(* wval_of_pol : int list * int -> int *)
fun val_of_pol (cs, x)
= foldr (val_of_pol_cons x, val_of_pol_null, cs) 1
(* val_of_pol_cons : int -> int * int -> int *)
and val_of_pol_cons x (c, a)
= val_of_pol_cons_aux (c, a, x)
(* val_of_pol_cons_aux : int * int * int -> int -> int *)
and val_of_pol_cons_aux (c, a, X) x_n
=c*xn+a (x*zx_n)
(* wval_of_pol_null : int -> int *)
and val_of_pol_null x_n
=0

As illustrated by this example, lambda-lifting naturally handles higher-
order functions. Before lambda-lifting, the free variables of a function are
implicitly passed at the definition site to construct a closure. Lambda-lifting
transforms the definition site into a call site where the free variables are
explicitly passed to the lifted function.

In practice, for efficiency, polynomials are usually represented in Horner
form co+a(c1+x(ca+2x(c3+...))) and are calculated more directly as follows:

(* wval_of_pol : int list * int -> int *)
fun val_of_pol (cs, x)
= foldr (fn (c, a) => c + x * a, 0, cs)

This definition has only one functional value with one free variable. It is
lambda-lifted into the following recursive equations:

(* wval_of_pol : int list * int -> int *)
fun val_of_pol (cs, x)
= foldr (val_of_pol_cons x, 0, cs)
(* wval_of_pol_cons : int -> int * int -> int x*)
and val_of_pol_cons x (c, a)
=c+x % a

The extra parameter needed after lambda-lifting, x, is explicitly passed to
val of_ pol cons, a technique that was initially developed for the POP-2
programming language [11].

10

1.3 Two examples to illustrate the time complexity of
lambda-lifting

We first consider an example involving multiple local functions and variables
occurring free further in any call path, and then an example involving mu-
tually recursive local functions.

Example 1: The following scope-sensitive block-structured program adds
its two parameters.

(* main : int * int -> int *)
fun main (x, y)
= let (* add : int -> int *)
fun add p
= add_to_x p
(* add_to_x : int -> int *)
and add_to_x q
=q+X
in add y
end

Two local functions occur: add, which is closed, and add_to_x, which has one
free variable, x.

Parameter-lifting this program parameterizes add_to_x with x, which in
turn requires us to parameterize add with x as well. The result is the following
scope-insensitive block-structured program:

(* main : int * int -> int *)
fun main (x, y)
= let (* add : int -> int -> int *)
fun add x p
= add_to_x x p
(* add_to_x : int -> int -> int %)
and add_to_x x q
in add x y
end

Block-floating this program yields three recursive equations, one for the
original entry point and two for the local functions:

11

(* main : int * int -> int *)
fun main (x, y)
= main_add x y
(* main_add : int -> int -> int *)
and main_add x p
= main_add_to_x x p
(* main_add_to_x : int -> int -> int %)
and main_add_to_x x q
=q+X

As illustrated by this example, during parameter lifting, each function
needs to be passed not only the value of its free variables, but also the values
of the free variables of all its callees.

Example 2: The following scope-sensitive block-structured program mul-
tiplies its two parameters with successive additions, using mutual recursion.

(* mul : int * int -> int *)
fun mul (x, y)
= let (x loop : int -> int *)
fun loop z
= if z = 0 then 0 else add_to_x z
(* add_to_x : int -> int *)
and add_to_x z
= x + loop (z - 1)
in loop y
end

Two local functions occur: loop, which is closed, and add_to_x, which has
one free variable, x.

Parameter-lifting this program parameterizes add to x with x, which in
turn requires us to parameterize its caller loop with x as well. When add _to_x
calls loop recursively, it must pass the value of x to loop, so that loop can
pass it back in the recursive call. The result is the following scope-insensitive

12

block-structured program:

(* mul : int * int -> int *)
fun mul (%, y)
= let (* 1loop : int -> int -> int *)
fun loop x z
= if z = 0 then 0 else add_to_x x z
(* add_to_x : int -> int -> int %)
and add_to_x x z
= x + loop x (z - 1)
in loop x ¥y
end

Block-floating this program yields three recursive equations, one for the
original entry point and two for the local functions:

(* mul : int * int -> int *)
fun mul (%, y)

= mul_loop x ¥y
(* mul_loop : int —-> int —-> int *)
and mul_loop x z

= if z = 0 then O else mul_add_to_x x z
(* mul_add_to_x : int -> int -> int %)
and mul_add_to_x x z

= x + mul_loop x (z - 1)

This final example illustrates our insight: during parameter lifting, mu-
tually recursive functions must be passed the same set of free variables as
parameters.

1.4 Overview

Lambda-lifting, as specified by Johnsson, takes cubic time (Section 2). We
show how to reduce this complexity to quadratic time (Section 3). We also
present a flow-sensitive extension to lambda-lifting, where flow information
is used to eliminate redundant formal parameters generated by the standard
algorithm (Section 4).

Throughout the main part of the article, we consider Johnsson’s algorithm
(27, 28]. Other styles of lambda-lifting, however, exist: we describe them as
well, together with addressing related work (Section 5). Finally, we describe

13

an instance of lambda-lifting in Java compilers (Section 6) and point out how
it could benefit from lambda-lifting in quadratic time.

1.5 Notation and assumptions

We operate on the subset of ML conforming to the simple syntax of Figure 1,
where we distinguish between function names and variable names.

p € Program == {di,...,dn}

d € Def = f=XNv,...,v,).€

e € Exp = literal | v | f | ifegthene; elsees |
€ ... ey |letrec{ds,...,dr}eo

v € Variable

f € FunctionName U PredefinedFunction

Figure 1: Syntax of source programs

Our complexity analysis assumes that sets of variables are represented
using bit vectors, where element insertion and removal are performed in
constant time and set union is performed in linear time.

The algorithm for parameter lifting, in Figure 9, makes use of a number
of graph and list procedures. These procedures are specified in Figure 2.

Graph.add-edge :: Graph(a) — (o, a) — (@, @)
Graph.add-edge G (nq,nz) : Updates G to contain the nodes ny and ny as
well as an edge between the two.

Graph.coalesceSCC :: Graph(a) — Graph(Set(«))
Graph.coalesceSCC G : Returns G with its strongly connected components
coalesced into sets [1].

Graph.reverseBreadthFirstOrdering :: Graph(a) — List(«)

Graph.reverseBreadthFirstOrdering G : Returns a list containing the
nodes of (G, in a reverse breadth-
first ordering.

