
M.C. Calzarossa and S. Tucci (Eds.): Performance 2002, LNCS 2459, pp. 480–499, 2002.
© Springer-Verlag Berlin Heidelberg 2002

European DataGrid Project: Experiences of Deploying a
Large Scale Testbed for E-science Applications

Fabrizio Gagliardi1, Bob Jones1, Mario Reale2, and Stephen Burke3

On behalf of the EU DataGrid Project

1 CERN, European Particle Physics Laboratory,
CH-1211 Geneve 23, Switzerland

{Fabrizio.Gagliardi, Bob.Jones}@cern.ch
http://www.cern.ch

2 INFN CNAF, Viale Berti-Pichat 6/2,
I-40127 Bologna, Italy

mario.reale@cnaf.infn.it
3 Rutherford Appleton Laboratory,

Chilton, Didcot, Oxon, UK
s.burke@rl.ac.uk

Abstract. The objective of the European DataGrid (EDG) project is to assist
the next generation of scientific exploration, which requires intensive
computation and analysis of shared large-scale datasets, from hundreds of
terabytes to petabytes, across widely distributed scientific communities. We see
these requirements emerging in many scientific disciplines, including physics,
biology, and earth sciences. Such sharing is made complicated by the
distributed nature of the resources to be used, the distributed nature of the
research communities, the size of the datasets and the limited network
bandwidth available. To address these problems we are building on emerging
computational Grid technologies to establish a research network that is
developing the technology components essential for the implementation of a
world-wide data and computational Grid on a scale not previously attempted.
An essential part of this project is the phased development and deployment of a
large-scale Grid testbed.

The primary goals of the first phase of the EDG testbed were: 1) to demonstrate
that the EDG software components could be integrated into a production-
quality computational Grid; 2) to allow the middleware developers to evaluate
the design and performance of their software; 3) to expose the technology to
end-users to give them hands-on experience; and 4) to facilitate interaction and
feedback between end-users and developers. This first testbed deployment was
achieved towards the end of 2001 and assessed during the successful European
Union review of the project on March 1, 2002. In this article we give an
overview of the current status and plans of the EDG project and describe the
distributed testbed.

mailto:fabrizio.gagliardi@cern.ch, bob.jones@cern.ch
mailto:mario.reale@cnaf.infn.it
mailto:s.burke@rl.ac.uk

European DataGrid Project 481

1 Introduction

Advances in distributed computing, high quality networks and powerful and cost-
effective commodity-based computing have given rise to the Grid computing
paradigm [6]. In the academic world, a major driver for Grid development is
collaborative science mediated by the use of computing technology, often referred to
as e-science. While scientists of many disciplines have been using computing
technology for decades (almost pre-dating computing science itself), e-Science
projects present fresh challenges for a number of reasons, such as the difficulty of co-
ordinating the use of widely distributed resources owned and controlled by many
organisations. The Grid introduces the concept of the Virtual Organisation (VO) as a
group of both users and computing resources from a number of real organisations
which is brought together to work on a particular project.

The EU DataGrid (EDG) is a project funded by the European Union with �����
through the Framework V IST R&D programme (see www.eu-datagrid.org). There
are 21 partner organisations from 15 EU countries, with a total participation of over
200 people, for a period of three years starting in January 2001. The objectives of the
project are to support advanced scientific research within a Grid environment,
offering capabilities for intensive computation and analysis of shared large-scale
datasets, from hundreds of terabytes to petabytes, across widely distributed scientific
communities. Such requirements are emerging in many scientific disciplines,
including particle physics, biology, and earth sciences.

The EDG project has now reached its mid-point, since the project started on January
1st 2001 and the foreseen end of the project is on December 31st 2003. At this stage,
very encouraging results have already been achieved in terms of the major goals of
the project, which are the demonstration of the practical use of computational and
data Grids for wide and extended use by the high energy physics, bio-informatics and
earth observation communities.

A production quality testbed has been set up and implemented at a number of EDG
sites, while a separate development testbed addresses the need for rapid testing and
prototyping of the EDG middleware. The EDG production testbed consists currently
of ten sites, spread around Europe: at CERN (Geneva), INFN-CNAF (Bologna), CC-
IN2P3 (Lyon), NIKHEF (Amsterdam), INFN-TO (Torino), INFN-CT (Catania),
INFN-PD (Padova), ESA-ESRIN (Frascati), Imperial College (London), and RAL
(Oxfordshire). The EDG development testbed currently consists of four sites : CERN,
INFN-CNAF, NIKHEF, and RAL. The reference site for the EDG collaboration is at
CERN, where, before any official version of the EDG middleware is released, the
initial testing of the software is performed and the main functionalities are proven,
before distribution to the other development testbed sites.

The EDG collaboration is currently providing free, open source software based on the
Linux Red Hat 6.2 platform. A range of standard machine profiles is supported
(Computing Element, Storage Element, User Interface, Resource Broker, Worker
Node, Network Monitoring Node). The testbed provides a set of common shared

http://www.eu-datagrid.org/

482 F. Gagliardi et al.

services available to all certified users with valid X.509 PKI certificates issued by a
Certificate Authority trusted by EDG. A set of tools is provided to handle the
automatic update of the grid-map files on all hosts belonging to the testbed sites
which allow users to be authorised to use the resources. A number of VOs have been
defined for the various research groups involved in the project. Each VO has an
authorisation server (using LDAP technology) to define its members, and a Replica
Catalogue to store the location of its files.

