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Abstract. We are concerned to give certain guarantees about the secu-
rity of a system. We identify two kinds of attack: the internally scheduled
attack (exemplified by Trojan Horse attacks) and externally scheduled
attacks (exemplified by timing attacks). In this paper we focus on the
latter. We present a semantic framework for studying such attacks in the
context of PCCP, a simple process algebra with a constraint store. We
show that a measure of the efficacy of an attacker can be determined
by considering its observable behaviour over the ”average” store of the
system (for some number of steps). We show how to construct an anal-
ysis to determine the average store using the technique of probabilistic
abstract interpretation.

1 Introduction

Confidentiality is that aspect of computer security concerned with how informa-
tion is allowed to flow through a computer system. Information flows are treated
in a binary fashion: they are either allowed to flow or not. Models for confi-
dentiality typically characterise the absence of information flow between objects
(across interfaces or along channels) by essentially reducing non-interference to
confinement. The first attempt to formalise such an absence of information flow
is the notion of non-interference proposed by Goguen and Meseguer in their
seminal paper [12]. In this paper we approach the problem of confidentiality by
looking at models which are able to give a quantitative estimate of the infor-
mation flowing through a system. Such models abandon the purely qualitative
binary view of the information flow by characterising how much information is
actually “leaking” from the system rather than the complete absence of any flow.
This allows us to define notions of non-interference which are approzimate and
yet able to capture the security properties of a system in a more “realistic” way:
in real systems high-level input interferes with low-level output all the time [16].



Our approach is therefore not to aim for a methodology to develop “secure”
systems — e.g. a type system which guarantees the confidentiality of information
[20,22,21] — rather our approach is to develop a framework for understanding
and analysing systems as they are and not as they should be.

The security of a system may be measured by its robustness to certain kinds
of attack. We differentiate two situations: internally scheduled spies in which the
spy is considered part of the system (Trojan Horse attacks are of this kind) —
we studied this kind of spy in [8]; externally scheduled spies in which the spy is
only allowed to observe the system at fixed points and for a fixed time — this
is the subject of this paper. The latter kind of attack is suitable for modelling
timing attacks [13]; with this kind of attack a snooper can determine a private
key by keeping track of how long a computer takes to decipher messages.

This paper introduces a framework for studying attacks involving externally
scheduled spies. We use a simple probabilistic process calculus, PCCP, to illus-
trate the main concepts; PCCP is introduced in the next section. We formally
define the notion of approximate confinement for both internally scheduled and
externally scheduled spies in Section 3. We then present an analysis of approx-
imate confinement for external attack and illustrate the technique with some
examples in Section 4.

2 The Language

We illustrate our approach by referring to a probabilistic declarative language,
namely Probabilistic Concurrent Constraint Programming (PCCP), which was
introduced in [9] as a probabilistic version of the Concurrent Constraint Pro-
gramming (CCP) paradigm [19]. This language can be seen as a kind of “pro-
cess algebra” enhanced with a notion of “computational state”, referred to as
“store”. These states are ordered by an entailment relation  (also denoted by
J) — they form a cpo — and all computations lead to sequences of stores which
are monotone with respect to .

The syntax and the basic execution model of PCCP are very similar to CCP.
Both languages are based on the notion of a generic constraint system C, de-
fined as a cylindric algebraic complete partial order (see [19, 5] for more details),
which encodes the information ordering. In PCCP probability is introduced via
a probabilistic choice which replaces the nondeterministic choice of CCP, and a
form of probabilistic parallelism, which replaces the pure nondeterminism in the
interleaving semantics of CCP by introducing priorities.

The syntax of a PCCP agent is given by the following grammar, where ¢
and ¢; are finite constraints in C, and p; and ¢; are real numbers representing
probabilities:

7y @i = A

A = stop | tell(c) | i, ask(c;) — pi : 4; 3,4 | p(x).