Figure 2: Graph and list procedures

14

2 Lambda-lifting in cubic time

2.1 Johnsson’s parameter-lifting algorithm

Johnsson’s parameter-lifting algorithm is shown in Figures 3 and 4. It as-
sumes that variable names are unique. The functions FV and FF map ex-
pressions to their set of free variables and of free function names. The al-
gorithm descends recursively through the program structure and calculates
the minimal set of variables that are needed by each function. The descent
is performed primarily by the function parameterLiftExp, whose parameter
S denotes the current set of solutions (i.e., needed variables). The set of
solutions is used to compute the set of solutions for each inner scope, by
solving set equations describing the dependencies between functions. First,
the sets of free variables (V},) and free functions (F},) are computed, and S
is used to extend each V}, for each free function from the enclosing scope.
Then, the free variables are propagated by adding Vy, to Vy, when f; is in FY,.
The dependencies between the functions can be arbitrarily complex since a
function can depend on any variable or function that is lexically visible. In
particular, mutually recursive functions depend upon each other, and so they
give rise to mutually recursive set equations.

We analyze the complexity of this algorithm as follows. The mutually
recursive set equations are solved using fixed-point iteration. A program
containing m function declarations gives rise to m set equations. In a block-
structured program the functions are distributed across the program, so we
solve the set equations in groups as we process each block of local functions.
Each set equation unifies O(m) sets of size O(v), where v is the number
of variables in the program. However, the total size of all the equations is
bounded by the size of the program n, so a single iteration involves O(n)
set-union operations. Each set-union operation takes times O(v), so a single
iteration takes time O(nv). The number of iterations needed to perform a full
transitive closure is O(m), so the time needed to solve all the set equations
is O(mnw), or simply O(n?), which is the overall running time of parameter
lifting.

Figure 5 shows the standard (globally applied) block-floating algorithm.
Johnsson’s original lambda-lifting algorithm includes steps to explicitly name
anonymous lambda expressions and replace non-recursive let blocks by appli-
cations. These steps are trivial and omitted from the figure. To block-float a
program of size n, the scope-insensitive functions are simply collected, which

15

parameterLiftProgram :: Program — Program
parameterLiftProgram p = map (parameterLiftDef (}) p

parameterLiftDef :: Set(FunName x Set(Variable)) — Def — Def
parameterLiftDef S (f = A(vy,...,v,).e) =
applySolutionToDef S (f = A(vy, ..., v,).(parameterLiftExp S €))

parameterLiftExp :: Set(FunName x Set(Variable)) — Exp — Exp
parameterLiftExp S literal = literal
parameterLiftExp S v = v
parameterLiftExp S f = applySolutionToExp S f
parameterLiftExp S (ifeg thene; elseey) =
let e, = parameterLiftExp S e; for 0 <i <2
in if ej then € else €
parameterLiftExp S (eg ... e,) =
let ¢, = parameterLiftExp S e; for 0 <i<n
inej...e,
parameterLiftExp S (LetRec {dy, ... ,dr}ey) =
foreach (f; =1;) € {dy,...,d;} do
Vi :=FV(l;);
Fy, .= FF(l;)
foreach Iy, € {Fy,,..., Fy } do
foreach (g,V,) € S such that g € Fy, do
Vi =V UV
Fy, = Fy\{g)
fixpoint over {Vy,..., Vs } by
foreach Fy, € {Fy,,...,Fy} do
foreach g € I, do
Vfi = Vf. U ‘/g

7

let S'=SU {(fl, Vfl>, Cey (fk; ka)}
fs = map (parameterLiftDef S") {di, ..., dx}

e, = parameterLiftExp 5’ e
in letrec f; €],

Figure 3: Johnsson’s parameter-lifting algorithm (part 1/2) — time O(n?).

16

applySolutionToDef :: Set(FunName x Set(Variable)) — Def — Def

applySolutionToDef {..., (f,{vi,...,v.}),-..} (f = A(vy,...,v.).e) =
(f = Mo, ..., v0) A(vg, ..., 00).€)

applySolutionToDef S d = d

applySolutionToExp :: Set(FunName x Set(Variable)) — Exp — Exp
applySolutionToExp (S as {...,(f,{vi,...,vn}),...}) f =

(f (v1 ... vp))
applySolutionToExp S e = e

Figure 4: Johnsson’s parameter-lifting algorithm (part 2/2) — time O(n?).

can be done in one pass and therefore in time O(n). Therefore, the overall
running time of Johnsson’s lambda-lifting algorithm is O(n?).

2.2 An alternative specification based on graphs

Lambda-lifting can be specified with a graph rather than with set equations.
This graph describes the lexical dependencies between source functions. Pey-
ton Jones also uses such a dependency graph [39], but for a different purpose
(see Section 5.1). Each node in the graph corresponds to a function in the
program, and is associated with the free variables of this function. An edge
in the graph from a node £ to a node g indicates that the function £ depends
on g, because it refers to g. Mutually recursive dependencies give rise to
cycles in this graph. Rather than solving mutually recursive set equations,
we propagate the variables associated with each node backwards through the
graph, from callee to caller, merging the variable sets, until a fixed point is
reached.

2.3 Example

Figure 6 shows a small program that uses three mutually recursive functions,
each of which has a different free variable.

We can describe the dependencies between the local block of functions
using set equations, as shown in Figure 7. To solve these set equations, we
need to perform three fixed-point iterations, since there is a cyclic dependency

17

blockFloatProgram :: Program — Program
blockFloatProgram {ds,...,d,} =
(blockFloatDef d;) U ... U (blockFloatDef d,,)

blockFloatDef :: Def — Set(Def)
blockFloatDef (f = A(vy,...,v,).€) =
let (F, €') = blockFloatExp e
in FU{f = \uvy,...,v,).¢}
blockFloatExp :: Exp — Set(Def) x Exp
blockFloatExp literal = (), literal)
blockFloatExp v = (0, v)
blockFloatExp f = (0, f)
blockFloatExp (if eg then e; else eg) =
let (F;, €}) = blockFloatExp e; for 0 <i <2
in (Fo U Fy U Fy, if e, then €] else €))
blockFloatExp (eq ... e,) =
let (F;, €}) = blockFloatExp e; for 0 <i<mn
in(FoU...UF,, ¢, ...¢€,)
blockFloatExp (letrec {ds, ..., d} eg) =
let F' = (blockFloatDef d;) U ... U (blockFloatDef dy)
(Fy, €) = blockFloatExp e
in (F'U Fy, e)

