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Abstract. Type analyses of logic programs which aim at inferring the
types of the program being analyzed are presented in a unified ab-
stract interpretation-based framework. This covers most classical ab-
stract interpretation-based type analyzers for logic programs, built on
either top-down or bottom-up interpretation of the program. In this set-
ting, we discuss the widening operator, arguably a crucial one. We present
a new widening which is more precise than those previously proposed.
Practical results with our analysis domain are also presented, showing
that it also allows for efficient analysis.

1 Introduction

In type analyses, the widening operation has much influence in the results. If the
widening is too aggressive in making approximations then the analysis results
may be too imprecise. On the other hand, if it is not sufficiently aggressive then
the analysis may become too inefficient.

Widening operators are aimed at identifying the recursive structure of the
types being inferred. All widenings already proposed in the literature are based
on locating type nodes with the same functors, which are possible sources of
recursion. However, they disregard whether such nodes come in fact from a
recursive structure in the program or not. This may originate an unnecessary
loss of precision, since the widening result may then impose a recursive structure
on the resulting type in argument positions where the concrete program is in fact
not recursive. We propose a widening operator to try to remedy this problem.

We present our widening operator for regular type inference in an analy-
sis framework based on abstract interpretation of the program. In order for the
paper to be self contained, we first revisit regular types (Section 2) and, in partic-
ular, deterministic ones. We focus on deterministic types for ease of presentation;
however, there is nothing in our widening which prevents it to be applicable also
to non-deterministic types. The abstract interpretation framework is set up in
Section 3. Section 4 reviews previous widenings in the literature, and Section 5
presents ours. In Section 6 experimental results are presented, and Section 7
concludes and discusses future work.
1 In Alexandre Tessier (Ed), proceedings of the 12th International Workshop on Logic
Programming Environments (WLPE 2002), July 2002, Copenhagen, Denmark.
Proceedings of WLPE 2002: http://xxx.lanl.gov/html/cs/0207052 (CoRR)
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2 Regular Types

A regular type [3] is a type representing a class of terms that can be described
by a regular term grammar. A regular term grammar, or grammar for short,
describes a set of finite terms constructed from a finite alphabet F of ranked
function symbols or functors. A grammar G = (S, T ,F ,R) consists of a set of
non-terminal symbols T , one distinguished symbol S ∈ T , and a finite set R of
productions T −→ rhs, where T ∈ T is a non-terminal and the right hand side
rhs is either a non-terminal or a term f(T1, . . . , Tn) constructed from an n-ary
function symbol f ∈ F and n non-terminals.

The non-terminals T are types describing (ground) terms built from the func-
tors in F . The concretization γ(T ) of a non-terminal T is the set of terms deriv-
able from its productions, that is,

γ(T ) =
⋃

(T−→rhs)∈R

γ(rhs)

γ(f(T1, . . . , Tn)) = {f(t1, . . . , tn) | ti ∈ γ(Ti)}

The types of interest are each defined by one grammar: each Ti is defined by
a grammar (Ti, Ti,F ,Ri), so that for any two types of interest T1 and T2 on F ,
T1 ∩ T2 = ∅. Sometimes, we will be interested in types defined by non-terminals
of a grammar (T, T ,F ,R) other than the distinguished non-terminal T . This is
formalized by defining a type Ti ∈ T as the grammar

(Ti, {T ∈ T | Ti
reach
−→

∗

R T },F , {(T −→ rhs) ∈ R | Ti
reach
−→

∗

R T }) (1)

where all the non-terminals are renamed apart,
reach
−→

∗

R is the reflexive and transi-

tive closure of
reach
−→R and Ti

reach
−→R Tj iff Ti −→R Tj or Ti −→R f(. . . , Tj, . . .).

A grammar is in normal form if none of the right hand sides are non-
terminals. A particular class of grammars are deterministic ones. A grammar
is deterministic if it is in normal form and for each non-terminal T the function
symbols are all distinct in the right hand sides of the productions for T .

Deterministic grammars are less expressive than non-deterministic ones. De-
terministic grammars can only express sets of terms which are tuple-distributive;
informally speaking, which are “closed under exchange of arguments”. I.e., if
the set contains two terms of the same functor, then it also contains terms with
the same principal functor obtained by exchanging subterms of the previous
two terms in the same argument positions. Basically, no dependencies between
arguments of a term can be expressed with deterministic grammars.

Example 1. Consider the type T denoting the set {f(a, b), f(c, d)}, which is non-
deterministic,

T −→ f(A,B) A −→ a C −→ c
T −→ f(C,D) B −→ b D −→ d
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A deterministic type T ′ with a concretization which included γ(T ) would also
have to include {f(c, b), f(a, d)}, that is,

T ′ −→ f(AC,BD) AC −→ a BD −→ b
AC −→ c BD −→ d

To facilitate the presentation non-terminals with a single production will often
be “inlined” and multiple right hand sides combined so that T above will be
written T −→ f(a, b) | f(c, d) and T ′ as

T ′ −→ f(AC,BD) AC −→ a | c BD −→ b | d

To be able to describe terms containing numbers and variables we introduce
two distinguished symbols num and any, plus an additional ⊥. The concretiza-
tion of num is the set of all numbers, the concretization of any is the set of
all terms (including variables), and the concretization of ⊥ is the empty set of
terms. These symbols are non-terminals but they are considered terminals to the
effect of regarding a grammar as deterministic.

Let G be the set of all grammars, if T1, T2 belong to G, the relation T1 ≡ T2 ⇔
γ(T1) = γ(T2) is an equivalence relation. The quotient set G/ ≡ is a complete
lattice with top element any and bottom element ⊥ based on the relation of
containment, or type inclusion: for every T1, T2 ∈ G/ ≡, T1 ⊑ T2 ⇔ γ(T1) ⊆
γ(T2). We will denote Ti simply by Ti.

The least upper bound is given by type union, (T1 ⊔ T2), and the greatest
lower bound by type intersection, (T1⊓T2) [3]. It can be shown that intersection
describes term unification:

t∗1 ⊆ γ(T1) ∧ t∗2 ⊆ γ(T2) ∧ t1θ = t2θ ⇒ (t1θ)
∗ ⊆ γ(T1 ⊓ T2)

where t∗ denotes the set of ground terms which are instances of the term t.

3 Abstract Domain for Type Inference

In an abstract interpretation-based type analysis, a type is used as an abstract
description of a set of terms. Given variables of interest {x1, . . . , xn}, any substi-
tution θ = {x1 ← t1, . . . , xn ← tn} can be approximated by an abstract substi-
tution {x1 ← Tx1

, . . . , xn ← Txn
} where ti ∈ γ(Txi

) and each type Txi
∈ G/ ≡.

We will write abstract substitutions as tuples 〈T1, . . . , Tn〉, and sometimes also
abbreviate a tuple simply as T n.

Concretization is lifted up to abstract substitutions straightforwardly,

γ(〈T1, . . . , Tn〉) = { {x1 ← t1, . . . , xn ← tn} | ti ∈ γ(Ti) }

as well as the equivalence relation ≡. Additionally, we consider a distinguished
abstract substitution ⊥ as a representative of any 〈T1, . . . , Tn〉 such that there
is Ti = ⊥. Of course, γ(⊥) = ∅.
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An ordering on the domain is obtained as the natural element-wise extension
of the ordering on types:

⊥ ⊑ T n

〈T1, . . . , Tn〉 6⊑ ⊥

〈T1, . . . , Tn〉 ⊑ 〈T
′
1, . . . , T

′
n〉 ⇐⇒ ∀1≤i≤nTi ⊑ T ′

i

The domain is a lattice with bottom element ⊥ and top element 〈T1, . . . , Tn〉
such that T1 = . . . = Tn = any. The greatest lower bound and least upper
bound domain operations are lifted also element-wise, as follows,