R1 (tell(c),d) —1 (stop,cLld)
R2 <|:|;L:1 ask(c;) = pi : Ai,d> —5; (A;,d) j€[l,n] and dF ¢

(4j,¢c) —» <A;"C’>

R3 n n ) € l,n
T i A d) —pa, (s o Ar Ty = A,y 4 € 17
Ra (AU 3ec) =, (4, d)
<3§A, c> s, <3§ A cu Hmd’>
R5 (p(y),c) — (4,¢c) p(z): —AEP

Table 1. The Transition System for PCCP

2.1 Operational semantics

The operational semantics of PCCP is defined in terms of a probabilistic tran-
sition system, (Conf, —,), where Conf is the set of configurations (A, d) repre-
senting the state of the system at a certain moment and the transition relation
—p is defined in Table 1. The state of the system is described by the agent
A which has still to be executed, and the common store d. The index p in the
transition relation indicates the probability of the transition to take place. The
rules are closely related to the ones for nondeterministic CCP, and we refer to
[5] for a detailed description. The rules for probabilistic choice and prioritised
parallelism involve a normalisation process needed to re-distribute the probabil-
ities among those agents A; which can actually be chosen for execution. Such
agents must be enabled (i.e. the corresponding guards ask(c;) succeed) or active
(i.e. able to make a transition). The probability after normalisation is denoted
by p;.

Definition 1. Let A be a PCCP agent. A computational path 7 for A in store d
is defined by 7 = (Ao, co) —p; (A1,¢1) —py -+ —p. (An, Cn) ,where Ay = A,
co=d, A, = stop and n < co.

Note that this definition only accounts for successful termination. The no-
tion of observables we consider does not include infinite computation nor those
situations in which the agent in the final configuration is not the stop agent and
yet is unable to make a transition, i.e. the case of suspended computations. We
denote by Comp(A, d) the set of all computational paths for A in store d.

Definition 2. Let # € Comp(A4,d) be a computational path for A4 in store d
T = (A,d) = <A0,C0) —p1 (Al,C]_) —py c-+ T pa (An,Cn) .We define the
result of 7 as res(m) = ¢, and its probability as prob(r) = [[;—, p;-

Given a PCCP agent A, the set R of the results of A is the family of all
pairs {c, p), where c is the final store corresponding to the least upper bound of



the partial constraints accumulated during a computational path, and p is the
probability of reaching that result:

R(A,d) = {{c,p) | there exists 7 € Comp(A4,d) : ¢ = res(w) and p = prob(n)}.

There might be different computational paths leading to the same result.
Thus, we need to “compactify” the results so as to identify all those pairs with
the same constraint as a first component. To this purpose we introduce the
following equivalence relation on Comp(A4, d).

Definition 3. Let 7,7’ € Comp(A4,d) be two computational paths for A in
store d. We define 7 = 7' iff res(n) = res(n'). The equivalence class of 7 is
denoted by [n].

The definitions of res(w) and prob(m) are extended to Comp(A4)/= in the
obvious way by res([r]) = res(m) and prob([r]) = >_ /¢ prob(n’). Thus, the
compactification of the results of a given agent A in store d corresponds to the
set K(R(A,d)) = {(res([]), prob([x])) | [r] € Comp(A)/=}.

We can now define the observables of an agent A with respect to store d as:

O(A,d) = K(R(A, d)).

The observables O(A4,d) are actually a probability distribution on the con-
straint system C and can be seen as a vector in the free vector space associated
to C, namely:

V(C)z{chc|xc€R, CGC}.

Each linear combination ) z.c of constraints represents a vector distribution and
its coordinates z. correspond to the probabilities associated to each constraint.

The notion O(A4, d) can be extended so as to consider the results of executing
the agent A starting from a given distribution over constraints instead of a
single constraint. The resulting notion corresponds to the vectorial sum of the
observables of A in each constraint weighted by the probability associated to
that store. By a slight abuse of notation we will denote this extended notion by
O(A,d), where d is a store distribution. Formally, this is defined as:

O(A,d) =) {p-O(A,c) | p=d(c) #0}.