In this article, besides this short introduction about the history of the project and its
current status, we give an overview of the technology developed by the project so far.
This is a concrete illustration of the level of maturity reached by Grid technologies to
address the task of high throughput computing for distributed Virtual Organisations.
The work of the project is divided into functional areas: workload management, data
management, grid monitoring and information systems, fabric management, mass
data storage, testbed operation, and network monitoring. In addition there are user
communities drawn from high energy physics, earth observation and biomedical
applications. In November-December 2001 the first testbed was set up at CERN,
merging and collecting the development work performed by the various middleware
developers, and the first release of the EDG software was deployed and successfully
validated. The project has been congratulated “for exceeding expectations” by the
European Union reviewers on March 1st, 2002, during the first official EU review .

2 The European Data Grid Middleware Architecture

The EDG architecture is based on the Grid architecture proposed by Ian Foster and
Carl Kesselman [6], with a reduced number of implemented services.

Sixteen services have been implemented by the middleware developers, based on
original coding for some services and on the usage of the Globus 2 toolkit (see
www.globus.org) for basic Grid infrastructure services: authentication (GSI), secure
file transfer (GridFTP), information systems (MDS), job submission (GRAM) and the
Globus Replica Catalogue. In addition the job submission system uses software from
the Condor-G project [8]. The middleware also relies on general open source software
such as OpenLDAP.

The middleware development is divided into six functional areas: workload
management, data management, Grid Monitoring and Information Systems, fabric
management, mass data storage, and network monitoring. A sketch of the essential
EDG architecture is shown in Figure 1 [1], where the relationship between the
Operating System, Globus tools, the EDG middleware and the applications is shown.
The EDG architecture is therefore a multi-layered architecture. At the lowest level is
the operating system. Globus provides the basic services for secure and authenticated
use of both operating system and network connections to safely transfer files and data
and allow interoperation of distributed services. The EDG middleware uses the
Globus services, and interfaces to the highest layer, the user applications running on
the Grid.

European DataGrid Project 483

Fig. 1. The schematic layered EDG architecture: the Globus hourglass

The multi-layered EDG Grid architecture is shown in Figure 2 and Figure 3, which
show the different layers from bottom to top, namely: the Fabric layer, the underlying
Grid Services, the Collective Services, the Grid Application layer and, at the top, a
local application accessing a remote client machine. Figure 3 groups together and
identifies the main EDG services. At the top of the whole system, the local
application and the local database represent the end user machine, which executes an
application requesting Grid services, either submitting a Grid job or requesting a file
through the interfaces to the list of files stored on the Grid and published in a Replica
Catalogue.

2.1 Workload Management System (WMS)

The goal of the Workload Management System is to implement an architecture for
distributed scheduling and resource management in a Grid environment. It provides to
the Grid users a set of tools to submit their jobs, have them executed on the
distributed Computing Elements (a Grid resource mapped to an underlying batch
system), get information about their status, retrieve their output, and allow them to
access Grid resources in an optimal way (optimizing CPU usage, reducing file
transfer time and cost, and balancing access to resources between users). It deals with
the Job Manager of the Grid Application layer and the Grid Scheduler in the
Collective Services layer. A functional view of the whole WMS system is represented
in figure 4.

OS & Net services

application
layer

GRID
middleware

 LHC
VO common
application layer Other

ALICE ATLAS CMS LHCb Other

High level GRID
middleware

Basic ServcesGLOBUS
2.0

484 F. Gagliardi et al.

Fig. 2. The detailed multi layered EDG GRID architecture

The WMS is currently composed of the following parts:

– User Interface (UI): The access point for the Grid user. A job is defined using the
JDL language (see below), which specifies the input data files, the code to execute,
the required software environment, and lists of input and output files to be
transferred with the job. The user can also control the way in which the broker
chooses the best-matching resource. The job is submitted to the Resource Broker
using a command line interface or a programmatic API; there are also several
groups developing graphical interfaces.

Collective Services

Information
Monitoring

Replica
Manager

Grid Scheduler

Local
Application

Local
Database

Underlying Grid Services

Comp.
Elem.
Services

Author.
Authen.
and Acc.

Replica
Catalog

Storage
Elem.
Services

SQL
Database
Server

Fabric services

Config.
Mgmt

Node
Installation
& Mgmt.

Monitor.
And Fault
Tolerance

Resource
Mgmt.

Fabric
Storage
Mgmt.

Grid Application Layer

Data
Mgmt.

Job
Mgmt.

Metadata
Mgmt.

Object to File
Map.

Service
Index

European DataGrid Project 485

Earth Observation Appl. (WP9)

Workload Management (WP1)

Data Management (WP2)

Fabric Management (WP4)

Monitoring Services (WP3)

Application Areas

Data Grid Services

Core Middleware

Physics Appl. (WP8) Biology Appl. (WP10)

Globus Middleware Services (Information, Security, ...)

Networking (WP7) Mass Storage Management (WP5)

Physical Fabric

Fig. 3. The EDG service architecture

� Resource Broker (RB): This performs match-making between the requirements of
a job and the available resources, and attempts to schedule the jobs in an optimal
way, taking into account the data location and the requirements specified by the
user. The information about available resources is read dynamically from the
Information and Monitoring System. The scheduling and match-making algorithms
used by the RB are the key to making efficient use of Grid resources. In
performing the match-making the RB queries the Replica Catalogue, which is a
service used to resolve logical file names (LFN, the generic name of a file) into
physical file names (PFN, which gives the physical location and name of a
particular file replica). The job can then be sent to the site which minimises the
cost of network bandwidth to access the files.

� Job Submission System (JSS): This is a wrapper for Condor-G [8], interfacing the
Grid to a Local Resource Management System (LRMS), usually a batch system
like PBS, LSF or BQS. Condor-G is a Condor-Globus joint project, which
combines the inter-domain resource management protocols of the Globus Toolkit
with the intra-domain resource and job management methods of Condor to allow
high throughput computing in multi-domain environments.

� Information Index (II): This is a Globus MDS index which collects information
from the Globus GRIS information servers running on the various Grid resources,
published using LDAP, and read by the RB to perform the match-making.
Information items are both static (installed software, number of available CPUs
etc) and dynamic (total number of running jobs, current available disk space etc).
The information is cached for a short period to improve performance.

� Logging and Bookkeeping (LB): The Logging and Bookkeeping service stores a
variety of information about the status and history of submitted jobs using a
MySQL database.

486 F. Gagliardi et al.

Job Description Language (JDL)
The JDL allows the various components of the Grid Scheduler to communicate
requirements concerning the job execution. Examples of such requirements are:

� Specification of the executable program or script to be run and arguments to
be passed to it, and files to be used for the standard input, output and error
streams.

� Specification of files that should be shipped with the job via Input and
Output Sandboxes.

� A list of input files and the access protocols the job is prepared to use to read
them.

� Specification of the Replica Catalogue to be searched for physical instances
of the requested input files.

� Requirements on the computing environment (OS, memory, free disk space,
software environment etc) in which the job will run.

� Expected resource consumption (CPU time, output file sizes etc).
� A ranking expression used to decide between resources which match the

other requirements.

The classified advertisements (ClassAds) language defined by the Condor project has
been adopted for the Job Description Language because it has all the required
properties.

In order for a user to have a job correctly executed on a worker node of an
available Computing Element, the user’s credentials have to be transmitted by the
creation of a proxy certificate. A user issues a grid-proxy-init command on a user
interface machine to create an X.509 PKI proxy certificate using their locally stored
private key. An authentication request containing the proxy public and private keys
and the user’s public key is sent to a server; the server gets the request and creates a
coded message by means of the user’s public key, sending it back to the user process
on the User Interface machine. This message is decoded by means of the user’s
private key and sent back again to the server (in this case normally the Resource
Broker). When the server gets the correctly decoded message it can be sure about the
user’s identity, so that an authenticated channel can be established and the user
credentials can be delegated to the broker.

Users use Condor ClassAds-like statements inside a JDL (Job Description Language)
file to describe the job they want to be executed by the Grid. This includes a list of
input data residing on Storage Elements (Grid-enabled disk or tape storage), and
places requirements on the features of the compute nodes on which the job will
execute. These can be chosen from the set of information defined by the schema used
by the information system, and includes such things as operating system version, CPU
speed, available memory etc.

European DataGrid Project 487

Fig. 4. The Workload Management System and its components: interaction with other EDG
elements. The future component HLR (Home Location Register) is also shown.

Users can define an Input Sandbox, which is a set of files transferred to a Worker
Node by means of GridFTP by the Resource Broker, so that any file required for the
job to be executed (including the executable itself if necessary) can be sent to the
local disk of the machine where the job will run. Similarly, the user can specify an
Output Sandbox, which is a set of files to be retrieved from the Worker Node after the
job finishes (other files are deleted). The files in the Output Sandbox are stored on the
RB node until the user requests them to be transferred back to a UI machine.

The JDL can also specify a particular required software environment using a set of
user-defined strings to identify particular features of the run-time environment (for
example, locally installed application software).

A special file, called the BrokerInfo file, is created by the Resource Broker to enable a
running job to be aware of the choices made in the matchmaking, in particular about
the Storage Element(s) local to the chosen Computing Element, and the way to access
the requested input files. The BrokerInfo file is transferred to the Worker Node along
with the Input Sandbox, and can be read directly or with an API or command-line
tools.

488 F. Gagliardi et al.

Users have at their disposal a set of commands to handle jobs by means of a
command line interface installed on a User Interface machine, on which they have a
normal login account and have installed their X509 certificate. They can submit a job,
query its status, get logging information about the job history, cancel a job, be notified
via email of the job’s execution, and retrieve the job output. When a job is submitted
to the system the user gets back a Grid-wide unique handle by means of which the job
can be identified in other commands.