Figure 5: Block floating: block structure is flattened

18

fun main (x, y, z, n)
= let fun f1 i
= if i = 0 then 0 else x + f2 (i - 1)
and f2 j
= let fun g2 b = b * j
in if j = O then O else g2 y + £3 (j - 1)
end
and f3 k
= let fun g3 c = c *x k
in if k = 0 then O else g3 z + f1 (k - 1)
end
in f1 n
end

Figure 6: Three mutually recursive functions

Ser = {x} U Sk (f1, {x})
Sta = {Y}lJ Sta
SESEiZ :fzi;if%1 (f2,{Y})_____~/?(f3v{Z})
Ses = {k} g I
(e2,{3}) (g3, {x})

Figure 7: Dependencies between the local functions in Figure 6

19

fun main (x, y, z, n)

=f1l (x, y, 2z) n
and f1 (x, y, 2) i

= if i = 0 then O else x + f2 (x, y, z) (i - 1)
and 2 (x, y, 2) j

=if j =0 then O else g2 jy + £f3 (x, vy, z2) (j -1
and g2 j b

=b*j
and £3 (x, y, z) k

= if k = O then O else g3 k z + f1 (x, y, z) (k - 1)
and g3 k ¢

=c * k

Figure 8: Lambda-lifted counterpart of Figure 6

of size three. Similarly, we can describe these dependencies using a graph,
also shown in Figure 7. The calculation of the needed variables can be done
using this representation, by propagating variable sets backwards through
the graph. A single propagation step is done by performing a set union over
the variables associated with a node and the variables associated with its
successors. Similarly to the case of the set equations, each node must be
visited three times before a fixed point is reached.

When the set of needed variables has been determined for each function,
solutions describing how each function must be expanded with these variables
are added to the set of solutions. The result is shown in Figure 8.

3 Lambda-lifting in quadratic time

3.1 The basic idea

We consider the variant of the parameter-lifting algorithm that operates on
a dependency graph (Section 2.2). This variant propagates needed variables
backwards through the graph since the caller needs the variables of each
callee.

It is our observation that functions that belong to the same strongly con-
nected component of the call graph must be parameter-lifted with the same

20

set of variables (as was illustrated in Section 1.3). We can thus treat these
functions in a uniform fashion, by coalescing the strongly connected com-
ponents of the dependency graph. Each function must define at least its
free variables together with the free variables of the other functions of the
strongly connected component. Coalescing the strongly connected compo-
nents of the dependency graph produces a directed acyclic graph with sets of
function names for nodes. A breadth-first backwards propagation of variables
can then be done in linear time, which eliminates the need for a fixed-point
computation.
Our contribution is

e to characterize the fixed-point operations on the set equations as prop-
agation through the dependency graph, and

e to recognize that functions in the same strongly connected component
require the same set of variables.

We can therefore first determine which variables need to be known by each
function in a strongly connected component, and then add them as formal
parameters to these functions. In each function, those variables not already
passed as parameters to the function should be added as formal parameters.

This approach can be applied locally to work like Johnsson’s algorithm,
processing each block independently. It can also be applied globally to the
overall dependency graph. The global algorithm limits the propagation of
free variables to their point of definition.

3.2 The new algorithm

Figure 9 shows the main part of our (locally applied) O(n?) parameter-lifting
algorithm; the remainder of the algorithm is identical to Johnsson’s algorithm
as presented in Figures 3 and 4. The algorithm makes use of several standard
graph and list operations that were described in Figure 2, page 14. Again, the
set of solutions S is constructed during the recursive descent of the program
structure by the function parameterLiftExp. For each block of mutually re-
cursive functions, the dependency graph is constructed and the strongly con-
nected components are coalesced. The local function propagateFunNames
propagates free variables through the graph, as follows. For each node, the
solution for all functions associated with this node is extended with the so-
lutions of the other functions from that node and the solutions of all the

21

parameterLiftExp S literal = literal
parameterLiftExp S v = v
parameterLiftExp S f = applySolutionToExp S f
parameterLiftExp S (ifeg thene; elseey) =
let ¢, = parameterLiftExp S e; for 0 <i <2
in if e, then €} else €},
parameterLiftExp S (eg ... e,) =
let ¢, = parameterLiftExp S e; for 0 <i<n
inej...e,
parameterLiftExp S (LetRec {dy, ... ,dr}ey) =
let G = ref (0,0)
Vi, =ref (FV(f;)) for 1 <i<kand d, = (fi = \vi,...,v,).€)
in foreach f; € {f1,..., fi} do
foreach g € FF(f;) N {f1,..., fx} do
Graph.add-edge G(f;, g)
let (G' as (V', E')) = Graph.coalesceSCC G
succ, = {q € V'|(p,q) € £'}, for each p € V'
F, = Ugesuce, ¢; for each p € V’
propagateFunNames :: List(Set(FunName)) — ()
propagateFunNames [| = ()
propagateFunNames (p :: 1) =
let V = (Upr Vf) U (Uger ‘/g)
in foreach f € pdo V; :=V;
propagateFunNames r
in propagateFunNames (Graph.reverseBreadthFirstOrdering G');
let "= SU{(f1, Vf1)a ooy (s ka)}
fs = map (parameterLiftDef S") {dy,...,dy}
e, = parameterLiftExp S’ e
in letrec f; €],

Figure 9: The improved parameter lifting algorithm — time O(n?)

successor nodes. To achieve the backward propagation, the nodes are pro-
cessed in reverse breadth-first ordering, so that the successors of a node are
processed before the node itself.

22

3.3 Revisiting the example of Section 2.3

Applying the algorithm of Figure 9 to the program of Figure 6 processes
the function main by processing its body. The letrec block of the body is
processed by first constructing a dependency graph similar to that shown in
Figure 7 (except that we simplify the description to not include the sets of
free variables in the nodes). Coalescing the strongly connected components
of this graph yields three nodes, one of which contains the three functions
{£1,£2,£3}. The free variables of g2 and g3 are propagated backwards to their
callees. For the node containing {£1,£2,£3}, the propagation step serves to
associate each function in the node with the union of the free variables of
each of the functions in the component. These variable sets directly give rise
to a new set of solutions.

Each of the functions defined in the letrec block and its body are traversed
and expanded with the variables indicated by the set of solutions. Block
floating according to the algorithm of Figure 5 yields the program of Figure
8.