3 Confinement

We consider in the following the notion of identity confinement [6]. This notion
establishes whether it is possible to identify which process is running in a given
program. We will look at different types of relatively simple attacks aiming to
reveal the identity of some unknown process. Our aim is to characterise the
“vulnerability” of a set of agents by applying program analysis techniques. In
particular, we will use the Probabilistic Abstract Interpretation technique [10,
11], which we will briefly recall in Section 4.1, to define a suitable collecting
semantics for our analysis.



Example 4. In an imperative language, confinement — as formulated for exam-
ple in [18] — usually refers to a standard (two-level) security model consisting of
high and low level variables. One then considers the (value of the) high variable
h as confined if the value of the low level variable [ is not “influenced” by the
value of the high variable, i.e. if the observed values of [ are independent of the
values of h.

The following statement illustrates the difference between non-deterministic
and probabilistic confinement [17,18]:

h:=hmod 2;(l:=h %D% 1:=0 %D% 1:=1))

The value of I clearly depends “somehow” on h. However, if we resolve the

choice non-deterministically it is impossible to say anything about the value of h
by observing the possible values of I. Concretely, we get the following dependen-
cies between h and possible values of I: For h mod 2 = 0 we have {{ =0,/ =1}
and for h mod 2 =1 we get {I{ = 1,1 =0}, i.e. the possible values of [ are the
same independently from the fact that h is even or odd. In other words, h is
non-deterministically confined.

In a probabilistic setting the observed values for [ and their probabilities
allow us to distinguish cases where h is even from those where h is odd. We have
the following situation: For hmod 2 = 0 we get {(3,1=0),(},/=1)}, and for
hmod 2 =1 we have {(,1 =0),(2,1 =1)}. Therefore, the probabilities to get
I =0 and [ =1 reveal if h is even or odd, i.e. h is probabilistically not confined.

Example 5. A similar situation to Example 4 can be described in our declarative
setting by the following agents:

1
highOn = true — = : tell(on) [ true — 5 : Randon

— N

. 1
highOff = true — - : tell(off) [| true — 3" Random

N =N

1
Random = true — — : tell(on) [| true — 3" tell(off)

The constraint system underlying these agents has four elements
C = {true,on, off, false = on Ll off},

with the ordering true C on C false and true C off C false. The constraints on
and off represent the situations in which the low variable [ = 1 or [ = 0 respec-
tively. The agent highOn corresponds then to the behaviour of the imperative
program fragment in case that h mod 2 = 1 while highOff corresponds to the
case where hmod 2 = (. The auxiliary agent Random corresponds to the second
choice in the above imperative fragment. The imperative notion of confinement
now translates in our framework into a problem of identity confinement: Get-
ting information about A in the previous setting is equivalent to discriminating
between highOn and highOff, i.e. revealing their identity.



3.1 Approximate Confinement

The definition of the notion of approrimate confinement we give is parametric
with respect to a set of admissible spies § and can be instantiated for different
types of attacks. We say that two agents A and B are approzimately confined
with respect to a set of spies S if there exists an € > 0 such that for all S € S the
distance between the observables of agent A attacked by S and the observables of
agent B attacked by S is smaller than €. The precise definition of what “attacked
by S” means obviously depends on the nature of the attack and will be made
clear later on. In any case, as we refer to probabilistic observables (i.e. vector
distributions) we will use as a measure for this distance between observables the
supremum norm || - ||« formally defined as ||(z;)icr|| = ||(%i)icr||loo = sSup;er |Zil,
where (z;);cr represents a probability distribution. This norm allows us to iden-
tify a single constraint ¢ for which the associated probabilities are maximally
different and is therefore particularly appropriate for our purposes.

Admissible Spies We consider only passive spies, i.e. spies which are sensitive
to the computational states or environments created by the agents they attack
but which are unable to change the execution of the attacked agent. Moreover,
our spies are memoryless spies, i.e. spies whose execution depends only on the
single state or environment they are executed in.