2.2 Data Management System (DMS)

The goal of the Data Management System is to specify, develop, integrate and test
tools and middleware to coherently manage and share petabyte-scale information
volumes in high-throughput production-quality grid environments. The emphasis is
on automation, ease of use, scalability, uniformity, transparency and heterogeneity.
The DMS will make it possible to securely access massive amounts of data in a
universal global name space, to move and replicate data at high speed from one
geographical site to another, and to manage synchronisation of distributed replicas of
files or databases. Generic interfaces to heterogeneous mass storage management
systems will enable seamless and efficient integration of distributed resources. The
main components of the EDG Data Management System, currently provided or in
development, are as follows:

� Replica Manager: This is still under development, but it will manage the creation
of file replicas by copying from one Storage Element to another, optimising the use
of network bandwidth. It will interface with the Replica Catalogue service to allow
Grid users to keep track of the locations of their files.

� Replica Catalogue: This is a Grid service used to resolve Logical File Names into
a set of corresponding Physical File Names which locate each replica of a file. This
provides a Grid-wide file catalogue for the members of a given Virtual
Organisation.

� GDMP: The GRID Data Mirroring Package is used to automatically mirror file
replicas from one Storage Element to a set of other subscribed sites. It is also
currently used as a prototype of the general Replica Manager service.

� Spitfire: This provides a Grid-enabled interface for access to relational databases.
This will be used within the data managementmiddleware to implement the
Replica Catalogue, but is also available for general use.

The Replica Manager
The EDG Replica Manager will allow users and running jobs to make copies of files
between different Storage Elements, simultaneously updating the Replica Catalogue,
and to optimise the creation of file replicas by using network performance
information and cost functions, according to the file location and size. It will be a
distributed system, i.e. different instances of the Replica Manager will be running on
different sites, and will be synchronised to local Replica Catalogues, which will be

European DataGrid Project 489

interconnected by the Replica Location Index. The Replica Manager functionality will
be available both with APIs available to running applications and by a command line
interface available to users. The Replica Manager is responsible for computing the
cost estimates for replica creation. Information for cost estimates, such as network
bandwidth, staging times and Storage Element load indicators, will be gathered from
the Grid Information and Monitoring System.

The Replica Catalogue
The Replica Catalogue has as a primary goal the resolution of Logical File Names
into Physical File Names, to allow the location of the physical file(s) which can be
accessed most efficiently by a job. It is currently implemented using Globus software
by means of a single LDAP server running on a dedicated machine. In future it will be
implemented by a distributed system with a local catalogue on each Storage Element
and a system of Replica Location Indices to aggregate the information from many
sites. In order to achieve maximum flexibility the transport protocol, query
mechanism, and database backend technology will be decoupled, allowing the
implementation of a Replica Catalogue server using multiple database technologies
(such as RDBMSs, LDAP-based databases, or flat files). APIs and protocols between
client and server are required, and will be provided in future releases of the EDG
middleware. The use of mechanisms specific to a particular database is excluded.
Also the query technology will not be tied to a particular protocol, such as SQL or
LDAP. The use of GSI-enabled HTTPS for transport and XML for input/output data
representation is foreseen. Both HTTPS and XML are the most widely used industry
standards for this type of system.

The Replica Manager, Grid users and Grid services like the scheduler (WMS) can
access the Replica Catalogue information via APIs. The WMS makes a query to the
RC in the first part of the matchmaking process, in which a target computing element
for the execution of a job is chosen according to the accessibility of a Storage Element
containing the required input files. To do so, the WMS has to convert logical file
names into physical file names. Both logical and physical files can carry additional
metadata in the form of "attributes". Logical file attributes may include items such as
file size, CRC check sum, file type and file creation timestamps.

A centralised Replica Catalogue was chosen for initial deployment, this being the
simplest implementation. The Globus Replica Catalogue, based on LDAP directories,
has been used in the testbed so far. One dedicated LDAP server is assigned to each
Virtual Organisation; four of these reside on a server machine at NIKHEF, two at
CNAF, and one at CERN. Users interact with the Replica Catalogue mainly via the
previously discussed Replica Catalogue and BrokerInfo APIs.

GDMP
The GDMP client-server software system is a generic file replication tool that
replicates files securely and efficiently from one site to another in a Data Grid
environment using several Globus Grid tools. In addition, it manages replica
catalogue entries for file replicas, and thus maintains a consistent view of names and
locations of replicated files. Any file format can be supported for file transfer using

490 F. Gagliardi et al.

plugins for pre- and post-processing, and for Objectivity database files a plugin is
supplied.

GDMP allows mirroring of uncatalogued user data between Storage Elements.
Registration of user data into the Replica Catalogue is also possible via the Replica
Catalogue API. The basic concept is that client SEs subscribe to a source SE in which
they have interest. The clients will then be notified of new files entered in the
catalogue of the subscribed server, and can then make copies of required files,
automatically updating the Replica Catalogue if necessary.

Spitfire
Spitfire is a secure, Grid-enabled interface to a relational database. Spitfire provides
secure query access to remote databases through the Grid using Globus GSI
authentication.

2.3 Grid Monitoring and Information Systems

The EDG Information Systems middleware implements a complete infrastructure to
enable end-user and administrator access to status and error information in the Grid
environment, and provides an environment in which application monitoring can be
carried out. This permits job performance optimisation as well as allowing for
problem tracing, and is crucial to facilitating high performance Grid computing. The
goal is to provide easy access to current and archived information about the Grid
itself (information about resources - Computing Elements, Storage Elements and the
Network), for which the Globus MDS is a common solution, about job status (e.g. as
implemented by the WMS Logging and Bookkeeping service) and about user
applications running on the Grid, e.g. for performance monitoring. The main
components are as follows:

� MDS: MDS is the Globus Monitoring and Discovery Service, based on soft-state
registration protocols and LDAP aggregate directory services. Each resource runs a
GRIS (Grid Resource Information Server) publishing local information as an
LDAP directory. These servers are in turn registered to a hierarchy of GIISs (Grid
Information Index Servers), which aggregate the information and again publish it
as an LDAP directory.