⊥ ⊔ T n = T n ⊔⊥ = T n

〈T1, . . . , Tn〉 ⊔ 〈T
′
1, . . . , T

′
n〉 = 〈T1 ⊔ T ′

1, . . . , Tn ⊔ T ′
n〉

⊥ ⊓ T n = T n ⊓ ⊥ = ⊥

〈T1, . . . , Tn〉 ⊓ 〈T ′
1, . . . , T

′
n〉 = 〈T1 ⊓ T ′

1, . . . , Tn ⊓ T ′
n〉

Using the adjoint α of γ as abstraction function, it can be shown that
(2Θ, α,Ω, γ) is a Galois insertion, where Θ is the domain of concrete and Ω
that of abstract substitutions. The following abstract unification operator can
be shown to approximate the concrete one. Let x = t be a concrete unification
equation, with x a variable,t any term, and T n the current abstract substitution,
and let yj , j = 1, . . . ,m be the variables of t, the new abstract substitution is:

amgu(T n, x = t) = T n[Tx/T
′
x, Ty1

/T ′
y1
, . . . , Tym

/T ′
ym

] (2)

with each T replaced by T ′ in the tuple, T ′
x = Tx⊓ tµ, µ = {y1 ← Ty1

, . . . , ym ←
Tym
}, and solve(t, T ′

x) = {y1 = T ′
y1
, . . . , ym = T ′

ym
}, a set of equations that

define the types of the variables of a term t ∈ γ(T ′
x), obtained as:

solve(t, T ) =







{t = T } if t is a variable
⋃

T−→f(T1,...,Tn)

⋃

i=1,...,n

solve(ti, Ti) if t is f(t1, . . . , tn)

In this abstract interpretation-based setting, analysis with a monotonic se-
mantic function can be easily shown correct. However, it is not guaranteed to
terminate, since Ω has infinite ascending chains. To guarantee termination, a
widening operator is required.

Example 2. The following program defines the type lists of lists of numbers:

list_of_lists([]). num_list([]).

list_of_lists([L|Ls]):- num_list([N|Xs]):-

num_list(L), number(N),

list_of_lists(Ls). num_list(Xs).

For the argument of num list, without a widening operator, an analysis would
obtain the following first three approximations:

T0 −→ [] T1 −→ [] | .(num, T0) T2 −→ [] | .(num, T1)
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where each Ti represents a list of i numbers. Analysis will never terminate, since
it would keep on obtaining a new type representing a list with one more number.
A widening operator would be required that over-approximates some type Tl to
something like Tl −→ [] | .(num, Tl), which is the expected type, and allows
termination of the analysis.

4 Widenings

Functor Widening This is probably the simplest widening operator which still
keeps information from the recursive structure of the program that “produces”
the corresponding terms. The idea behind it is to create a type and a produc-
tion for each functor symbol in the original type. All arguments of the function
symbols are replaced with the new types [9].

Example 3. Consider predicate list of lists of Example 3.2, its argument
should ideally have the following type: Tll −→ [] | .(Tl, Tll) Tl −→ [] | .(num, Tl)
but the functor widening will yield: T −→ [] | num | .(T, T ).

Type Jungle Widening A type jungle is a grammar where each functor always
has the same arguments. It was originally proposed as a finite type domain [8] ,
since in a domain where all grammars are of the type jungle class all ascending
chains are finite. However, it can be used as a subdomain to provide a widening

Example 4. Applying this widening to the previous type Tll, the following will
be obtained:

T −→ [] | .(T1, T ) T1 −→ [] | num | .(T1, T )

Note that this widening is strictly more precise than the functor widening. In
the example, the new type captures the upper level of lists, but it loses precision
when describing the type of the list elements. This is due to the restriction of
forcing functors to always have the same arguments.

Shortening A grammar can be seen as a graph where the nodes correspond to the
non-terminals (or-nodes) and to the right hand sides of productions (and-nodes),
and the edges correspond to the production relation or the relation between a
functor and its arguments in a right hand side of a production. Given an or-node,
its principal functors are the functors appearing in its children nodes.

Example 5. The type Tll of the previous examples can be seen as the graph:

[ ] [ ]

Tll Tl num

./2 ./2

Gallagher and de Waal [5] defined a widening which avoids having two or-
nodes, which have the same principal functors, connected by a path. If two such
nodes exist, they are replaced by their least upper bound.
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Example 6. In the above example graph, nodes Tll and Tl have the same principal
functors ([] and .) so that they are replaced, yielding:

T −→ [] | .(T1, T ) T1 −→ [] | num | .(num, T )

Note the precision improvement with respect to the result in the previous
example. Note also that still the result is imprecise.

Restricted Shortening Saglam and Gallagher [10] propose a more precise variant
of the previous widening. Shortening is restricted so that two or-nodes T and T ′

which are connected by a path from T to T ′ and have the same principal functors
are replaced only if T ′ ⊑ T . If this is the case, only T ′ needs be replaced, since
the least upper bound is T .

Example 7. Continuing previous examples, since nodes Tll and Tl have the same
principal functors but Tl 6⊑ Tll, the widening operation will make no change. In
this case, the most precise type is achieved.

Note, however, that restricted shortening does not guarantee termination in
general (and thus, it is not, strictly speaking, a widening). There are cases in
which analysis may not terminate using only this widening operator [9].

Depth Widening Janssens and Bruynooghe [7] proposed a type analysis in which
the widening effect is achieved by a “pruning” of the type depth up to a certain
bound. A parameter k establishes the maximum number of occurrences of a func-
tor in-depth in a type. The idea is similar to the well-known depth-k abstraction
for term structure analysis. The resulting type analysis uses normal restricted
type graphs, which are basically deterministic types satisfying the depth limit.
Obviously, the precision depends on the value of the parameter k.

Example 8. The widening of our previous type Tll with k=1 will yield the same
result than the functor widening (Example 4.3), whereas with k=2 will yield the
same result as restricted shortening (Example 4.7).

Topological Clash Widening Van Hentenryck et al. [11] proposed the first widen-
ing operator that takes into account two consecutive approximations to the type
being inferred. After merging the two —i.e., calculating their least upper bound,
the result is compared with the previous approximation to try to “guess” where
the type is growing. This is done by locating topological clashes: functors that
differ or appear at different depth in each type graph. The clashes are resolved
by replacing them with the recently calculated least upper bound.

Example 9. Consider the program:

sorted([]).

sorted([_X]).

sorted([X,Y|L]):- X =< Y, sorted([Y|L]).
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and the moment during analysis when the final widening is performed. The
resulting type for the argument of sorted/1 is the one on the left below for the
first two clauses, and the one on the right for the last one:

T0 −→ [] | .(any, []) T1 −→ .(num, .(num, Tl))
Tl −→ [] | .(num, Tl)

Their least upper bound is Tu on the left below, which exhibits a clash with T0

in the second argument of functor ./2. Thus, the result of widening is Ts:

Tu −→ [] | .(any, Tl) Ts −→ [] | .(any, Ts)

All widening operators are based on locating recursive structures in the type
definitions where there are nodes with the same functors. This may originate an
unnecessary loss of precision, since the widening may impose a recursive structure
on the resulting type in argument positions where the concrete program is in
fact not recursive. In the following section we present a new widening operator
that tries to remedy this problem.

5 Structural Type Widening

In this section we define an extended domain for type analysis which incorpo-
rates a widening operator aimed at improving the precision of the analysis. The
domain is defined so as to keep track of information on the program structure, so
that recursion on the types produced by the analysis is imposed by the widening
operator only in the cases where it corresponds to a recursive structure in the
program being analyzed. To this end, type names will be used.

A type name is roughly a (distinguished) non-terminal that represents a type
produced during the analysis. Type names are created for each variable in each
argument of each variant of each program atom for each predicate (note how
this is different from, for example, set-based analyses [1], where variants are not
taken into account).

Type names provide information on how types are being formed from other
types during analysis. This makes it possible to precisely identify places where
to impose recursion on the types: in a subterm of the type which happens to
refer to the name of that type. To this end, type names contain references to the
position of its constituent types. To determine positions, selectors are used, as
defined below.

Definition 1 (selector). Define t/s, the subterm of a concrete term t refer-
enced by a selector s, inductively as follows. The empty selector ǫ refers to the
term t, that is, t/ǫ = t. If t/s = t′, t′ is a compound term f(t1, . . . , ti, . . . , tn)
(where f is an n-ary function symbol) then t/s · (f.i) = ti, 1 ≤ i ≤ n.

For every two selectors s, p, if t/s = t′ and if t′/p exists then t/s · p = t′/p.
The initial ǫ of a non-empty selector will often be omitted, so ǫ ·p will be written
simply as p.

We define a set of type names N such that N ∩ G = ∅ and a set 2N×G of
relations X ∈ 2N×G between type names and types, of the form X ⊆ N × G.
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Definition 2 (label). Let X a relation between type names and types. Given a
type name N , a label of N is a tuple 〈s,N ′〉, where s is a selector and N ′ is a
type name, iff (N, T ) ∈ X , (N ′, T ′) ∈ X , and T ′ ⊑ T/s.

Labels of a type name N indicate subterms of the type T defining N where
other type names occur.

Example 10. Let a relation X such that {(A, T1), (B, T2)} ⊆ X , and let gram-
mars (T1, T1,F ,R1) and (T2, T2,F ,R2), such that the only rule for T1 is (T1 −→
f(b)) ∈ R1 and (T2 −→ g(c, T3)) ∈ R2, (T3 −→ b | f(b)) ∈ R2. Consider a label
〈(g.2), A〉 of B. We have that T1 ⊑ T2/(g.2) = T3.

Definition 3 (type descriptor). Let G a set of types (regular term grammars),
N a set of type names, and X ⊆ N × G. A type descriptor is a tuple (N,E, T )
where N ∈ N , T ∈ G, (N, T ) ∈ X , and E is a set of labels of N .

In the new domain, type descriptors will be used instead of types. Let D
be the set of all type descriptors from given sets of types G and of type names
N . Concretization is defined as γ((N,E, T )) = γ(T ). The domain ordering and
operations on D are the same as on G except for type names. In this case, they
have to take into account the possible labels of the type name.

Inclusion (N1, E1, T1) ⊑ (N2, E2, T2)⇔ T1 ⊑ T2 ∧ E1 ⊆ E2.

Union (N,E, T ) = (N1, E1, T1) ⊔ (N2, E2, T2)⇔ T = T1 ⊔ T2 ∧ E = E1 ∪ E2.

Intersection (N,E, T ) = (N1, E1, T1)⊓(N2, E2, T2)⇔ T = T1⊓T2∧E = E1∪E2.

Again, we may be interested in types defined by non-terminals other than
the distinguished non-terminal T of a grammar (T, T ,F ,R). A type descriptor
(Ni, Ei, Ti), where Ti ∈ T , is formally defined from (N,E, T ) as follows: Ti is
the grammar of Equation 1, Ni is a new type name, and

Ei = {〈p,N
′〉 | 〈s · p,N ′〉 ∈ E ∧ T/s = Ti}.

Abstract substitutions for variables of interest {x1, . . . , xn} are now defined
as tuples of the form 〈(N1, E1, Tx1

), . . . , (Nn, En, Txn
)〉. Concretization and the

domain ordering and operations are lifted to abstract substitutions element-wise,
in the same way as in Section 3, including the widening operator defined below.
If now Ω is the domain of type descriptors, it can be shown that (2Θ, α,Ω, γ)
is a Galois insertion, where α is the adjoin of γ. Abstract unification is defined
as in Equation 2, but using type descriptors instead of types (and preserving all
type names in the “input” abstract substitution T n to amgu).