Concretely we therefore consider spies of type S,, which are PCCP agents of
the following form:

Sp, = {Di":lask(ci) = q;: tell(fi)} ,

where f; € C are fresh constraints, that is constraints which never appear in the
execution of the host agents, and ¢; € C are some guards.

These spies may interact in various ways with the agents in question. We will
consider two different models based on an #nternal and an external scheduling
respectively.

Internal Scheduling: Trojan Horses The spy S € S, can be considered
to be part of the system, i.e. it is treated like a normal PCCP agent which is
executed in parallel with the attacked agent A. The behaviour we thus have to
analyse is that of the agent: ¢: S || p: A with p+ ¢ = 1. We can then define
formally the approximate confinement property for internal attacks as follows:

Definition 6. Given a set of admissible spies S, € > 0, and fixed scheduling
priorities p and ¢ = 1 — p, we call two agents A and B e-confined iff:

sup [O(p: Allq: ) -O@:Bllg:9)l=e.
Ses

This definition can be generalised to a set of more than two agents. A
semantics-based analysis of this property has been presented in [8,7]. It is easy



to verify that if two agents A and B are e-confined with ¢ = 0 then they are
probabilistically confined in the sense of [22, 18, 6].

The advantage of this type of attacks is that we can simply use the standard
semantics of PCCP to analyse the confinement properties of A. The disadvantage
is that the likelihood of S being executed is decreasing exponentially even when
the store created by A does not change. This leads to a kind of “logarithmic”
nature of the analysis.

Moreover, internally scheduled spies cannot be used to model attacks which
are “external” to the system, such as timing attacks [13] and power consumption
attacks [14]. These attacks are based on regular measurements made on the
system to find out the time required to perform a given task (e.g. the modular
exponentiation in the RSA crypto-system) or to find out some more physical
information like the switching energy dissipated by the system when transiting
from one state to the other. The system may be vulnerable against a statistical
analysis of the information acquired by such measurements, (e.g. attackers may
be able to break the RSA and many other crypto-systems).

External Scheduling or Uniform Attack A suitable model for the above
mentioned external attacks is a spy which “observes” the agent A from the “out-
side” for a finite number of execution steps and is able to interfere uniformly
during the given execution time interval. As this implies the definition of a sched-
uler essentially different from the one implicit in the semantics of PCCP, we can
not simulate this behaviour using the parallel construct in PCCP. Therefore, we
introduce the notation: S >, A, where we fix a maximal observation time n.
During the first n steps of the execution of A there is each time a constant prob-
ability % that S might be executed in the store currently provided by A. Thus,
we call such an attack a “uniform” attack, in contrast to the “geometric” nature
of the above described internal attack. The notion of approximate confinement
can now be defined as follows:

Definition 7. Given a set of admissible spies S, we call two agents A and B
e-confined for some € > 0 and a fixed observation time n iff:

sup ||O(S >p A) — O(S >y, B)|| =&
ses

Operational Semantics of Uniform Attacks The operational meaning of
St A can be formalised in terms of the SOS transition system for PCCP given in
Table 1 provided that we extend it with a dummy rule RO: (stop, ¢} —1 (stop, c).

This allows us to deal with the situation in which the observed agent termi-
nates in a number of steps s < n by extending the computation with a cycle on
the last configuration. The following rule expresses the uniform attack of a spy
S to an agent A:

(Sa Ct) _>2 (St0p7 c U d)
(A,C) —p (Al,cl) —py -- —7p, (An,cn)
(Snd,c) —1qqn p, (An,cnLd)

i

for1<t<n.