� Ftree: Ftree is an EDG-developed alternative to the Globus LDAP backend with
improved caching over the code in the Globus 1 toolkit.

� R-GMA: R-GMA is a relational GMA (Grid Monitoring Architecture)
implementation which makes information from producers available to consumers
as relations (tables). It also uses relations to handle the registration of producers. R-
GMA is consistent with GMA principles.

� GRM/PROVE: GRM/Prove is an application monitoring and visualisation tool of
the P-GRADE graphical parallel programming environment, modified for
application monitoring in the DataGrid environment. The instrumentation library

European DataGrid Project 491

of GRM is generalised for a flexible trace event specification. The components of
GRM will be connected to R-GMA using its Producer and Consumer APIs.

A number of alternatives, MDS, Ftree and R-GMA, are being considered as the basis
of the final EDG information service. These implementations are being evaluated and
compared using a set of performance, scalability and reliability criteria to determine
which is the most suitable for deployment.
In the current testbed all relevant Grid elements run a GRIS, which carries the
information for that element to an MDS GIIS where the information is collected, to be
queried by the Resource Broker and other Grid servers.

2.4 EDG Fabric Installation and Job Management Tools

The EDG collaboration has developed a complete set of tools for the management of
PC farms (fabrics), in order to make the installation and configuration of the various
nodes automatic and easy for the site managers managing a testbed site, and for the
control of jobs on the Worker Nodes in the fabric. The main tasks are:

User Job Control and Management (Grid and local jobs) on fabric batch and/or
interactive CPU services. There are two branches:

� The Gridification subsystem provides the interface from the Grid to the resources
available inside a fabric for batch and interactive CPU services. It provides the
interface for job submission/control and information publication to the Grid
services. It also provides functionality for local authentication and policy-based
authorisation, and mapping of Grid credentials to local credentials.

� The Resource Management subsystem is a layer on top of the batch and
interactive services (LRMS). While the Grid Resource Broker manages workload
distribution between fabrics, the Resource Management subsystem manages the
workload distribution and resource sharing of all batch and interactive services
inside a fabric, according to defined policies and user quota allocations.

Automated System Administration for the automatic installation and
configuration of computing nodes. These three subsystems are designed for the use
of system administrators and operators to perform system installation, configuration
and maintenance:

� Configuration Management provides the components to manage and store
centrally all fabric configuration information. This includes the configuration of all
EDG subsystems as well as information about the fabric hardware, systems and
services.

� Installation Management handles the initial installation of computing fabric
nodes. It also handles software distribution, configuration and maintenance
according to information stored in the Configuration Management subsystem.

492 F. Gagliardi et al.

� Fabric Monitoring and Fault Tolerance provides the necessary components for
gathering, storing and retrieving performance, functional, setup and environmental
data for all fabric elements. It also provides the means to correlate that data and
execute corrective actions if problems are identified.

The fabric installation and configuration management tools are based on a remote
install and configuration tool called LCFG (Local Configurator), which, by means of
a server, installs and configures remote clients, starting from scratch, using a network
connection to download the required RPM files for the installation, after using a disk
to load a boot kernel on the client machines.

The basic architectural structure and function of LCFG are represented in Figure 5
and are as follows: abstract configuration parameters are stored in a central repository
located in the LCFG server. Scripts on the host machine (LCFG client) read these
configuration parameters and either generate traditional configuration files, or directly
manipulate various services. A daemon in the LCFG server (mkxprof) polls for
changes in the source files and converts them into XML profiles, one profile per client
node. The XML profiles are then published on a web server. LCFG clients can be
configured to poll at regular intervals, or to receive automatic change notifications, or
they can fetch new profiles in response to an explicit command. A daemon in each
LCFG client (rdxprof) then reads its associated XML profile from the web server and
caches it locally (DBM file). LCFG scripts access the local cache to extract the
configuration values and execute changes accordingly.

Fig. 5. LCFG internal operation

LCFG configuration files

mkxprof

Web Server
XML Profile
(one per client)

LCFG server

http

ldxprof

Generic
Component

rdxprof

LCFG Components

DBM File

LCFG client

ldxprof

European DataGrid Project 493

2.5 The Storage Element

The Storage Element has an important role in the storage of data and the management
of files in the Grid domain, and EDG is working on its definition, design, software
development, setup and testing.

A Storage Element is a complete Grid-enabled interface to a Mass Storage
Management System, tape or disk based, so that mass storage of files can be almost
completely transparent to Grid users. A user should not need to know anything about
the particular storage system available locally to a given Grid resource, and should
only be required to request that files should be read or written using a common
interface. All existing mass storage systems used at testbed sites will be interfaced to
the Grid, so that their use will be completely transparent and the authorisation of users
to use the system will be in terms of general quantities like space used or storage
duration.