3.4 Complexity analysis

The parameter-lifting algorithm must first construct the dependency graph,
which is done by computing the sets of free functions; this takes time O(n),
where n is the size of the program. The resulting graph has m nodes, where
m is the number of local functions, and O(n) edges (one edge for every free
function). Each node contains a set of size O(v), where v is the number of
variables in the program. The strongly connected components of the graph
can then be computed in time O(m+n), or simply O(n), whereas coalescing
the nodes takes time O(mwv). The reversed breadth-first ordering of these
nodes can then be computed in time O(n). The ensuing propagation requires
one step for each node since we are now operating on a directed acyclic graph.
Each propagation step consists of a number of set operations, each of which
take at most O(v) time. Specifically, computing the set V' inside the function
propagateFunNames for a given node consists of unifying the variable sets
associated with the functions of the node and the variable sets associated
with the successor nodes (which have already been computed). Thus, the
total number of sets which are unified over the O(m) steps is bounded by
the number of edges in the graph. The number of edges is bounded by the
number of function calls in the program, which is bounded by the size of

23

fun main x; ... X y =
let fun f{ z
= fy (z + x1)
and f; z
=f1 (z + %)

in f; y
end

Figure 10: Lower-bound example

the program O(n). Each set union operation takes time O(v), so the overall
running time is O(nv) or simply O(n?), where n is the size of the program
and v is the number of variables.

3.5 Lower bound and optimality

Consider the program shown in Figure 10. The main function has &k formal
parameters {xi,...,x;} and declares k mutually recursive local functions,
each of which has a different variable from {xi,...,x;} as a free variable.
For this program, k = ©(n) = ©(m), where n is the size of the program and
m is the number of functions in the program. Lambda-lifting this program
produces the program shown in Figure 11. This program has k£ new global
functions, each of which has been expanded with the k formal parameters
of the formerly enclosing function. The output program is therefore of size
Q(m?), which in this case is also ©(n?). One thus cannot perform lambda-
lifting faster than €(n?), which means that our time complexity of O(n?) is
optimal. The lower bound also implies that our algorithm operates in time
O(n?).

In contrast, Johnsson’s algorithm operates in time O(n?). Again, we can
use the program of Figure 10 to find a lower bound. Johnsson’s algorithm will
for this program construct k set equations which each perform one set union
operation. To solve the set equations, k propagation steps are needed: the
free variable of each function must be propagated to all the other functions.
Since the sets grow by one element at each step, propagation step ¢ operates
on sets of size i. On average, each step takes time ©(£k) = ©(k?). The
total time taken for this program is thus ©(k?) which in this case is ©(n?).

24

fun main x; ... X y =

let fun f; (X1, ..., Xi) Z
= fy (x1, ..., x) (z + x1)
and fp (%1, ..., xX) z
=f; (x1, ..., x%) (z + x)
in f; y
end

Figure 11: The program of Figure 10, after parameter-lifting

Johnsson’s algorithm thus has a worst-case lower bound of Q(n?) [14]. As
shown above, for this worst-case program, our algorithm operates in time

O(n?).

4 Flow-sensitive lambda-lifting
in quadratic time

The value of a free variable might be available within a strongly connected
component under a different name. Johnsson’s algorithm (and therefore our
algorithm as well), however, includes all the variables from the outer scopes
as formal parameters because it only looks at their name. It therefore can
produce redundant lambda-lifted programs with aliasing.

4.1 A simple example of aliasing

The following program adds its parameter to itself.

(* main : int -> int *)
fun main x
= let (¥ add : int -> int *)
fun add y
=X+y
in add x
end

In the definition of add, the free variable x is an alias of the formal parameter

25

y. (NB. Unless one were willing to duplicate the definition of add, there
would be no such aliasing if there were additional calls to add with other
actual parameters than x.)

Lambda-lifting this program yields two recursive equations:

(* main : int -> int %)
fun main x
= main_add x X
(* main_add : int -> int -> int *)
and main_add x y
=X+y

The extraneous parameter of the second recursive equation illustrates the
aliasing mentioned above. Such aliased parameters can for example occur
after macro expansion, inlining, refactoring, or partial evaluation

In extreme cases, the number of extraneous parameters can explode: con-
sider the lower bound example of Section 3.5, where if the k formal param-
eters were aliases, there would be ©(k?) extraneous parameters. Such ex-
tra parameters can have a dramatic effect. For example, Appel’s compiler
uses register-allocation algorithms that are not linear in the arity of source
functions [2]. Worse, in partial evaluation, one of Glenstrup’s analyses is
exponential in the arity of source functions [21].

4.2 Handling aliasing

Making the lambda-lifting algorithm context-sensitive would require us to
look at the flow graph of the source program, as we did for a related trans-
formation, lambda-dropping [16]. Variables coming from an outer scope that
are present in a strongly connected component and that retain their identity
through all recursive invocations do not need to be added as formal parame-
ters. Doing so would solve the aliasing problem and yield what we conjecture
to be “optimal lambda-lifting.”

Looking at the flow graph is achieved by a first-order flow analysis that
computes the unique definition point (if any) of the value bound to each
formal parameter of the first-order functions of the program. Such a use/def-
chain analysis works in one pass and therefore its time complexity is linear
in the size of the program.

The parameter-lifting algorithm presented in Figure 9 can be modified
to perform flow-sensitive lambda-lifting. Given a program annotated with

26

use/def chains, parameter lifting proceeds as in the flow-insensitive case, ex-
cept that a free variable already available as a formal parameter is not added
to the set of solutions, but is instead substituted for the formal parameter
that it aliases. The block-lifting algorithm remains unchanged. Since the
time complexity of use/def-chain analysis is linear, the overall time complex-
ity of the flow-sensitive lambda-lifting algorithm is quadratic.

4.3 Revisiting the example of Section 4.1

Getting back to the program of Section 4.1, the flow-sensitive lambda-lifter
yields the following recursive equations.

(* main : int -> int *)
fun main x
= main_add x
(* main_add : int -> int *)
and main_add y
=y ty

This lambda-lifted program does not have redundant parameters.

5 Related work

We review alternative approaches to handling free variables in higher-order,
block-structured programming languages, namely supercombinator conver-
sion, closure conversion, lambda-dropping, and incremental versions of lambda-
lifting and closure conversion. Finally, we address the issues of formal cor-
rectness and typing.

5.1 Supercombinator conversion

Peyton Jones’s textbook describes the compilation of functional programs
towards the G-machine [39]. Functional programs are compiled into su-
percombinators, which are then processed at run time by graph reduction.
Supercombinators are closed lambda-expressions. Supercombinator conver-
sion [18, 26, 38] generalizes bracket abstraction [9] and produces a series of
closed terms. It thus differs from lambda-lifting that produces a series of

27

mutually recursive equations where the names of the equations are globally
visible [35].

Peyton Jones also uses strongly connected components for supercombi-
nator conversion. First, dependencies are analyzed in a set of recursive equa-
tions. The resulting strongly connected components are then topologically
sorted and the recursive equations are rewritten into nested letrec blocks.
There are two reasons for this design: (1) it makes type-checking faster and
more precise; and (2) it reduces the number of parameters in the ensuing
supercombinators. Supercombinator conversion is then used to process each
letrec block, starting outermost and moving inwards. Each function is ex-
panded with its own free variables, and made global under a fresh name.
Afterwards, the definition of each function is replaced by an application of
the new global function to its free variables, including the new names of any
functions used in the body. This application is mutually recursive in the
case of mutually recursive functions, relying on the laziness of the source
language; it effectively creates a closure for the functions.

Peyton Jones’s algorithm thus amounts to first applying dependency anal-
ysis to a set of mutually recursive functions and then to perform supercom-
binator conversion. As for dependency analysis, it is only used to optimize
type checking and to minimize the size of closures.

In comparison, applying our algorithm locally to a letrec block would first
partition the functions into strongly connected components, like dependency
analysis. We use the graph structure, however, to propagate information,
not to obtain an ordering of the nodes for creating nested blocks. We also
follow Johnsson’s algorithm, where the names of the global recursive equa-
tions are free in each recursive equations, independently of the evaluation
order. Johnsson’s algorithm passes all the free variables that are needed by
a function and its callees, rather than just the free variables of the function.

To sum up, Peyton Jones’s algorithm and our revision of Johnsson’s algo-
rithm both coalesce strongly connected components in the dependency graph,
but for different purposes, our purpose being to reduce the time complexity
of lambda-lifting from cubic to quadratic.

5.2 Closure conversion

The notion of closure originates in Landin’s seminal work on functional pro-
gramming [30]. A closure is a functional value and consists of a pair: a code
pointer and an environment holding the denotation of the variables that oc-

28

cur free in this code. Making this pair explicit in the source program is called
‘closure conversion’; it yields scope-insensitive programs, and is a key step
in Standard ML of New Jersey [5, 6]. Closure conversion is akin to super-
combinator conversion, though in the case of mutually recursive definitions,
the closure environments hold the values of the free variables of the mutu-
ally recursive definitions, whereas in supercombinator conversion, closures
are created through a mutually recursive application.

In his textbook [39], Peyton Jones concluded his comparison between
lambda-lifting and supercombinator/closure conversion by pointing out a
tension between

e passing all the [denotations of the] free variables of all the callees but
not the values of the mutually recursive functions (in lambda-lifting),
and

e passing all the values of the mutually recursive functions but not the
free variables of the callees (in closure conversion).

He left this tension unresolved, stating that future would tell which algorithm
(lambda-lifting or closure conversion) would prevail. Today, most compilers
for functional languages (Haskell, ML, Scheme) use closure conversion, most
compilers for functional logic languages (Curry, Escher) use lambda-lifting,
and most program transformers (Similix, Stratego, etc.) use lambda-lifting.

5.3 Lambda-dropping
Lambda-dropping is the inverse of lambda-lifting [16]:

recursive equations

lambda| | lambda
lifting | |dropping

block-structured program

We developed it to be able to compile programs after program transforma-
tion. Indeed program transformers tend to be geared to lambda-lifted source
programs and they tend to yield lambda-lifted residual programs. In con-
trast, compilers tend to be geared to source programs written by humans

29

and therefore with few parameters.! Therefore, high numbers of formal pa-
rameters are not optimized and often they form a major run-time overhead
to invoke procedures. Lambda-dropping reduces the number of formal pa-
rameters by restoring block structure:

scope-free
recursive equations

block block
floating| |[sinking

4

lambda :: scope-insensitive " lambda
lifting ‘block-structured program: dropping

‘parameter| |parameter.
- lifting dropping’
E v

scope-sensitive
block-structured program

The block-floating phase of lambda-lifting is reversed by a block-sinking
phase. This phase creates block structure by (1) creating local blocks and (2)
relocating the definition of functions that are used in only one function into
the local block of this function. The parameter-lifting phase of lambda-lifting
is reversed by a parameter-dropping phase. This phase removes redundant
formal parameters that are originally defined in an outer scope and that
always take on the same value.

A few years ago, Appel pointed out a correspondence between imperative
programs in SSA form and functional programs using block structure and
lexical scope [3]; he showed how to transform an SSA program into its func-
tional representation [4]. We were struck by the fact that this transformation
corresponds to performing block sinking on the recursive equations defining
the program. As for the transformation into optimal SSA form (which di-
minishes the number of ®-nodes), it is equivalent to parameter dropping.
Lambda-dropping can therefore be used to transform programs in SSA form
into optimal SSA form [16]. This observation prompted us to improve the
complexity of the lambda-dropping algorithm to O(nlogn), where n is the
size of the program, by using the dominance graph of the dependency graph.
We then re-stated lambda-lifting in a similar framework using graph algo-

'For example, the magic numbers of parameters, in OCaml, are 0 to 7.

30

rithms, which led us to the result presented in the present article.

5.4 Flow sensitivity, revisited

We observe that lambda-dropping is flow sensitive, in the sense that it re-
moves the aliased parameters identified as a possible overhead for lambda-
lifting in Section 4. Therefore flow-sensitive lambda-lifting can be achieved by
first lambda-dropping the program, and then lambda-lifting the result in the
ordinary flow-insensitive way. Since the time complexity of lambda-dropping
is lower than the time complexity of lambda-lifting and since lambda-dropping
never increases the size of the program, using lambda-dropping as a pre-
processing transformation does not increase the overall time complexity of
lambda-lifting.

5.5 Mixed style

In order to preserve code locality, compilers such as Twobit [12] or Moby [40]
often choose to lift parameters only partially. The result is in the mixed style
described in Section 1.1.

In more detail, rather than lifting all the free variables of the program,
parameter lifting is used incrementally to lift only a subset of the free vari-
ables of each function. If a function is to be moved to a different scope,
however, it needs to be passed the free variables of its callees as parameters.
As is the case for global lambda-lifting, propagating the additional parame-
ters through the dependency graph requires cubic time. To improve the time
complexity, our quadratic-time parameter-lifting algorithm can be applied to
the subsets of the free variables instead. The improvement in time complex-
ity for incremental lambda-lifting is the same as what we observed for the
global algorithm.

We note that a partial version of closure conversion also exists, namely
Steckler and Wand’s [42], that leaves some variables free in a closure because
this closure is always applied in the scope of these variables. We also note
that combinator-based compilers [45] can be seen as using a partial super-
combinator conversion.

31

5.6 Correctness issues

Only idealized versions of lambda-lifting and lambda-dropping have been
formally proven correct. Danvy has related the fixed points of lambda-lifted
functionals and of lambda-dropped functionals [15]. Fischbach and Hannan
have capitalized on the symmetry of lambda-lifting and lambda-dropping
to formalize them in a logical framework, for a simply typed source lan-
guage [20].

Nevertheless, although there is little doubt that Johnsson’s original algo-
rithm is correct, its formal correctness still remains to be established.

5.7 Typing issues

Fischbach and Hannan have shown that lambda-lifting is type-preserving for
simply typed programs [20]. Thiemann has pointed out that lambda-lifted
ML programs are not always typeable, due to let polymorphism [43]. Here
is a very simple example. In the following block-structured program, the
locally defined function has type ’a -> int.

fun main ()
= let fun constant x
= 42
in (constant 1) + (constant true)
end

The corresponding lambda-lifted program, however, is not typeable because
of ML’s monomorphic recursion rule [34]. Since constant is defined recur-
sively, its name is treated as lambda-bound, not let-bound:

fun main ()

= (constant 1) + (constant true)
and constant x

= 42

The problem occurs again when one of the free variables of a local recursive
function is polymorphically typed.

To solve this problem, one could think of making lambda-lifting yield
not just one but several groups of mutually recursive equations, based on
a dependency analysis [39]. This would not, however, be enough because a

32

local polymorphic function that calls a surrounding function would end up in
the same group of mutually recursive equations as this surrounding function.

There is no generally accepted solution to the problem. Thiemann pro-
poses to parameter-lift some function names as well, as in supercombinator
conversion [43]. Fischbach and Hannan propose to use first-class polymor-
phism instead of let-polymorphism [20]. Yet another approach would be to
adopt a polymorphic recursion rule, i.e., to shift from the Damas-Milner type
system to the Milner-Mycroft type system, and to use a dependency analysis
as in a Haskell compiler. Milner-Mycroft type inference, however, is undecid-
able [25] and in Haskell, programmers must supply the intended polymorphic
type; correspondingly, a lambda-lifter should then supply the types of lifted
parameters, when they are polymorphic.

6 Lambda-lifting in Java

The Java programming language supports block structure and lexical scope
in the form of inner classes [29]. The Java virtual machine on the other
hand only supports scope-insensitive programs [31]. For this reason, the
compilation process from Java source code to Java bytecode must make inner
classes scope insensitive. We observe that part of this process is based on
lambda-lifting.

6.1 Java inner classes

In Java, an inner class can be declared as a member of an enclosing class or
as a local declaration within a method. The free variables of an inner class
can be divided into two categories: variables that are declared as a field of
some enclosing class and variables that are declared locally to an enclosing
method.

The fields of an enclosing class are accessed using a static link. Specif-
ically, the program is transformed by the compiler to access the free field
variables from the enclosing class using a static link stored in a field. The
static link is initialized by the constructor when instances of the inner class
are created. A special classfile attribute is added to both the enclosing class
and the inner class to allow the inner class to access private members of the
enclosing class.

33

The Java language specification states that local variables which are ac-
cessed by an inner class must be declared final, i.e., immutable once they
are initialized [29, §8.1.2]. Therefore their denotation can be safely copied.
And indeed, variables that are declared locally to an enclosing method are
accessed by copying the value they denote when an instance of the inner
class is created. Specifically, the program is transformed to access the values
of the free local variables from the immediately enclosing method through
local copies stored in fields of the inner class, and to access the values of the
free local variables from the outer enclosing methods through the static link.
The values of the local variables are passed as constructor arguments when
instances of the inner class are created.

As a net effect of the transformation, the inner classes are scope insensitive
and the compiler can lift them.

6.2 A simple example of inner classes

Figure 12 illustrates inner classes declared within methods. The program
is written in a functional style of programming using objects as closures,
and is essentially equivalent to the ML program shown in Figure 13. The
interface Function describes objects that represent functions that map an
integer to an integer. The class Make_fn has a method make fn which returns
a Function object created using the two inner classes Add_x and Add_x_Add_y.
The inner class Add x has x as a free variable, whereas Add x Add_y has y as
a free variable. A use of this class could be:

Function f = (new Make_fn()) .make_fn(1,2);
int result = f.apply(3);

The effect is that result is assigned the value 6.

The compiled version of the program of Figure 12 is shown in Figure 14,
after decompilation (for our purposes, Java byte code and Java source code
contain the same information, so for readability we use decompiled Java
source code). The class Add_x (compiled name: Make fn$1Add x) now takes
the enclosing class and the variable x as additional constructor parame-
ters and stores them in the fields this$0 and val$x. Similarly, the class
Add_y_Add x takes the enclosing class and the variable y as additional con-
structor parameters and stores them in fields. However, since it also needs to
create an instance of the class Add _x, it needs the value of x, and is therefore

34

public interface Function {
public int apply(int i);
b

public class Make_fn {
Function make_fn(final int x, final int y) {

class Add_x implements Function {
public int apply(int i) {
return i+x;
b
}

class Add_y_Add_x implements Function {
public int apply(int i) {
return (new Add_x()).apply(i)+y;
+
}

return new Add_y_Add_x();

Figure 12: Inner classes with free variables in Java

fun make_fn (x, y)
= let fun add_x 1
= i+x
fun add_x_add_y i
= (add_x i) + vy
in add_x_add_y
end

Figure 13: ML counterpart of Figure 12

35

public interface Function {
public int apply(int i);
}

public class Make_fn {
Function make_fn(final int x, final int y) {
return new A$1Add_y_Add_x(this,x,y);
}
}

class Make_fn$1Add_x implements Function {
private final Make_fn this$0;
private final int val$x;

public Make_fn$1Add_x(Make_fn a, int x) {
this$0=a; val$x=x;
}

public int apply(int i) {
return i+valx;
}
}

class Make_fn$1Add_y_Add_x implements Function {
private final Make_fn this$0;
private final int val$x;
private final int val$y;

public Make_fn$1Add_y_Add_x(Make_fn a, int x, int y) {
this$0=a; val$x=x; val$y=y;
}

public int apply(int i) {
(new Make_fn$1Add_x(this$0,val$x)) .apply(i)+val$y;
3
+

Figure 14: The program of Figure 12, after compilation and decompilation

36

fun make_fn (x, y)
= let fun add_x x i
= i+x
fun add_x_add_y (x, y) i
= (add_x x 1) + y
in add_x_add_y (x, y)
end

Figure 15: ML counterpart of Figure 14

also passed x as an additional constructor parameter which is stored in a
field.

The ML counterpart of Figure 14 is displayed in Figure 15. It is the
parameter-lifted version of Figure 13.

For local variables occurring free in inner classes, the transformation from
Java source code to Java byte code therefore coincides with lambda-lifting,
since the free variables are passed as additional arguments to the construc-
tor. Moreover, as illustrated by the example, the free variables of other
inner classes that are instantiated within the inner class are also passed as
constructor arguments, in a transitive fashion, again similarly to parameter
lifting.

6.3 Time complexity

In actuality, lambda-lifting in Java is simpler than lambda-lifting in a func-
tional language because inner classes defined within methods only have for-
ward visibility. In the absence of mutual recursion, the dependencies between
inner classes always form a directed acyclic graph. Therefore the propaga-
tion of free variables can be done in quadratic time, as in our lambda-lifting
algorithm.

Should Java be revised one day to allow mutually recursive inner classes
defined within methods, Java compilers would need to perform full lambda-
lifting. It is our point here that they could do so in quadratic time rather
than in cubic time.

37

7 Conclusion

We have shown that a transitive closure is not needed for lambda-lifting. We
have reformulated lambda-lifting as a graph algorithm and improved its time
complexity from O(n?®) to O(n?), where n is the size of the program. Based
on a simple example where lambda-lifting generates a program of size Q(n?),
we have also demonstrated that our improved complexity is optimal.

The quadratic-time algorithm can replace the cubic-time instances of
lambda-lifting in any compiler, partial evaluator, or program transformer,
be it for global or for incremental lambda-lifting.

Acknowledgements: We are grateful to Mads Sig Ager, Lars R. Clausen,
Daniel Damian, Kristoffer Arnsfelt Hansen, Julia Lawall, Jan Midtgaard,
Kevin S. Millikin, Laurent Réveillere, Henning Korsholm Rohde, and Kris-
tian Stgvring Serensen for their comments on an earlier version of this article,
and to Andrzej Filinski for a clarification about ML typing. Thanks are also
due to the anonymous referees for very perceptive and useful reviews.

This work is supported by the ESPRIT Working Group APPSEM (http:
//www .appsem.org) and by the Danish Natural Science Research Council,
Grant no. 21-03-0545.

References

[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Prin-
ciples, Techniques and Tools. World Student Series. Addison-Wesley,
Reading, Massachusetts, 1986.

[2] Andrew W. Appel. Compiling with Continuations. Cambridge Univer-
sity Press, New York, 1992.

[3] Andrew W. Appel. Modern Compiler Implementation in {C, Java, ML}.
Cambridge University Press, New York, 1998.

[4] Andrew W. Appel. SSA is functional programming. ACM SIGPLAN
Notices, 33(4):17-20, April 1998.

[5] Andrew W. Appel and Trevor Jim. Continuation-passing, closure-
passing style. In Michael J. O’Donnell and Stuart Feldman, editors,
Proceedings of the Sizteenth Annual ACM Symposium on Principles of

38

[10]

[11]

[12]

[13]

Programming Languages, pages 293-302, Austin, Texas, January 1989.
ACM Press.

Andrew W. Appel and David B. MacQueen. Standard ML of New
Jersey. In Jan Maluszynski and Martin Wirsing, editors, Third Interna-
tional Symposium on Programming Language Implementation and Logic
Programming, number 528 in Lecture Notes in Computer Science, pages
1-13, Passau, Germany, August 1991. Springer-Verlag.

Lennart Augustsson. A compiler for Lazy ML. In Guy L. Steele Jr.,
editor, Conference Record of the 1984 ACM Symposium on Lisp and
Functional Programming, pages 218227, Austin, Texas, August 1984.
ACM Press.

Adam Bakewell and Colin Runciman. Automatic generalisation of func-
tion definitions. In Middeldorp and Sato [33], pages 225-240.

Henk Barendregt. The Lambda Calculus: Its Syntax and Semantics,
volume 103 of Studies in Logic and the Foundation of Mathematics.
North-Holland, revised edition, 1984.

Anders Bondorf and Olivier Danvy. Automatic autoprojection of recur-
sive equations with global variables and abstract data types. Science of
Computer Programming, 16:151-195, 1991.

Rod M. Burstall and Robin J. Popplestone. POP-2 reference manual.
In Bernard Meltzer and Donald Michie, editors, Machine Intelligence,
volume 5, pages 207-246. Edinburgh University Press, 1968. http:
//www-robotics.cs.umass.edu/ pop/functional.html.

William Clinger and Lars Thomas Hansen. Lambda, the ultimate label,
or a simple optimizing compiler for Scheme. In Carolyn L. Talcott,
editor, Proceedings of the 1994 ACM Conference on Lisp and Functional
Programming, LISP Pointers, Vol. VII, No. 3, pages 128-139, Orlando,
Florida, June 1994. ACM Press.

Charles Consel. A tour of Schism: A partial evaluation system for
higher-order applicative languages. In David A. Schmidt, editor, Pro-
ceedings of the Second ACM SIGPLAN Symposium on Partial Fval-
uation and Semantics-Based Program Manipulation, pages 145-154,
Copenhagen, Denmark, June 1993. ACM Press.

39

[14]

[15]

[16]

[17]

[18]

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clif-
ford Stein. Introduction to Algorithms. The MIT Press, Cambridge,
Massachusetts, second edition, 2001.

Olivier Danvy. An extensional characterization of lambda-lifting and
lambda-dropping. In Middeldorp and Sato [33], pages 241-250.

Olivier Danvy and Ulrik P. Schultz. Lambda-dropping: Transforming re-
cursive equations into programs with block structure. Theoretical Com-
puter Science, 248(1-2):243-287, 2000.

Olivier Danvy and Ulrik P. Schultz. Lambda-lifting in quadratic time.
In Zhenjiang Hu and Mario Rodriguez-Artalejo, editors, Sizth Interna-
tional Symposium on Functional and Logic Programming, number 2441
in Lecture Notes in Computer Science, pages 134-151, Aizu, Japan,
September 2002. Springer-Verlag. Extended version available as the
technical report BRICS-RS-03-26.