The idea is the following: Suppose that A starting in ¢ can make n steps
(A, ey —p, (A1,61) —py .. —p, (An,cn) .On the other hand, assume that
S executed in some intermediate store ¢; with 1 < ¢ < m produces store ¢; Ll d
with (accumulated) probability ! ¢. The idea is then to insert the execution of
(S, ¢t) before the execution of (A1, ci41). In other words the path:

(A, C) —)I)l . (At, Ct) —)pt <At+1, Ct+1) . _>Pn (An; Cn)
becomes the path:
(SnA,c) —p, .. (S D> Ay cr) —); (A, ce U d)y —p, -.. —p, (An,cp U d).

The probability accumulated along this path is ¢-[]}_; p;. Since the “intrusion”
of S can happen at any of the n transitions, each of the paths has a probability
%. Combining the probabilities and by a slight abuse of notation, we can then
represent such a computation as:

S>p,A,c) —a . Ap,cpoUd).
a1l

i=1 Pi (

4 Analysing Approximate Confinement for Uniform
Attacks

In this section we will present an analysis of the approximate confinement prop-
erty with respect to external attackers. The analysis is based on an abstract
semantics which associates to an agent its average store in a n-steps computa-
tion. This is the average of the intermediate stores computed by the agent in a
computation truncated after n steps. We will show that the operational meaning
of S >, A is precisely characterised by the observables of S in the average store
of A. Thus, the abstract semantics will allow us to calculate the e quantifying
the confinement of a program. The abstract semantics is defined via a collecting
semantics constructed as a probabilistic abstract interpretation of the SOS se-
mantics for PCCP in Section 2.1. We first briefly recall the basic definitions of
the Probabilistic Abstract Interpretation framework in the next section.

4.1 Probabilistic Abstract Interpretation

Probabilistic Abstract Interpretation (PAI) [10,11] recasts the well-known Ab-
stract Interpretation technique due to Cousot and Cousot [4,1,15]) in terms of
a probabilistic semantics which replaces the standard order-theoretic one. Thus,
linear spaces replace cpo’s as semantical domains, so that abstraction and con-
cretisation functions are now linear maps between the concrete and abstract
domains. Moreover, the standard way to relate the abstraction and the concreti-
sation functions via the notion of Galois connection is replaced by the use of the
Moore-Penrose pseudo-inverse of a linear operator [3].

! There will be in general several such computations by S with all the associated
probabilities summing up to 1.



We assume that the vector spaces representing the semantical domains are
vector spaces with inner product, as is the case for finite dimensional spaces and
Hilbert spaces. Under this assumption, we can define the analog of a classical
Galois connection (a,7y) in a vector space setting as follows.

As in the classical case, the abstraction and concretisation functions preserve
the structure of the underlying domains; this corresponds to the abstraction
and the concretisation « being linear maps.

Furthermore, the classical condition for Galois connections that aovy(d) C d
can be seen in a linear setting as the condition that a o 7 is the orthogonal
projection in the image of «, that is & o« = 7,. In the same way v o a(c) > ¢
turns into y o ax = r,,.

These two conditions define the so-called Moore-Penrose pseudo-inverse [3].
The Moore-Penrose pseudo-inverse T! of a linear operator T can be defined
for real and complex finite-dimensional vector spaces as well as for infinite-
dimensional Hilbert spaces [2]; it is unique and always exists.

A probabilistic abstract interpretation is now simply defined by a pair (a, )
of linear maps between vector spaces representing the concrete and abstract
domain such that 4 is the Moore-Penrose pseudo-inverse of o, i.e. ¥ = af, and
vice versa.

4.2 Concrete Semantics

In Table 2 we define a relation — which dynamically generates all the compu-
tational paths of a given program P step by step. This relation can be seen as a
functional description of the transition relation —, in Table 1: it transforms a
triple (C1, C2,q) €—, into a triple (Cs,C3,4") €—, iff C1 —¢ Cy —¢ Cs,
with ¢’ = ¢ - ¢", is a sub-tree of the computational tree for P.

The premises and the conclusions of each rule can be seen as distributions
over sets of pairs of configurations. Therefore, Table 2 actually defines a linear
operator on the vector space V(Conf x Conf),

F : V(Conf x Conf) — V(Conf x Conf).