The procedures for accessing files are still in the development phase. The main
achievements to date have been the definition of the architecture and design for the
Storage Element, collaboration with Globus on GridFTP/RFIO access, collaboration
with PPDG on a control API, staging from and to the CASTOR tape system at CERN,
and an interface to GDMP. Initially the supported storage interfaces will be UNIX
disk systems, HPSS (High Performance Storage System), CASTOR (through RFIO),
and remote access via the Globus GridFTP protocol. Local file access within a site
will also be available using Unix file access, e.g. with NFS or AFS. EDG are also
developing a grid-aware Unix filing system with ownership and access control based
on Grid certificates rather than local Unix accounts.

3 The EDG Testbed

EDG has deployed the middleware on a distributed testbed, which also provides some
shared services. A central software repository provides defined bundles of RPMs
according to machine type, together with LCFG scripts to install and configure the
software.

There are also automatic tools for the creation and update of grid-map files (used to
map Grid certificates to local Unix accounts), needed by all testbed sites to authorise
users to access the testbed resources. A new user subscribes to the EDG Acceptable
Usage Policy by using their certificate, loaded into a web browser, to digitally sign
their agreement. Their certificate Subject Name is then added to an LDAP server
maintained for each Virtual Organisation by a VO administrator. Each site can use
this information, together with local policy on which VOs are supported, to generate
the local map file which authorises the user at that site. This mechanism is sketched in
6.

The testbed sites each implement a User Interface machine, a Gatekeeper and a set of
Worker Nodes (i.e. a Grid Computing Element), managed by means of a Local

494 F. Gagliardi et al.

Resource Management System, and a Storage Element (disk only at most sites, but
with tape storage at CERN, Lyon and RAL). Some sites have also set up a local
Resource Broker. As a reference, Fig. 7 shows a typical site setup in terms of machine
composition, for both development and production testbeds, namely the current
CERN testbed, with production, development and service machines (network time
server, NFS server, LCFG server, monitoring servers).

New sites are welcome to join the testbed, with a well-defined set of rules and
procedures. In addition the EDG middleware is freely available, documented, and
downloadable from a central repository (the exact license conditions are still under
review, but will allow free use). All required RPMs are available for download to an
LCFG server, which is generally the first element to be set up, by means of which all
other components can be easily installed and configured following the EDG
documentation. Alternatively it is possible to install and configure the software by
hand. Only Red Hat Linux version 6.2 is currently supported, but more platforms will
be supported in due course.

The operation of the makegridmap daemon

Fig. 6. The operation of the makegridmap daemon

European DataGrid Project 495

 Fig. 7. The CERN testbed cluster composition

4 Future Developments

There are a number of important services still in development. The WMS will
introduce an implementation for billing and accounting, advance reservation of
resources, job partitioning and checkpointing. In the data management area there will
be APIs for Replica Selection through a Replica Optimiser. The first full
implementation of R-GMA will be used and compared with the existing information
systems (MDS and Ftree). For fabric management there will be the LCAS (Local
Credentials and Authorization Server) and further tools to replace the use of Grid map
files to authorise users and introduce effective differentiated authorisation of users
according to the Virtual Organisation they belong to (VOMS, Virtual Organisation
Membership Server). Also a new high level configuration description language will
be provided. Interfaces to Storage Elements will continue to be developed. Network
monitoring information will be used to influence the decisions of the Resource
Broker.

496 F. Gagliardi et al.

5 Conclusions

The European Data Grid project has already achieved many of its goals, stated at the
time of the project conception two years ago. A production quality distributed
computing environment has been demonstrated by the EDG testbed. It will now be
enriched in functionality, further improved in reliability and extended both
geographically and in terms of aggregate CPU power and storage capacity. The
community of users has already successfully validated the use of a large set of
applications, ranging from High Energy Physics to Bio-Informatics and Earth
Observation [2, 3, 4]. At the same time development is currently ongoing to extend
the range of functionality covered by the EDG middleware.

All work packages have defined an intense schedule of new research and
development, which will be supported by the progressive introduction of high-speed
scientific networks such as those deployed by RN GEANT. This will increase the
range of possibilities available to the EDG developers. As an example, EDG has
proposed the introduction of a Network Optimiser server, to establish in which cases
it is preferable to access a file from a remote location or to trigger local copying,
according to network conditions in the end-to-end link between the relevant sites. The
development of Differentiated Services and Packet Forwarding policies is strongly
encouraged, in order to make Grid applications cope better with the dynamic network
performance and create different classes of services to be provided to different classes
of applications, according to their requirements in terms of bandwidth, throughput,
delay, jitter etc.

The impact of the new Globus features foreseen by the introduction of the OGSA
paradigm suggested by the US Globus developers, where the main accent is on a Web
Services oriented architecture, is being evaluated by EDG, and an evolution of the
current architecture in that direction could be envisaged. This is proposed for future
releases of the EDG middleware and it may be continued with initiatives in the new
EU FP6 framework. An important collaboration has already been established via the
GRIDSTART initiative (www.gridstart.org) with the other ten existing EU funded
Grid projects. In particular, the EU CrossGrid project (www.crossgrid.org) which will
exploit DataGrid technologies to support a variety of applications, all demanding
guaranteed quality of service (i.e. real time environment simulation, video streaming
and other applications requiring high network bandwith).

