Skip to main content

Distinguishing Instances and Evidence of Geographical Concepts for Geospatial Database Design

  • Conference paper
  • First Online:
Geographic Information Science (GIScience 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2478))

Included in the following conference series:

Abstract

In many geoscientific disciplines concepts are regularly discovered and modified, but the architecture of our geospatial information systems is primarily aimed at supporting static conceptual structures. This results in a semantic gap between our evolving understanding of these concepts and how they are represented in our systems. The research reported here provides better database support for geographical concepts that evolve with particular situations. To reduce the potential for schema change in such environments, we develop an analysis of the structure and function of situated geographical concepts and directly model the results in an UML schema. The developed schema explicitly contextualizes geographic information and concepts, enabling the extraction of contexts and interpretations from databases. This aids (1) the uncovering of the implicit aspects of data, (2) the addition of empirical components to geoscientific ontology, and (3) enhances the context represented in geo-databases. Prototype implementations that show promise for managing geoscientific ontologies and databases are also briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barsalou, L. (1985). Ideals, Central Tendency, and Frequency of Instantiation as Determinants of Graded Structure in Categories. Journal of Experimental Psychology: Learning, Memory, and Cognition, 11:629–654.

    Article  Google Scholar 

  • Barsalou, L. and Hale, C. (1993). Components of Conceptual Representation: From Feature Lists to Recursive Frames. In: Mechelen, I., Hampton, J., Michalski, R., and Theuns, P. (Eds.) Categories and Concepts: Theoretical Views and Inductive Data Analysis. Academic, New York, 97–144.

    Google Scholar 

  • Barwise, J. and Perry, J. (1983). Situations and Attitudes. MIT Press, Cambridge, MA.

    Google Scholar 

  • Benslimane, D., Leclercq, E., Savonnet, M., Terrasse, M., and Yetongnon, K. (2000). On the Definition of Generic Multi-Layered Ontologies for Urban Applications. Computers, Environment, and Urban Systems, 24:191–214.

    Article  Google Scholar 

  • Bie, S. and Beckett, P. (1973). Comparison of Four Independent Soil Surveys by Air-Photo Interpretation, Paphos Area (Cyprus). Photogrammetrica, 29:189–202.

    Article  Google Scholar 

  • Bonfatti, F. and Pazzi, L. (1995). Ontological Foundations for State and Identity within the Object-Oriented Paradigm. International Journal of Human-Computer Studies, 43:891–906.

    Article  Google Scholar 

  • Brachman, R. (1979). On the Epistemological Status of Semantic Networks. In: Findler, N. (Ed.), Associative Networks. Academic Press, New York, 3–50.

    Google Scholar 

  • Brachman, R., McGuinness, D., Patel-Schneider, P., and Borgida, A. (1999). “Reducing” CLASSIC to Practice: Knowledge Representation Theory Meets Reality. Artifical Intelligence 114:203–237.

    Article  MATH  Google Scholar 

  • Brodaric, B. and Gahegan, M. (2001). Learning Geoscience Categories In-Situ: Implications for Geographic Knowledge Representation. Ninth ACM International Symposium on Advances in GIS, Atlanta, GA, Nov. 9–10, 2001. ACM Press, New York, 130–135.

    Chapter  Google Scholar 

  • Brodaric, B. and Hastings, J. (2002) An Object Model for Geologic Map Information. In: Proceedings of the Spatial Data Handling 2002 Symposium, Ottawa, Canada, (in press).

    Google Scholar 

  • Câmara, G., Freitas, U., Souza, R., Casanova, M., Hemerly, A., and Bauzer Medeiros, C. (1994). A Model to Cultivate Objects and Manipulate Fields. Proceedings 2 nd ACM Workshop on Advances in GIS, 20–28.

    Google Scholar 

  • De Oliveira, J., Pires, F., and Bauzer Medeiros, C. (1997). An Environment for Modeling and Design of Geographic Applications. GeoInformatica, 1, 29–58.

    Article  Google Scholar 

  • Fayyad, U., Piatetsky-Shapiro, G., and Smyth, P. (1996). From Data Mining to Knowledge Discovery in Databases. AI Magazine, Fall 1996, 37–54.

    Google Scholar 

  • Fensel, D., Horrocks, I., Van Harmelen, F., Decker, S., Erdmann, M., Klein, M. (2000). OIL in a Nutshell. 2th International Conference on Knowledge Engineering and Knowledge Management (EKAW’2000), Juan-les-Pins, France.

    Google Scholar 

  • Fonseca, F., Egenhofer, M., Davis, C., Borges, K. (2000) Ontologies and Knowledge Sharing in Urban GIS. Computers, Environment, and Urban Systems 24(3): 251–272.