We will use F as a generator of sequences of vectors in V(Conf x Conf). For an
agent A, a store ¢ and a fixed length n, these sequences are constructed by itera-
tively applying F starting from an initial transition ((Init, true) , (A, c)). We rep-
resent this initial transition as a vector ¢¢ in V(Conf x Conf). Thus, the concrete
n-steps semantics of A in cis given by the sequence (o, F (to), F2(to), ..., F"(to)),
and represents the n-steps prefixes of any computational paths for A in store c.

Note that the domain of the operator F (i.e. the free vector space V(Conf x
Conf)) may be infinite-dimensional. However, as we consider only finite observa-
tions, the set of reachable configurations for each agent is always finite. There-
fore, in constructing the semantics of an agent, we can effectively consider the
restriction of F to finite-dimensional sub-spaces of V(Conf x Conf). This allows
us to directly apply the PAT framework recalled in Section 4.1, as shown in the
next section.



R1{...

R2 {...

R3 {...

R4 {...

R5 {...

(A, ), (tell(c),d) ,p') ...}
— {..., {{tell(c),d), (stop,cUd),1-p'},...}

) <<A',C’) ) <|:|?:1 aSk(ci) —pi Al:d> 3p,> )
j€[l,n] and d F ¢

a((A’:c’)a<||?:1 bi: Ahd):p)a }
—>{ < (liz: pi: Asyd), <Ajad>ap] p> }
Jjel, n] and (A;j,d) —p; (A}, d

(A ) (3 A, d) P, )
— {.. ., ((F2A4,d), (A, dU 3, d),p-p')y,...}
(A,3pd) —p (A, d')

(AL ) (p(y),d) . p') -}
— {...,((p(y),d),(A,d),l-p’),...}
p(x):—AeP

{0 ask(er) — i Anyd) (A, dY 5 o)

3

Table 2. A Concrete Collecting Semantics for PCCP

Ezample 8. For the agents highOn and highOff in Example 5 the only transi-
tions involved are enumerated as follows:

highOn highOff

N O U W N

({(Init, true) ,(highOn, true)) | ((Init, true), (highOff, true))
((highOn, true) , (stop, on)) ((highOff, true) , (stop, off))
((highOn, true) , (Random, true))|((highOff, true) , (Random, true))

((Random, true) , (stop, on)) {(Random, true) , (stop, on))
((Random, true) , (stop, of f)) ((Random, true) , (stop, off))
((stop, on) , (stop, on)) ((stop, on) , (stop, on))
((stop, off) , (stop, off)) ((stop, off), (stop, off))

Therefore, the concrete semantics for these agents can be constructed by

using the restrictions of the operator F represented by the following matrices:

0220000 0220000
0000010 0000001
0001100 0001100
Fhighon=| 0000010 | Fpignpee=|0000010
0000001 0000001
0000010 0000010

0000001 0000001




4.3 Abstract Semantics

In order to define our analysis we will consider a more abstract semantics which
we will construct as a probabilistic abstract interpretation of the operator F
introduced in Section 4.2.

We define such a collecting semantics for PCCP via the abstract linear oper-
ator G induced by the probabilistic abstraction o : V(Conf x Conf) — V(Conf)
defined as:

al{e- ((Arser) s (Ao, e0) 1 p) oo 1) = ({eos (A2, 0) 1) - ).

This abstraction only records the last configuration of a transition by trans-
forming a distribution on transitions into a distribution on single configurations.
Intuitively, this means that we only record the probability of reaching a given
configuration, while the information on the configurations from which it can be
reached is lost.

The operator G : V(Conf) — V(Conf) is defined as

G=a"F-~,
where « is the Moore-Penrose pseudo-inverse of the abstraction a above.

Proposition 9. The operator G : V(Conf) — V(Conf) defined as o - F -~
transforms distributions over configurations into distributions over configura-
tions according to the rules in Table 3.