Definition 4 (structural widening). The widening between an approxima-
tion T2 to type name N and a previous approximation T1 to N is (N,E1, T1)▽
(N,E2, T2) = (N,E1 ∪ E2, T ), such that T is defined by (T, T ,F ,R) where
T = {Ti | T −→∗

R Ti}, and R is obtained by the following algorithm:
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T ′ := T1 ⊔ T2 defined by (T ′, T ′,F ,R′)
S := {s | (s,N) ∈ E1 ∪ E2}
Seen := ∅
for each (T ′ −→ f(A1, . . . , An)) ∈ R′ add to R production

T −→ f(widen(A1,R′, (f.1)), . . . , widen(An,R′, (f.n)))

widen(N,R′, Sel) :
if N = any return any
if ∃M〈N,M〉 ∈ Seen return M
let M a new non-terminal

Seen := Seen ∪ {〈N,M〉}
for each (N −→ f(A1, . . . , An)) ∈ R′ add to R production

M −→ f(widen(A1,R′, Sel · (f.1)), . . . , widen(An,R′, Sel · (f.n)))
if Sel ∈ S then

add to R production M −→ T
return M

Structural widening basically identifies subterms of the new type T1 ⊔ T2

where a reference to the type N being widened appear, and makes this “self-
reference” explicit in the definition of the new type. Note that the widening
operation starts with the least upper bound and, basically, adds new grammar
rules to that type. Therefore, the result is always a correct approximation of such
an upper bound. This justifies its correctness. Moreover, this approach based
on type names is potentially more precise than any of the previous widening
operators discussed, as the following examples show:

Example 11. Consider program sorted in Example 4.9. A top-down analysis
with topological clash was roughly described there. Let us now look at analysis
using restricted shortening. The resulting type happens to be the same one.

Analysis of program atom sorted([Y|L]) approximates variable Y always as
num, both in the calls and in the successes. The first two success approximations
for variable L are [] and .(num, []). Their lub (and widening) is:

T1 −→ [] | .(num, [])

The next approximation to the type of L is .(num, T1). Its lub with T1 is T2 −→
[] | .(num, T1), and since T2 and T1 have the same functors, and T1 is included
in T2, the widening of T2 is:

T3 −→ [] | .(num, T3)

i.e., list of numbers. The next approximation to the type of L is .(num, T3) (i.e.,
a list with at least one number). It is included in T3, so fixpoint is reached.

The success of principal goal sorted(X) is approximated after analyzing the
two non-recursive clauses by T4 −→ [] | .(any, []). Analysis of the third clause
yields .(num, .(num, T3)). Its lub with T4 is T5 −→ [] | .(any, T3). The widening
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of T5 finds that T5 and T3 have the same functors and T3 ⊑ T5, since num ⊑
any. Thus, the result of widening is:

T6 −→ [] | .(any, T6)

i.e., list of terms. This is the final result after one more iteration. Note that the
information about successes where the tail of lists of length greater than one is
a list of numbers is lost.

Let us now consider structural widening. Analysis of atom sorted([Y|L])

always approximates the type of Y by (N13, ∅,num). For variable L the two first
approximations are (N14, ∅, []) and (N14, E14, .(num, [])), where the set of labels
is E14 = { (’.’.1, N13), (’.’.2, N14) }. The result of widening is (N14, E14, T1)
where T1 is defined as:

T1 −→ [] | .(num, T1)

i.e., list of numbers. This is the final result after one more iteration.
The success of principal goal sorted(X) is approximated after analyzing the

two non-recursive clauses by (N3, ∅, T2) where T2 −→ [] | .(any, []). Analysis of
the third clause yields (N3, E3, .(num, .(num, T1))), where

E3 = { (’.’.2 · ’.’.1, N13), (’.’.2 · ’.’.2, N14) }

Its widening with the previous approximation T2 is (N3, E3, T3), where

T3 −→ [] | .(any, T1)

which amounts to their lub, since the widening operator does not produce any
change, because N3 is not among its own labels. Therefore, the final result, after
one more iteration, is T3, where indeed lists of length greater than one have a
tail which is a list of numbers.

However, structural widening does not guarantee termination. It is effective
as long as the new approximation is built from the previous approximation of
the type being inferred. This case is identified, in essence, by locating a reference
to the type name of the previous approximation within the definition of the new
one. However, there are contrived cases in which a type is constructed during
analysis which loses the reference to the previous approximation. In these cases,
a more restrictive widening has to be applied to guarantee termination.

Example 12. Consider the program:

main:- p(a). p(a). q(a,f(a)).

p(X):- q(X,Y), p(Y). q(f(Z),f(L)):- q(Z,L).

The calling substitution for atom p(Y) is the sequence

T1 −→ f(a) T2 −→ f(f(a)) T3 −→ f(f(f(a))) . . .

whereas the type T −→ f(a) | f(T ) correctly describes such calls. However, the
analysis is not able to infer such a type.
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The problem in the above example is that none of the approximations Ti

contains a reference to the previous approximation. This is originated in the
program fact for predicate q/2 which causes the loss of the reference to the
previous approximation because of the double occurrence of constant a.

In our analysis, termination is guaranteed by a bound on the number of times
the widening operation can be applied to a type name. A counter is associated to
each type name, so that when the bound is reached a more restrictive widening
that guarantees termination is applied.

6 Analysis Results

We have implemented analyses based on most of the widenings discussed in this
paper, including structural widening. The implementation is in Prolog and has
been incorporated to the CiaoPP system [6], which uses the top-down analysis
algorithm of PLAI. The analysis of [5], based on regular approximations, which
uses a bottom-up algorithm, is also incorporated into the system. This analysis
uses shortening. We want to compare the top-down and bottom-up approaches
with the same widening and similar implementation technology,2 as well as the
precision and efficiency, within the same analysis framework, of the widening
operators previously discussed.

We have used two sets of benchmark programs: the one used in the PLAI
framework and that used in the GAIA [2] framework. A summary of the bench-
marking follows. The analysis times in miliseconds are shown in Table 1 (left).
The first column (rul) is for the regular approximation analysis and the other
three for the PLAI-based analyses: column short for shortening, column clash

for topological clash, and column struct for structural widening.
Table 2 shows results in terms of precision. The precision of struct is never

improved by any of the others. The improved precision of struct has been
measured as follows. The left subcolumns under rul, short, and clash show
the number of types with a more precise definition inferred by struct. The
right subcolumns show the number of types where the previous ones appear
(and are thus, also, more precise). The former are types directly inferred from
program predicates; the latter are types which are defined from the former, due
to the data flow in the program.

The following conclusions can be drawn from the tables. First, the regular
approximation approach seems to behave better in terms of efficiency than the
program interpretation approach, at least for the bigger programs. This conclu-
sion, however, has to be taken with some care, since the current implementation
of rul performs some caching of the type grammars that the PLAI-based analy-
sis does not. This should be subject of a more thorough evaluation, which is out
of the scope of this paper. The fact that it improves in bigger programs seems
to suggest that the effect of this caching is most surely not negligible.

2 Similar in the programming technique. Of course, the regular approximation method
is rather different from the method of program interpretation on an abstract domain:
Evaluating this difference is part of the aim of the comparison.
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Program rul short clash struct

aiakl 568 469 529 900
bid 1480 2209 2529 4730
boyer 3450 3890 4989 9629
browse 758 380 389 539
cs o 3840 1889 2689 2580
cs r 18549 10720 24479 19560
disj r 4468 1819 6399 2440
gabriel 1549 1430 1870 1760
grammar 330 160 160 190
hanoiapp 620 719 1889 1150
kalah r 1520 79 79 89
mmatrix 310 190 209 119
occur 380 219 330 289
palin 590 840 980 850
pg 839 2020 2980 3990
plan 1138 819 960 1009
progeom 979 1840 2530 3640
qsort 310 590 659 680
qsortapp 369 1000 2898 1210
queens 329 179 190 180
query 720 360 370 410
serialize 478 810 969 899
witt 2929 4890 1399 1169
zebra 560 3490 14958 12830