    Article  Google Scholar 

  • Frank, A. (1997). Spatial Ontology: A Geographical Point of View. In: Stock, O. (ed.), Spatial and Temporal Reasoning, Dordrecht: Kluwer, 135–153.

    Chapter  Google Scholar 

  • Freska, C. and Barkowsky, T. (1996). Relations Between Spatial Concepts and Geographic Objects. In: Geographic Objects with Indeterminate Boundaries, Burrough, P. and Frank, A. (Eds.), Taylor & Francis, London, 99–121.

    Google Scholar 

  • Guarino, N. (1994). The Ontologic Level. In: Casati, R., Smith, B., and White, G. (Eds.), Philosophy and the Cognitive Science. Holder-Pichler-Tempsky, Vienna, 443–456.

    Google Scholar 

  • Guarino, N. (1995). Formal Ontology, Conceptual Analysis and Knowledge Representation. International Journal of Human and Computer Studies, 43(5/6):625–640.

    Article  Google Scholar 

  • Guarino, N. (1997). Understanding, Building, and Using Ontologies. International Journal of Human-Computer Studies, 46, 293–310.

    Article  Google Scholar 

  • Gruber, T. (1993). A Translation Approach to Portable Ontology Specifications. Knowledge Acquisition, 5, 199–220.

    Article  Google Scholar 

  • Hadzilacos, T. and Tryfona, N. (1996). Logical Data Modeling for Geographical Applications. International Journal of Geographical Information Science, 10(2): 179–203.

    Article  Google Scholar 

  • Hampton, J. and Dubois, D. (1993). Psychological Models of Concepts: Introduction. In: Mechelen, I., Hampton, J., Michalski, R., and Theuns, P. (Eds.) Categories and Concepts: Theoretical Views and Inductive Data Analysis. Academic, New York, 11–34.

    Google Scholar 

  • Hornsby, J. and Egenhofer, M. (2000). Identity-Based Change: A Foundation for Spatio-Temporal Knowledge Representation. International Journal of Geographical Information Science, 14(3):207–224.

    Article  Google Scholar 

  • Kosters, G., Pagel, B., and Six, H. (1997). GIS Application Development with GeoOOA. International Journal of Geographic Information Science, 11(4):307–335.

    Article  Google Scholar 

  • Kuhn, T., (1962). The Structure of Scientific Revolutions. University of Chicago Press, Chicago.

    Google Scholar 

  • Lakoff, G. (1987). Women, Fire and Dangerous Things. University of Chicago Press, Chicago.

    Google Scholar 

  • Medin, D., Lynch, E., and Solomon, K. (2000). Are There Kinds of Concepts? Annual Review of Psychology, 51:121–147.

    Article  Google Scholar 

  • Murphy, G. (1993). Theories and Concept Formation. In: Mechelen, I., Hampton, J., Michalski, R., and Theuns, P. (Eds.), Categories and Concepts: Theoretical Views and Inductive Data Analysis. Academic, New York, 173–199.

    Google Scholar 

  • Murphy, G. and Medin, D. (1985). The Role of Theories in Conceptual Coherence. Psychological Review, 92(3):289–316.

    Article  Google Scholar 

  • Noy, N., Fergerson, R., and Musen, M. (2000). The Knowledge Model of Protege-2000: Combining Interoperability and Flexibility. 2th International Conference on Knowledge Engineering and Knowledge Management (EKAW’2000), Juan-les-Pins, France.

    Google Scholar 

  • Pepper, S. (2000). The TAO of Topic Maps. In: Proceedings, XML Europe 2000, Paris, France. http://www.gca.org/papers/xmleurope2000/papers/s11-01.html.

  • Psillos S. (2000) Abduction: Between Conceptual Richness and Computational Complexity. In: Flach P. and Kakas A. (Eds.) Abduction and Induction. Dordrecht: Kluwer, pp 59–74.

    Google Scholar 

  • Pullar, D. and Stock, K. (1999). Geospatial Modeling: A Case Study for a Statewide Land Information Strategy. In: Goodchild, M., Egenhofer, M., Fegeas, R., and Kottman, C. (Eds.), Interoperating Geographic Information Systems. Kluwer, Boston, 181–194.

    Google Scholar 

  • Renolen, A. (2000). Modeling the Real World: Conceptual Modeling in Spatiotemporal Information System Design. Transactions in GIS, 4(1), 23–42.

    Article  Google Scholar 

  • Roddick, J. (1995). A Survey of Schema Versioning Issues for Database Systems. Information and Software Technology, 37(7):383–393.