Note that because of nondeterminism the rules in Table 3 actually trans-
form distributions over multi-sets of configurations. Instead the linear opera-
tor G operates on the free vector space over Conf and therefore on distribu-
tions over sets of configurations. Therefore the correspondence in Proposition 9
holds up to an appropriate reduction of distributions on multi-sets to distribu-
tions on sets. One such reduction would transform a distribution of the form
{{a,1/2),{b,1/4),{a,1/4)} into the distribution {{a,3/4), (b, 1/4)}.

Analogously to the concrete semantics, the collecting semantics of an agent
is given for a fixed length n, by the sequence (G¢(ato))™,.

The semantics G allows us to construct for a program P an abstract repre-
sentation of its computational tree given by the sequence of the sets of nodes
at each level of the tree. The length n of the sequence represents the maximal
depth of the tree we need to construct for our observation. Clearly this abstract
representation does not allow us to re-construct exactly all the computational
paths of P.

Example 10. Consider again Example 8. To obtain the abstract semantics for
the agents highOn and highOff, we first enumerate all those configurations in
Conf which are reachable by highOn and highOff respectively:

(highOn, true) , (Random, true) , (stop, on) , {stop, of f)
(highOff, true) , (Random, true) , (stop, on) , (stop, of f) .



R1 {...,((tell(c),d),p),...} — {...,{{(stop,cUd),p),...}

R2 {,<<|:|ZL:1 aSk(Ci)%pi:Ai,d>aq>a"'} _){7<<A])d):qﬁj):}
j€l,n] and dt ¢

R3 {..., (721 pi: Aid),q),..} — { (A5, dYq-55),. ..}
j € [1,n] and (4;,d) —,,; (4}, d')

Ra{...,({(Z4,d),q),...} — {...,{(FA4",du 3. d'),q-p),...}
(A, Tpd) —p (A, d')

R5{....{{p(y);d),q),-- .} —={..-,{({(4d),q),.. .}
plx):—A€eP

Table 3. An Abstract Collecting Semantics for PCCP

Next we calculate the abstractions apjghon and o ghpss, which map tran-
sitions into their final configurations — e.g. ((highOn, true) , (Random, true)) is
mapped into (Random, true) — and their corresponding Moore-Penrose Pseudo-
Inverses Yhjghon and Yhighoff- These maps are represented by the matri-
ces in Table 4. With this we can construct the induced semantics Gpjghon =

highOnFhighOnVhighOn and Ghighoff = @high0ffFhighOffYhighOff:

031) 037
GhighOn | o] o | Chighoff= |91
0001 0001

4.4 Analysis: The Average Store

In order to find out whether two agents A and B are approximately confined
with respect to an external attack we have to calculate the observables of S>; A
and S >, B and evaluate their distance. The semantics for S >; A as defined in
Section 3.1 can be equivalently described by means of the collecting semantics
introduced in the previous section. In particular, by a further abstraction we
can construct the average store out of G(A) and G(B) as follows. We define
the linear operator 8 : V(Conf) — V(C),which transforms distributions over
configurations into distributions over stores. Such an operator simply extracts
the constraint from a configuration. We then calculate the average store of A
(B) in n steps by summing up the distributions representing the stores reached
by A (B) after ¢ steps, for all ¢t € [1,n] weighted by % Formally, the average
store semantics of an agent A is parametric in n and is defined as:
1 ,
[Aln = — 3" B(G {(4, truc) ).

i=1



1000

8238 1000000
_[oo010000
Qhighon = | 0010 YhighOn = 0l0lolo
0001
0000303
0010 1000
0001 1000
1000 A=lo100
0001 0010
0100 0010000
anighoft = | 0010 | api0n0er = 191l
0001 0005050
0010 0500503
0001

Table 4. Matrix Representation of Operators.

Proposition 11. For an agent A and a spy S we have:
OS> A)=0(S,[4],)-

That is: The observables of an n steps attack on A by S can be obtained by
simply executing S in the (n-step) average store of A. Therefore, the average
store of an agent determines their e-confinement.