Gilles Dowek. Lambda-calculus, combinators and the comprehension
scheme. In Mariangiola Dezani-Ciancaglini and Gordon D. Plotkin, ed-
itors, Second International Conference on Typed Lambda Calculi and
Applications, number 902 in Lecture Notes in Computer Science, pages
154-170, Edinburgh, UK, April 1995. Springer-Verlag. Extended version
available as the INRIA research report 2535.

Kerstin 1. Eder. FEMA: Implementing the Rewriting Computational
Model of Escher. PhD thesis, Department of Computer Science, Uni-
versity of Bristol, Bristol, UK, November 1998.

Adam Fischbach and John Hannan. Specification and correctness of
lambda lifting. Journal of Functional Programming, 13(3):509-543,
2003.

Arne John Glenstrup. Terminator II: Stopping partial evaluation of fully
recursive programs. Master’s thesis, DIKU, Computer Science Depart-
ment, University of Copenhagen, June 1999.

Paul T. Graunke, Robert Bruce Findler, Shriram Krishnamurthi, and
Matthias Felleisen. Automatically restructuring programs for the web.
In Martin S. Feather and Michael Goedicke, editors, 16th IEEE Inter-
national Conference on Automated Software Engineering (ASE 2001),

40

[23]

[24]

[25]

[26]

28]

[29]

[30]

[31]

pages 211-222, Coronado Island, San Diego, California, USA, November
2001. IEEE Computer Society.

Michael Hanus (ed.). Curry: An integrated functional logic language
(version 0.8). Available at http://www.informatik.uni-kiel.de/
“curry, 2003.

Michael Hanus (ed.). PAKCS 1.6.0 the Portland Aachen Kiel Curry
system user manual. Available at http://www.informatik.uni-kiel.
de/~pakcs, 2004.

Fritz Henglein. Type inference with polymorphic recursion. ACM Trans-
actions on Programming Languages and Systems, 15(2):253-289, April
1993.

John Hughes. Super combinators: A new implementation method for
applicative languages. In Daniel P. Friedman and David S. Wise, ed-
itors, Conference Record of the 1982 ACM Symposium on Lisp and
Functional Programming, pages 1-10, Pittsburgh, Pennsylvania, August
1982. ACM Press.

Thomas Johnsson. Lambda lifting: Transforming programs to recursive
equations. In Jean-Pierre Jouannaud, editor, Functional Programming
Languages and Computer Architecture, number 201 in Lecture Notes
in Computer Science, pages 190-203, Nancy, France, September 1985.
Springer-Verlag.

Thomas Johnsson. Compiling Lazy Functional Languages. PhD thesis,
Department of Computer Sciences, Chalmers University of Technology,
Goteborg, Sweden, 1987.

Bill Joy, Guy Steele, James Gosling, and Gilad Bracha. The Java™
Language Specification. Addison-Wesley, 2nd edition, 2000.

Peter J. Landin. The mechanical evaluation of expressions. The Com-
puter Journal, 6(4):308-320, 1964.

Tim Lindholm and Frank Yellin. The Java™ Virtual Machine Specifi-
cation. Addison-Wesley, 2nd edition, 1999.

41

32]

[33]

Karoline Malmkjaer, Nevin Heintze, and Olivier Danvy. ML partial
evaluation using set-based analysis. In John Reppy, editor, Record of the
1994 ACM SIGPLAN Workshop on ML and its Applications, Rapport
de recherche N° 2265, INRIA, pages 112-119, Orlando, Florida, June
1994.

Aart Middeldorp and Taisuke Sato, editors. Fourth Fuji International
Symposium on Functional and Logic Programming, number 1722 in
Lecture Notes in Computer Science, Tsukuba, Japan, November 1999.
Springer-Verlag.

Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The
Definition of Standard ML (Revised). The MIT Press, 1997.

Flemming Nielson and Hanne Riis Nielson. 2-level A-lifting. In Harald
Ganzinger, editor, Proceedings of the Second Furopean Symposium on
Programming, number 300 in Lecture Notes in Computer Science, pages
328-343, Nancy, France, March 1988. Springer-Verlag.

Atsushi Ohori. The logical abstract machine: A Curry-Howard isomor-
phism for machine code. In Middeldorp and Sato [33], pages 300-318.

Dino P. Oliva, John D. Ramsdell, and Mitchell Wand. The VLISP veri-
fied PreScheme compiler. Lisp and Symbolic Computation, 8(1/2):111—
182, 1995.

Simon L. Peyton Jones. An introduction to fully-lazy supercombinators.
In Guy Cousineau, Pierre-Louis Curien, and Bernard Robinet, editors,
Combinators and Functional Programming Languages, number 242 in
Lecture Notes in Computer Science, pages 176-208, Val d’Ajol, France,
1985. Springer-Verlag.

Simon L. Peyton Jones. The Implementation of Functional Program-
ming Languages. Prentice Hall International Series in Computer Science.
Prentice-Hall International, 1987.

John Reppy. Optimizing nested loops using local CPS conversion.
Higher-Order and Symbolic Computation, 15(2/3):161-180, 2002.

42

[41]

[42]

[43]

[44]

[45]

André Santos. Compilation by transformation in non-strict functional
languages. PhD thesis, Department of Computing, University of Glas-
gow, Glasgow, Scotland, 1996.

Paul A. Steckler and Mitchell Wand. Lightweight closure conversion.
ACM Transactions on Programming Languages and Systems, 19(1):48-
86, 1997.

Peter Thiemann. ML-style typing, lambda lifting, and partial evalua-
tion. In Proceedings of the 1999 Latin-American Conference on Func-
tional Programming, CLAPF 99, Recife, Pernambuco, Brasil, March
1999.

Eelco Visser. Program transformation with Stratego/XT: Rules,
strategies, tools, and systems in StrategoXT-0.9. In Lengauer
et al., editor, Domain-Specific Program Generation, volume 3016
of Lecture Notes in Computer Science. Springer-Verlag, June 2004.
(To appear). See http://www.stratego-language.org/Stratego/
LiftDefinitionsToTopLevel for a discussion of lambda-lifting in the
Stratego Compiler.

Mitchell Wand. From interpreter to compiler: a representational deriva-
tion. In Harald Ganzinger and Neil D. Jones, editors, Programs as Data
Objects, number 217 in Lecture Notes in Computer Science, pages 306—
324, Copenhagen, Denmark, October 1985. Springer-Verlag.

43