(excluding simplification times)

Program rul short clash struct

aiakl 697 3009 3738 1409
bid 2899 31278 35949 15259
boyer 19620 201169 206917 92117
browse 987 2848 2987 1698
cs o 11958 17389 32959 4878
cs r 50760 303430 238788 30169
disj r 6508 18598 26077 6408
gabriel 2098 13388 22379 5208
grammar 759 3169 3169 1279
hanoiapp 840 3988 13738 3378
kalah r 2069 1187 1188 888
mmatrix 757 1769 2078 488
occur 530 1647 2628 767
palin 997 8520 11878 2180
pg 1349 15380 22870 7370
plan 1587 6167 6559 2288
progeom 1358 12800 17598 6679
qsort 520 3439 4168 1409
qsortapp 569 7789 9669 2900
queens 457 1128 1138 429
query 1627 22458 22788 11818
serialize 937 8429 11957 2217
witt 3438 188419 42699 25709
zebra 717 55100 189949 44540

(including simplification times)
Table 1. Timing results

Regarding the analyses based on program interpretation, it can be concluded
that the better the precision the worse the efficiency: short takes less than
clash, and this one takes less than struct; this one is more precise than clash,
which is more precise than short. This conclusion seems evident at first sight,
but it is not: in analysis, an improvement in precision can very well trigger an
improvement in efficiency. This can also be seen in the tables in some cases, the
most significant probably being zebra. Overall, one can arguably conclude that
the efficiency loss found is not a high price in exchange for the gain in precision.

We have also carried out another test. For practical purposes, the CiaoPP
system includes a back-end to the analysis that simplifies the types inferred,
in the sense that equivalent types are identified, so that they are then reduced
to a single type. This facilitates the interpretation of the output. It is the case
that the structural widening includes certain amount of type simplification, so
that the analysis creates less different types which are in fact equivalent. For
this reason, we have included the same tests as above, but adding now the times
taken in the back-end simplification phase.

The times including the simplification are shown in table 1. The columns
read as before. It can be seen that in this case structural widening outperforms
all of the other analyses, except, in some cases, rul. It also can be observed that
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Program rul short clash

aiakl 1 1 1 1
bid 9 12 9 12
cs o 4 18 4 18 2 9
cs r 4 28 4 28 2 19
disj r 6 13 6 13
mmatrix 2 2 2 2
occur 1 1 1 1
palin 2 4 2 4
pg 1 1 1 1
qsort 1 1 1 1
serialize 2 4 2 4
zebra 3 3 3 3 1 1

Table 2. Precision results

rul behaves usually better than short also when simplification is included. This
seems to suggest that incorporating our widening into the regular approximation
approach would probably give the best results in practice.3

7 Conclusions

We have presented a new widening operator on regular types within an ab-
stract interpretation-based characterization of type inference. The idea behind
it is similar to set-based analyses [4,1] in that we assign and fix type names,
but it is applied here with more generality. It can be seen as a generalization
of the idea of “guessing” the growth of the types during analysis which is be-
hind [11]. Instead of guessing, our technique determines exactly where the type
is growing. The resulting widening operator has been presented on deterministic
regular types. However, its extension to non-deterministic regular types should
be straightforward.

Our operator is more precise than previous approaches, but it is still efficient.
This has been shown with (preliminary) practical results. However, it does not
guarantee termination. We are currently working on the non-termination prob-
lem. A moded type domain will help in this. The idea is to enhance abstract
unification so that it is able to identify the “transference” of type names from
the input to the output types, so that the names are not dropped. This will rem-
edy the problem of Example 12 and, hopefully, allow us to prove termination of
analyses with the proposed widening operator.

Finally, this work has revealed two issues that may be worth investigating
for practical purposes: the impact on the efficiency of analysis of the different
implementation techniques for different analysis methods, on one hand, and of
the simplification of types, on the other hand.

3 This, however, may not be trivial. It is subject for future work.
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