Ezample 12. The abstraction g for the agents highOn and highOff is repre-
sented by the matrix in Table 4.

Using the generator G from Example 10 for the abstract semantics we can
now (re)construct the average stores, using the following operators:

1 n—1 ) 1 n—1 )

- (Zﬁ : GﬁighOn) and — (Zﬂ - Gﬁigthf) :
=0 =0

By applying these two operators to the initial configurations: thighUn =

{<<high0n7 true) ) 1)} = (17 0,0,0, 0) and thighoff = {<<high0ff: tT’U@) ’ 1)}
(0,1,0,0,0), we obtain the average stores

[highOn]s = {<true, %> , <on, 15—2> , <off, %>}
pigsoceh = {{ime 1) (om, ). (ot 3)]

This shows that highOn and highOff can be distinguished by an external spy
observing both agents for three steps. One such external spy is given by:

S = ask(on) — % : tell(e) [] ask(off) — ; : tell(f).



For a three steps external attack of S on highOn and highOff we get the
following observables:

RN ; !

O(S >3 highOn) = {<true,§>,<on Lle, 12>,<off U f, 12>}

O(S >3 highOff) = { (¢ L Le, = ff U f >
zhig = rue, 5 ). (on Ue, 5 ). (o ' 19

i.e. with respect to three steps external attacks by this particular spy S the two
agents highOn and highOff are 3-confined.

Ezample 13. In this example we show how timing attacks [13] can be modelled as
external attacks. For any number m € IN, consider the following PCCP agents:

Countdown(m) : — ask(m = 0) — 1 : tell(done)
[l ask(m # 0) — 1: Countdown(m — 1).

As long as such an agent Countdown(m) is just “counting down”, i.e. m # 0,
the store will be unchanged. Only when the count-down is finished a marker
done is placed into the store. For all m € IN the agent Countdown(m) therefore
has the same input/output observables:

O(Countdown(m), true) = {(done, 1)} .

Consider two agents Countdown(m;) and Countdown(ms), with m; < ma.
As long as both agents are counting down, no spy will observe any difference,
i.e. an attack S >, Countdown(m) is pointless for n < m;. After the first agent
terminates the difference between the two agent may be observed by a spy like:

1 1
S = ask(true) — ok tell(a)[Jask(done) — 3 tell(d),

where a and b are fresh constraints, once it is scheduled for a time slot n >
my. After also the second agent terminates, the spy will again see no difference
between the two agents.

The most effective spy thus has to observe two agents Countdown(m) and
Countdown(ms) for exactly ma steps. In this case the average stores

m ms —m
[Countdown(mi)]m, = {(true, —), (done, ———=)}
mo ma

[Countdown(mz)]m, = {(true,1)}

are maximally different. To calculate this difference we first construct the ob-
servables for S spying for my steps on Countdown(m;) and Countdown(ms):

O(S >, Countdown(m;)) = O(S, [Countdown(ml)]]mQ)

= O(S, {true, . 1), (done, =2 —=4)})

ma



_ my lmz—ml lmz—ml
_{<a5 ma + 2( ))a(ba2( Mo )>}
O(S >, Countdown(ms)) = O(S, [Countdown(m1)],,,.)
= O(S, {(true,1)})
={{a,1)}.
Thus we have:
mo — My
[|O(S >, Countdown(mq)) — O(S >, Countdown(ms))|| = o
2

5

Conclusions

We have defined a notion of approximate confinement and shown how it can be
used to analyse the robustness of systems in the presence of externally scheduled
spies. This analysis is based on a state-based collecting semantics constructed
as a probabilistic abstract interpretation of the concrete SOS semantics. For
large choices of n or for the analysis of languages that do not share the nice
monotonicity properties of PCCP, it would be necessary to construct a static
analysis. This might be constructed as probabilistic abstract interpretation of
the state-based collecting semantics or in a more ad hoc way — this remains a
topic for future investigation.
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