Collaboration with similar Grid projects in the US, especially PPDG (www.ppdg.net),
GriPhyN (www.griphyn.org) and iVDGL (www.ivdgl.org) is being pursued in
collaboration with the sister project EU DataTAG (www.datatag.org). The main goal
of DataTAG is the establishment of a transatlantic testbed to deploy and test the
software of the EDG project. Interest in the EDG project and its production-oriented
approach has already reached beyond the borders of the European Union: after Russia
and Romania, which have already installed the EDG software, some Asian sites (in
Taiwan and South Korea) have applied to become members of the distributed EDG
testbed, in order to participate in High Energy Physics data challenges for data
production and simulation.

http://www.gridstart.org/
http://www.crossgrid.org/
http://www.ppdg.net/
http://www.griphyn.org/
http://www.ivdl.org/
http://www.eu-datatag.org/

European DataGrid Project 497

Reference Documents

Note: all official EDG documents are available on the web at the URL:
http://eu-datagrid.web.cern.ch/eu-datagrid/Deliverables/default.htm

[1] DataGrid D12.4: “DataGrid Architecture”
[2] DataGrid D8.1a: “DataGrid User Requirements and Specifications for the DataGrid

Project”
[3] DataGrid D9.1: “Requirements Specification: EO Application Requirements for Grid”
[4] DataGrid D10.1: WP10 Requirements Document
[5] DataGrid D8.2: “Testbed1 Assessment by HEP Applications”
[6] “The Anatomy of the Grid”, I. Foster, C. Kesselman, et al. Technical Report, Global

Grid Forum, 2001, http://www.globus.org/research/papers/anatomy.pdf
[7] DataGrid D6.1: “Testbed Software Integration Process”
[8] Condor Project (http://www.cs.wisc.edu/condor/). Jim Basney and Miron Livny,

“Deploying a High Throughput. Computing Cluster”, High Performance Cluster
computing,Rajkumar Buyya, Editor, Vol. 1, Chapter 5, Prentice Hall PTR,May 1999.
Nicholas Coleman, "An Implementation of Matchmaking Analysis in Condor",
Masters' Project report, University of Wisconsin, Madison, May 2001.

[10] DataGrid Architecture Version 2, G. Cancio, S. Fisher, T. Folkes, F. Giacomini, W.
Hoschek, D. Kelsey, B. Tierney,
http://grid-atf.web.cern.ch/grid-atf/documents.html

[11] EDG Usage Guidelines (http://marianne.in2p3.fr/datagrid/documentation/EDG-
Usage-Guidelines.html)

[12] Software Release Plan DataGrid-12-PLN-333297;
http://edms.cern.ch/document/333297

[13] Project technical annex.
[14] DataGrid D12.3: “Software Release Policy”

DataGrid Publications

Gagliardi, F., Baxevanidis, K., Foster, I., and Davies, H. Grids and Research Networks as
Drivers and Enablers of Future Internet Architectures. The New Internet Architecture (to be
published)

Buyya, R. Stockinger, H. Economic Models for resource management and scheduling in
Grid computing. The Journal of Concurrency and Computation: Pratice and Experience
(CCPE) Special issue on Grid computing environments. 2002

Stockinger, H. Database Replication in World-Wide Distributed Data Grids. PhD thesis,
2002.

Primet, P. High Performance Grid Networking in the DataGrid Project. Terena 2002.
Stockinger, H., Samar, A., Allcock, B., Foster, I., Holtman, K.,and Tierney, B. File and

Object Replication in Data Grids. 10th IEEE Symposium on High Performance Distributed
Computing (HPDC 2001). San Francisco, California, August 7-9, 2001.

Hoschek, W., Jaen-Martinez, J., Samar, A., Stockinger, H. and Stockinger, K. Data
Management in an International Data Grid Project. IEEE/ACM International Workshop on Grid
Computing Grid’2000 – 17-20 December 2000 Bangalore, India. “Distinguished Paper”
Award.

http://eu-datagrid.web.cern.ch/eu-datagrid/Deliverables/default.htm
http://www.globus.org/research/papers/anatomy.pdf
http://www.cs.wisc.edu/condor/
http://marianne.in2p3.fr/datagrid/documentation/
http://edms.cern.ch/document/333297

498 F. Gagliardi et al.

Balaton, Z., Kaczuk, P. and Podhorski, N. From Cluster Monitoring to Grid Monitoring
Based on GRM and PROVE. Report of the Laboratory of Parallel and Distributed Systems,
LPDS – 1/2000

Dullmann, D., Hoschek, W., Jean-Martinez, J., Samar, A., Stockinger, H.and Stockinger, K.
Models for Replica Synchronisation and Consistency in a Data Grid. 10th IEEE Symposium on
High Performance Distributed Computing (HPDC 2001). San Francisco, California, August 7-
9, 2001.

Stockinger, H. Distributed Database Management Systems and the Data Grid. 18th IEEE
Symposium on Mass Storage Systems and 9th NASA Goddard Conference on Mass Storage
Systems and Technologies, San Diego, April 17-20, 2001.

Serafini, L., Stockinger H., Stockinger, K. and Zini, F. Agent-Based Query Optimisation in
a Grid Environment. IASTED International Conference on Applied Informatics (AI2001) ,
Innsbruck, Austria, February 2001.

Stockinger, H., Stockinger, K., Schikuta and Willers, I. Towards a Cost Model for
Distributed and Replicated Data Stores. 9th Euromicro Workshop on Parallel and Distributed
Processing PDP 2001, Mantova, Italy, February 7-9, 2001. IEEE Computer Society Press

Hafeez, M., Samar, A. and Stockinger, H. A Data Grid Prototype for distributed Data
Production in CMS. VII International Workshop on Advanced Computing and Analysis
Techniques in Physics Research (ACAT 2000), October 2000.

Samar, A. and Stockinger, H. Grid Data Management Pilot (GDMP): a Tool for Wilde Area
Replication. . IASTED International Conference on Applied Informatics (AI2001) , Innsbruck,
Austria, February 2001.

Ruda, M. Integrating Grid Tools to build a computing resource broker: activities of
DataGrid WP1. Conference in Computing in High Energy Physics (CHEP01), Beijing,
September 3-7, 2001

Cerello, P. Grid Activities in ALICE. Proceedings of the Conference in Computing in High
Energy Physics (CHEP01), Beijing, September 3-7, 2001.

Harris, F. and Van Herwijnen, E. Moving the LHCb Monte Carlo Production system to the
Grid. Proceedings of the Conference in Computing in High Energy Physics (CHEP01), Beijing,
September 3-7, 2001.

Fisk, I. CMS Grid Activities in the United States. Proceedings of the Conference in
Computing in High Energy Physics (CHEP01), Beijing, September 3-7, 2001.

Grandi, C. CMS Grid Activities in Europe. Proceedings of the Conference in Computing in
High Energy Physics (CHEP01), Beijing, September 3-7, 2001.

Holtman, K. CMS requirements for the Grid. Proceedings of the Conference in Computing
in High Energy Physics (CHEP01), Beijing, September 3-7, 2001.

Malon, D. et al, Grid-enabled Data Access in the ATLAS Athena Framework. Proceedings
of the Conference in Computing in High Energy Physics (CHEP01), Beijing, September 3-7,
2001.

Others Grid Publications

Foster, I., Kesselman, C., M.Nick, J. And Tuecke, S. The Physiology of the Grid: An Open
Grid Services Architecture for Distributed Systems Integration.

Foster, I. The Grid: A new infrastructure for 21st Century Science. Physics Today, 54 (2).
2002

Foster, I. And Kesselman, C. Globus: A Toolkit-Based Grid Architecture. In Foster, I. and
Kesselman, C. eds. The Grid: Blueprint for a New Computing Infrastructure, Morgan
Kaufmann, 1999, 259-278.

Foster, I. and Kesselman, C. (eds.). The Grid: Blueprint for a New Computing
Infrastructure, Morgan Kaufmann, 1999.

European DataGrid Project 499

Glossary

AFS Andrew File System
BQS Batch Queue Service

 CE Computing Element
CVS Concurrent Versioning System
EDG European DataGrid
EIP Experiment Independent Person
Ftree LDAP-based dynamic directory service
GDMP Grid Data Mirroring Package
II Information Index
ITeam Integration Team
JDL Job Description Language
JSS Job Submission Service
LB Logging and Bookkeeping
LCFG Automated software installation system
LDAP Lightweight Directory Access Protocol
LFN Logical File Name
LSF Load Sharing Facility
MDS Globus Metacomputing Directory Service
MS Mass Storage
NFS Network File System
PBS Portable Batch System
RB Resource Broker
RC Replica Catalogue
RFIO Remote File I/O software package
RPM Red Hat Package Manager
SE Storage Element
TB1 Testbed1 (project month 9 release of DataGrid)
UI User Interface
VO Virtual Organisation
WN Worker Node
WP Workpackage

Acknowledgments. The authors would like to thank the entire EU DataGrid project
for contributing most of the material for this article.

	European DataGrid Project: Experiences of Deploying a Large Scale Testbed for E-science Applications
	1 Introduction
	2 The European Data Grid Middleware Architecture
	2.1 Workload Management System (WMS)
	User Interface (UI):
	Resource Broker (RB):
	Job Submission System (JSS):
	Information Index (II):
	Logging and Bookkeeping (LB):
	Job Description Language (JDL)

	2.2 Data Management System (DMS)
	The Replica Manager
	The Replica Catalogue
	GDMP
	Spitfire
	The Replica Manager
	The Replica Catalogue
	The Replica Manager,
	A centralised Replica
	GDMP

	2.3 Grid Monitoring and Information Systems
	MDS: MDS
	Ftree:
	R-GMA:
	GRM/PROVE:

	2.4 EDG Fabric Installation and Job Management Tools
	User Job Control and Management (Grid and local jobs) on fabric batch and/or interactive CPU services. There are two branches:
	The Gridification subsystem
	The Resource Management subsystem
	Automated System Administration for the automatic installation and configuration of computing nodes.
	Configuration Management
	Installation Management
	Fabric Monitoring and Fault Tolerance

	2.5 The Storage Element

	3 The EDG Testbed
	4 Future Developments
	5 Conclusions
	Reference Documents
	DataGrid Publications
	Others Grid Publications
	Glossary
	Acknowledgments.