    Article  Google Scholar 

  • Rosch, E. (1978). Principles of Categorization. In: Rosche, E. and Lloyd, B. (Eds), Cognition and Categorization. Erlbaum, Hillsdale, 27–48.

    Google Scholar 

  • Rubenstein-Montano, B. (2000). A Survey of Knowledge-Based Information Systems for Urban Planning: Moving Towards Knowledge Management. Computers, Environment, and Urban Systems, 24:155–172.

    Article  Google Scholar 

  • Rumbaugh, J., Jacobson, I., and Booch, G. (1999). The Unified Modeling Language Reference Manual Addison-Wesley, Reading, MA.

    Google Scholar 

  • Shekar, S., Coyle, M., Goyal, B., Liu, D. and Sarkar, S. (1997). Data Models in Geographic Information Systems. Communications of the ACM, 40(4), 103–111.

    Article  Google Scholar 

  • Smith, B. and Mark, D. (1998). Ontology and Geographic Kinds. In: Poiker, T. and Chrisman, N. (Eds.), Proceedings, 8 th International Symposium on Spatial Data Handling, 308–320.

    Google Scholar 

  • Smith, L. and Samuelson, L. (1997). Perceiving and Remembering: Category Stability, Variability and Development. In: Lamberts K. and Shanks, D. (Eds.), Knowledge, Concepts, and Categories. MIT Press, Cambridge, MA, 161–196.

    Google Scholar 

  • Smith, T., Ramakrishnan R., and Voisard, A. (1991). An Object-Based Data Model and a Deductive Language for Spatio-Temporal Database Applications. In: Gambosi, G., Scholl, M., Widmayer, P. (Eds.) Proceedings of the Workshop of the BRA Esprit project “GOODS” Springer-Verlag, Berlin, 1991.

    Google Scholar 

  • Solomon, K., Medin, D., and Lynch, E. (1999). Concepts Do More Than Categorize. Trends in Cognitive Sciences, 3(3), 99–104.

    Article  Google Scholar 

  • Sowa, J. (2000) Knowledge Representation: Logical, Philosophical, and Computational Foundations. Brooks/Cole, New York.

    Google Scholar 

  • Sutcliffe, J. (1993). Concept, Class, and Category in the Tradition of Aristotle. In: Mechelen, I., Hampton, J., Michalski, R., and Theuns, P. (Eds.), Categories and Concepts: Theoretical Views and Inductive Data Analysis. Academic, New York, 35–66.

    Google Scholar 

  • Tamzalit, D. and Oussalah, C. (1999). Instances Evolution vs. Classes Evolution. In: Bench-Capon, T. and Soda, G. (Eds.) Proceedings, Database and Expert Systems Applications: 10 th International Conference, DEXA’99, Florence, Italy, 16–25.

    Google Scholar 

  • Tamzalit, D. and Oussalah, C. (2000). Allowing Conceptual Emergence through Instance Evolutionary Processes. Engineering Intelligent Systems For Electrical Engineering And Communications, 8(3), 177–192.

    Google Scholar 

  • Tudhope, D., Alani, H., and Jones, C. (2001). Augmenting Thesaurus Relationships: Possibilities for Retrieval. Journal of Digital Information, 1(8).

    Google Scholar 

  • Ullman, J. (1988). Principles of Database and Knowledge-Base Systems, Volume 1: Classical Database Systems. Computer Science Press, Rockville, MA.

    Google Scholar 

  • Voisard, A. (1999). Abduction and Deduction in Geologic Hypermaps. In: Guting, R., Papadias, D., and Lochovsky, F. (Eds.) SSD’99, Lecture Notes in Computer Scinece 1651. Springer-Verlag, Berlin pp 311–329.

    Google Scholar 

  • Wille, R. (1996). Conceptual Structures of Multicontexts. In: Eklund, P., Ellis, G., and Mann, G. (Eds.), Conceptual Structures: Knowledge Representation and Interlingua, Proceedings, 4th Int. Conference on Conceptual Structures, ICCS’96, Syndney, Australia, Lecture Notes in Artificial Intelligence 1115, Springer, New York, 23–39.

    Google Scholar 

  • Wisniewski, E. (1998). Property Instantiation in Conceptual Combination. Memory & Cognition, 26(6): 1330–1347.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Brodaric, B., Gahegan, M. (2002). Distinguishing Instances and Evidence of Geographical Concepts for Geospatial Database Design. In: Egenhofer, M.J., Mark, D.M. (eds) Geographic Information Science. GIScience 2002. Lecture Notes in Computer Science, vol 2478. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45799-2_2

Download citation

  • DOI: https://doi.org/10.1007/3-540-45799-2_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44253-0

  • Online ISBN: 978-3-540-45799-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics