I ntegr ating the Synchronous Paradigm into UML :
Application to Control-Dominated Systems

Charles André, Marie-Agnes Peraldi-Frati, and Jean-Paul Rigault

Laboratoire Informatique Signaux et Systemes (I3S)
Université de Nice Sophia Antipolis CNRS UMR 6070
{andre, map,jpr}@3s. unice.fr
http://wwv. i 3s.unice.fr

Abstract. The Synchronous Paradigm proposes an abstract model integrating
concurrency and communication, deterministic thus simple, semantically well-
founded thus suitable for formal analysis, producing safe and efficient code. How-
ever combining this model with the object-oriented approach is still challenging.
This paper explores how an UML-based methodology can be set up, making
it possible to use the Synchronous Paradigm in combination with other (more
classical) techniques to develop control-dominated systems. It addresses the is-
sue of representing behavior in a semantically sound way using the synchronous
models, of relating behavior and structure, and of mixing synchronous and asyn-
chronous behavior though an extended notion of (ROOM-like) «capsules», the
synchronous islets. We also briefly mention the extensions and modifications in
the UML meta-model necessary to support this methodology.

1 Control-Dominated Systems

Control-dominated systems are frequent in real time applications, especially in em-
bedded ones (automobile, air and space, process control, integrated manufacturing,
robotics...). These systems display a unique combination of characteristics. They are
usually multi-modal, alternating their functioning between several operating modes.
They are reactive which implies to deal with concurrency, communication, and pre-
emption. They have to satisfy stringent constraints (correctness, response time) thus
they have better be deterministic. Finally they may be life or mission critical and con-
sequently they should be submitted to formal verification and validation.

The reactive nature and its consequences are the major reasons why the behavior of
these systems is delicate to handle. A way of reducing the behavioral complexity is to
have them evolve through successive phases. During one phase, only the external events
which were present at the beginning of the phase and the internal events that occurred
as a consequence of the first ones are considered. The phase ends when some stability
(fixed-point) has been achieved (or when some external “clock” decides that it is over).

We call such a phase an instant. Indeed, during such an instant, the time seems to
be suspended (the external events are frozen). An instant-based system will be called a
synchronized system. The so-called synchronous models are among these instant-based
schemes.

2 Charles André et al.

Atomicity of reactions is often necessary in reactive systems. The UML “run-to-
completion” is a way to satisfy such a requirement. The synchronous models satisfy it,
“by construction”.

These dominated control systems are not only delicate behavior-wise. The complex-
ity of modern systems makes it even more necessary to analyze, design, implement, and
verify these systems in a structured (hierarchical) way, hence the need for enforcing the
relationship between their structure and their behavior.

Thus we need to represent the architecture of the system as well as its behavior, in an
integrated way. Combining powerful and semantically sound models of behavior with
the object-oriented approach is certainly a path worth considering. The UML de facto
standard, which proposes both behavioral and architectural points of view, is certainly
the notation of choice.

This paper is about extensions and modifications to UML to integrate the power
of the Synchronous models. The following section (2) describes the common concepts
of synchronized models and presents the definition of their ideal (limit) instance: the
Strictly Synchronous Model. Section 3 is the core of the paper; it deals with extending
UML to support the synchronous paradigm. The next section (4) illustrates the approach
on an example. We finally conclude and propose some forthcoming developments.

2 “Synchronized” Behavioral Models

2.1 Common Concepts

Signals and Events Our systems react to input events by producing output events. An
event corresponds to the occurrence of a signal, and a signal may carry a value

Instant A synchronized system evolution concentrates into successive instants which
are defined system-wide®. An instant is characterized by a Begin Of Instant (BoI) and
an End Of Instant (Eol). Bol and Eol are in monotonic order and stricly alternating
(instants cannot intersect). The input events are frozen at Bol; the output events are
available at E'ol. Between two instants (more specifically, between Eol; and Bol;11)
nothing happens. The notion of an instant gives a clear meaning to simultaneity (ev-
erything which happens during the same instant), and to past and future. “Strict future”
designates the next instant(s).

Broadcast and Combine During an instant, the various (concurrent) parts of the sys-
tem can produce and absorb events. The events (external as well as internal) are broad-
cast (that is their target is not explicitly designated and an event is available for any
process waiting for it in the same instant). When the same signal is emitted several
times during an instant, it is combined: there is only one occurrence, and the value of
the signal is a commutative and associative combination of all the values correspond-
ing to the individual emissions (the combination function is usually part of the signal
declaration). Of course, not all signals are capable of combining their values. Multiple
simultaneous emissions of some signals may be forbidden.

L Well, in fact for this part of the real system that is to be considered synchronized.

Synchronized UML 3

Semantics The semantics relies on the search for a (unique) fixed-point during each
instant. For the imperative synchronous languages and models, the semantics can be
congtructive: it is established by propagating positive facts (e.g., the effective presence
of a signal) and possibly negative ones (e.g., the certainty of the absence of a signal)
during an instant.

2.2 Variants

Strict Synchronous The strict synchronous model is the limit case for synchronized
systems. It corresponds to Bol = Eol. Thus an instant has a null duration, the reac-
tion is instantaneous, the instant-wise simultaneity is true simultaneity. It is supported
by both imperative languages like Esterel [7], and data flow ones like Lustre and Sig-
nal [17].

The strict synchronous model proposes both a model of concurrency and a model of
communication. The concurrency model is deterministic, hence simple, and yet pow-
erful; it is abstract (no need for extra mechanisms like semaphores, monitors...); and it
is semantically well-founded. Signals abstract communication: broadcast and combine
make it simple to communicate, efficient instantaneous protocol dialogs are easy to set
up (if not to understand).

As a consequence, a synchronous program may be viewed as a set of (very) lightweight
processes, composed in parallel and communicating through broadcast signals. The
simplicity and well-foundedness make it possible to consider formal analysis. Tools
can produce safe, efficient and compact code.

However there are a number of drawbacks. First the semantic fixed-point does not
always exist; thus some programs are (semantically) incorrect. This is due to “temporal
paradoxes” also known as “causality cycles”. These can be detected at compile-time
but are not easy to avoid. They are indeed a programmer’s nuisance. Second, strict syn-
chronous languages are good at expressing control, but less at ease for general data
manipulation; the formal analysis methods do not handle values very well either. Last,
since they imply a sort of centralized coordination (centralized clock), the strict syn-
chronous systems are difficult to distribute.

Relaxed Synchronous Models For practical reasons as well as to cope with the draw-
backs of strict synchrony several works have proposed to relax the synchronous model
hypotheses.

Execution Machines: A first and compelling practical reason to relax arises when trying
to put the synchronous model into practice. Indeed the “real world” is not synchronous,
our processors are not infinitely fast, and reactions cannot be absolutely instantaneous.
So we need to define execution machines that adapt the inherently asynchronous ap-
plication events to their ideal pure synchronous counterparts. The responsibility of an
execution machine is to collect the external input events, to impose Bol and Eol, to de-
cide which external input events will be available for the synchronous program during
an instant, and to propagate the output events to other parts of the system.

When designing synchronous execution machines, two important questions must be
answered: is the strict synchronous model a reasonable approximation of the reality? is

4 Charles André et al.

the machine fast enough (compared to the flow of input events) so that its reaction may
be considered of null duration? This is a performance analysis issue, related to “real”
time?. Discussion about this is out of the scope of this paper. Interested readers may
refer to papers presenting software implementations [4] or hardware solutions [6].

Note that there is no need for a schedulability analysis, at least within the syn-
chronous program itself. In fact, the control generated by the compiler is a static sched-
uler of the actions to be performed by the reactive system. By a simple analysis of the
generated code, given a target architecture, it is possible to compute the best and the
worst case execution time for each reaction [5].

Another reason to relax the model is to cope with the two main drawbacks of pure
synchrony: existence of “causality cycles” and difficulty to apply to distributed systems.
When relaxing, Bol and EolI are no longer equal (Bol}, < Eol of course), and the
fixed point semantics has to be revisited.

Since the construction of the fixed-point semantics is based on propagating facts
(section. 2) one can obtain several ways of relaxing the model by choosing which facts
to propagate, and when they are propagated. These relaxed models demonstrate that the
strong hypotheses of the Strict Synchronous Model can be weakened without losing the
notions of instant, signals, and broadcast/combine communication. Besides being more
realistic, these models avoid the unpleasant temporal paradoxes due to instantaneity.
Thanks to their instant-based semantics, they remain relatively tracktable and mostly
deterministic, even for complex systems. This point of view has been adopted for long
in hardware: synchronous circuits are far easier to design than their asynchronous coun-
terparts. We mention here some of these extensions.

Synchronous Objects: This was one of the first attempt to mix the object-oriented
paradigm with the synchronous approach [10, 2]. Synchronous modules are used to
define the behavior of reactive sub-systems. Each sub-system is abstracted as a class
whose methods are related to signals (receiving or emitting), and whose behavior is
expressed by the synchronous code. Instances of these classes (synchronous objects)
can be inter-connected to realize more complex reactive systems. The behavior of the
whole system can be still a synchronous behavior, provided some assembly rules are
respected. F. Boulanger developed a technique to schedule the different objects so that
to ensure an instant-based behavior. This scheduling can be either static (a very efficient
solution) or dynamic (a convenient solution for rapid prototyping).

Weak Synchronous Systems: F. Boniol [9] defined a process algebra called COREA
(COmmunicating REactive Automata) based on a synchonous semantics of concur-
rency and a weak synchonous semantics for communication between concurrent pro-
cesses. Communications take one time unit of a global clock. Boniol’s weak synchrony
have been successfully applied to distributed applications built on a RTLAN (Real-Time
Local Area Network). For instance, L. Blanc in his thesis [8] considers strict synchrony
for local communication and weak synchrony for communication over the network.
Such characteristics guarantee deterministic behavior for the distributed system from a
logical and a temporal perspective.

2 as opposed to the logical time defined by the event flow in the synchronous model

Synchronized UML 5

The quasi synchronousapproach: It has been ntroduced by P. Capsi and R Salem [12].
The system is considered as a set of sub-systems locally synchronous that exchange
information via a shared memory. Exchanges are periodic. There is no “global clock”
in this system as the authors consider that clocks are “quasi equivalent”. They have an
abstract view of the asynchronism by modeling the “clock drift”. They propose an al-
gorithm for the distribution of LUSTRE code that guarantees disjoint acquisition phase
and transitions executions.

Reactive Objects: They have been ntroduced by F. Boussinot et al. [11]. The reactive
object model is an object-based formalism matching the reactive paradigm. Methods
can be invoked using instantaneous non-blocking send orders, which are immediately
processed (that is, processed during the current instant); moreover, a method cannot
execute more than once at each instant. In this model, a process® is executed until it
blocks, waiting for some event which is not yet known to be present in the current
instant. Only the positive fact are propagated during an instant, possibly unblocking a
waiting process. The instant terminates when all processes are blocked.

In this paper we shall not deal with integrating the relaxed models into UML. We
shall only concentrate on the integration of the strict synchronous model. Indeed the
latter should be considered as a foundation model. All relaxed models should exhibit
the following suitable property: if there is a strict synchronous solution?, there should
be (at least) one relaxed solution. Thus it is important to first consider the impact of
integrating the ideal model into UML, before looking at its variants.

3 Integrating the Synchronous Paradigm into UML

3.1 Relating Behavior and Structure

The strict synchronous model is well-adapted to structuring the control aspect of a sys-
tem, but fails at expressing architectural issues. The modules, or processes, or parallel
branches that are found in the synchronous languages are not objects, nor are they as-
sociated with objects.

There have been several early attempts to add object-oriented capabilities to the
synchronous model [10, 2]. Besides the gain in expressing the architecture and the rela-
tionship between architecture and behavior, they make it possible to represent systems
that are still control-dominated but that exhibit a significant data processing activity.

3.2 UML and Control Systems

The Unified Modeling Language (UML) is now the lingua franca of (object-oriented)
software engineering and, in the real-time domain as well as in all the other domains

3 Remember these are very lightweight processes, with a granularity of possibly a few basic
statements.
4 which is unique by definition

6 Charles André et al.

of the software industry, using the UML is becoming a key issue. UML offers multiple
points of view on the system, and some of these points of view are rather universal.

However, when it comes to modeling specific properties of real-time systems, and
in particular their behavior, the models proposed by UML are too general to fit the
requirements. Of course several real-time extensions to UML (or “profiles”) have been
proposed or are underway (see for instance [19] for a (non) exhaustive list). Let us men-
tion two of these, among the most influential ones. Real-Time UML (RT-UML) [14]
demonstrates how UML can be used to model real-time systems. Although a complete
method is described, almost no extensions to UML are introduced (except the notion of
Timing Diagrams which is perfectly orthogonal to the UML models). The models are
simulable and executable. RT-UML is implemented in the Rhapsody commercial tool
(from 1-Logix). UML for Real-Time (UML-RT) [23] goes somewhat further. It is an
UML adaptation of the ROOM method [22]. It introduces class stereotypes (capsule,
protocols, ports, connectors) corresponding to frequent real-time entities and extends
the UML collaboration diagrams to represent the structural view of the system (struc-
ture diagrams). Here again the models are simulable and executable and UML-RT is
implemented in the Rose Real Time tool (from Rational).

ACCORD/UML [16] proposes another interesting approach where a system is a
collection of active and passive real-time objects. The messages exhanged among the
objects may be temporally constrained. They correspond to method call of signal send-
ing.

All these extensions and adaptations of UML do not rely on the Synchronous Model.
To represent the behavior of the system, they use the classical UML means: state ma-
chines (a variant of StateCharts [18]) and interaction diagrams. These models have a
non deterministic semantics and thus they are not convenient for representing stringent
constraints and, even worse, not adapted for performing formal property analysis.

3.3 Adapting UML to Comply with the Synchronous Model Hypotheses

In a recent work, a team from Dassault Aviation [20] proposed a close integration be-
tween the Strict Synchronous Model and the UML. They defined object-oriented exten-
sions for the Esterel language (Esterel++, a pre-processor to pure Esterel). They used
SyncCharts, a graphical companion to Esterel [1], for modeling the behavior of ob-
jects and they borrowed from ROOM/UML-RT the notions of capsules, protocols... as
special kinds of classes but with a somewhat different semantics, more suited to the syn-
chronous world. They also adopted the ROOM/UML-RT nation of a structure diagram
and they adapted Rational Rose to represent these concepts and to generate Esterel++
code. The SyncCharts, which cannot be represented or edited within Rational Rose,
are drawn, simulated, and verified using the Esterel Studio commercial tool [15]. The
corresponding combination of tools is now routinely used within the Dassault company.

Dassault’s approach is indeed a first and promising attempt, but more work needs to
be done to have a smooth integration of the synchronous paradigm into UML. The rest
of this subsection proposes some tracks for this.

We consider here the architectural representations of UML (class and structure dia-
grams) and the behavioral ones. The other points of view of UML (use case, component,

Synchronized UML 7

deployment) are either usable unchanged or their semantics is not precise enough to be
impacted by the real-time and synchrony issues.

Class Diagram As far as the description of classes is concerned, the UML diagrams
can be adapted easily to the Synchronous model. We need classes for reactive objects
and at this end we borrowed the notion of a «capsule» from ROOM/UML-RT [23]. It is
a very convenient model for representing objects with complex communication. A port
is typed by a «pluget»®, a special kind of «interface» consisting of a list of signals.

All these extensions are well known, they are not specific to the synchronous model,
and they can be realized using UML stereotypes. To go further, we specialize these
concepts for the synchronous case:

— «S_signal» (Synchronous signal) is a stereotype denoting a class of synchronous
signals that can be broadcast and combined. UML does not seem to support broad-
cast per se; signals can be sent to several targets at the same time, but apparently
the targets have to be designated (diffusion list as opposed to general broadcast).
And when it comes to signal combination, this is a notion UML is oblivious of.
Thus «S_signals» are not a specialization of the Signal meta-class.

— «S_capsule» (Synchronous capsule) is a stereotype denoting a «capsule» which has
a specific port (its «clockPort»); through the clockPort, an «S_capsule» object will
receive its begin and end of instant signals.

— «lslet» is a stereotype designating a collection of «S_capsule»s sharing the same
«clockPort» generator; thus the islet provides the (synchronous) context; all its
«S_capsule»s have the same notion of an instant and the «Islet» has the respon-
sibility to provide Bol and Eol.

Note that an «Islet» is a regular «capsule», but not an «S_capsule» in general®; thus
the «Islet»s communicate asynchronously; only within an «Islet» is the communication
synchronous.

Figure 1 shows a simplification of extended UML meta-model to support the previ-
ously described stereotypes (our work is currently based on the UML 1.4 meta-model).
In particular we do not show or detail the hierarchy of «port»s and «S_signal»s.

Structure Diagram Since an «lslet» is composed of «S_capsule»s communicating
through their «ports»s, the connections and renaming of signals must be represented by
a specific diagram. Such diagrams already exists in ROOM and UML-RT, and there is
a proposal to introduce them in UML 2.0. They are called structure diagrams.

We need only one extension to the ROOM-like structure diagrams: a notation to
represent broadcasting and combining «S_signal»s. It may look like a sort of bus (see
figure 6 in next section for an example).

5 UML-RT/ROOM denotes the same notion by the term «protocol»; we avoided it, since,first, it
appears to us as confuse-wise and, second, there are some differences between «pluget» and
UML-RT protocols. One of these differences is that our «pluget» are hierarchical: they can
contain other plugets, not simply signals.

6 although it can be an «S_capsule», but with a different clock reference

8 Charles André et al.

connection p

-:endZ
+end] Port Pluget

+cports

Class

*
+ccportfs 1.%

realize A

1 +clockPort <<implicit>>
NT T
_________ — |{subset} <<stereotype>>
Capsule
SyncChart
+subcapsules 0%
ClockCapsuléjclockGen
1
S_Capsule
0..1
T T | +sCapsules Islet
ClockS_Capsule 1
0..1

* | +subllets

Fig. 1. A UML meta-model for the class stereotypes to support the strict synchronous model

Note that structure diagrams may be used either to represent the instances constitut-
ing a (sub-)system (an extended object diagram, showing the interconnections) or the
internal organization of the elements constituting an aggregate. In the latter case the
components represent roles more than instances. They may be subject to substitution
(according to some UML generalization).

Another useful extension would be to represent template capsules, with type param-
eters as well as integer constants. There should also be a way to represent duplicated
elements. We are currently working on such extensions.

Behavioral Models Of course the main impact of the synchronous model is onto the
UML behavioral points of view. The latter are of two kinds: the first one describes the
internal behavior of (the instances) of a class. The second represents the exchange of
messages between class instances.

Intra-objects: UML uses state machines, a variant of Harel’s StateCharts [18] to de-
scribe the internal state behavior of a class. For our purpose, there are at least two main
drawbacks with this state-machine model.

The first drawback defeats UML state-machine use in the strict synchrony hypoth-
esis: these state machines are inherently asynchronous and consequently non determin-
istic. Their semantics is given in term of waiting queues, without any indication on
how and when the events in the queue are handled. The notion of instant and simul-
taneity are not defined. Relying on such a non-deterministic feature would clobber all

Synchronized UML 9

the advantages of the synchronous model (simplicity, determinism, suitability to formal
analysis).

The second drawback is that UML state machines do not enforce a strict hierarchical
organization: the macro-states are not encapsulated since transitions may freely cross
their borders. Of course this feature has a strong power of expression, but it makes the
behavior harder to understand (like goto’s in a program!), harder to compose, and harder
to prove. Indeed the strict compositionality is the key to handle proofs on complex
systems.

Thus we use the SyncCharts [1], a graphical companion of synchronous languages.
It proposes a purely synchronous vision of the behavior with a strictly encapsulated
hierarchy of states. SyncCharts translate directly into Esterel code and thus may take
advantage of the simulation and model checking tools that were developed for this
language (SyncCharts has been chosen as the main way of describing behavior in the
EsterelStudio commercial tool [15]).

However, the SyncCharts model cannot be obtained as a simple specialization of the
UML state machines (mostly because of state encapsulation). The corresponding meta-
model, which is given on figure 2, corresponds to an heavyweight extension. Actions
associated with states and transitions, and triggering events and guards associated with
transitions are not detailed. They have been adapted to support «S_signal». Sg stands
for Sate Transition Graph, a connected graph made of states and transitions.

Figure 7 in the next section shows an example of a syncChart.

Inter-objects: The communication between objects is usually expressed using UML
interaction diagrams. We are mainly interested here in a time- and event-based repre-
sentation (even though our time is only logical), thus our focus is more on the sequence
diagrams than on collaboration ones.

There has been much discussion about sequence diagrams. Obviously the inventors
of UML wanted to keep the model of interaction simple, so that it may be used by non
computer specialists. This is certainly a point worth considering. However, the model
is really too simple, even simplistic, when it comes to represent complex interactions
(scenarios): no loops, weak representation of conditions, no structure...

Moreover a sequence diagram presents an ordering of events exchanged between the
objects participating to a scenario. But is this order chronological or causal’? Are the
flows of events universal (a mandatory behavior) or existential (an optional behavior)?

Message Sequence Charts (MSC [21]) have existed before UML sequence diagrams
and have a greater power of expression. The recent Life Sequence Charts (LSC) [13]
adds to MSC several features, especially the notion of existential and universal behavior.

Our own model, Synchronous Interface Behavior (SIB [3]) is much inspired by
MSC. It is even closer to LSC: the two models have been developed independently, and
yet they introduce similar notions (structure, existential and universal behavior, ...).
SIB adds feature to represent simultaneity and the notion of instant to scenarios. Any
SIB can be automatically translated into a semantically equivalent Esterel module. This
module is then composed (synchronous parallel composition) with the controller to be

" Chronology is not causality. Post hoc, ergo propter hoc (“after this, hence because of it”) is a
sophism that Francis Bacon denounced a long time ago.

10 Charles André et al.

ModelElement
(Foundation.Core)

+context| 0..1 T

+behavior | *
+subsyncChart SyncChart
‘ 1
*
ReferenceState 0.1
+target +incoming
Vertex 1 * Arc

+source +outgoing|tisimmediate : boolean

+priority :int = 1

T

Pseudostate
+kind : PseudostateKind|

Transition
+kind : TransitionKind

State
+isFinal : boolean

1| +top
Simolestat e Ttestat Pseudotransition
‘ imple>tate | omp.osl e>tate +kind : PseudotransitionKind
+canTerminate : boolean
+isSuspendable : boolean|
1
+container]| Stg 1.x
0.1 +withFinal : boolean
0.1

Fig. 2. A UML meta-model for SyncCharts

validated. This module is an observer [17], which can emit a failure or a success signal,
according to the observed behavior. A SIB represents either a history the system should
perform at least once (existential form) or a safety property (invariant).

We do not insist on SIB here, since it is a work underway. If we can easily repre-
sent the trace of the events at the interface of an individual object (and perform for-
mal analysis on it), we still have to decide (among several solutions) how to represent
(graphically) the notion of an instant, when several objects communicate (in a scenario).

4 Example

4.1 Presentation of the Seat Controller

We illustrate our approach with some diagrams extracted from the example of a (lux-
ury) car seat® The seat is composed of 6 motors which allow to modify the position of
its different parts (distance to the steering wheel, inclination pf the back, heigth of the
bottom...). Each motor has three states: stopped, forward, and backward. When run-
ning a motor emits a “tick” signal at each revolution. The seat adjustments are limited

8 The example is inspired by a competiton initiated by Daimler Chrysler.

L1 Car Environment

Tal

Synchronized UML

?ﬁ

'n 50 100 150 200 250

|

i I I

(4

e /
- il
.25

o iChes

A

(a) Environment panel

(b) Control panel

Fig. 3. The seat simulation environment

in their magnitude and characterized by a number of ticks. The motors are gathered into
2 groups of 3 motors with activation priority within a group (that is a motor has to be

stopped if a motor with an higher priority in the same group gets activated).

The motor activation may be manual, through a control panel. It may also be auto-
matic with several modes: calibration phases, courtesy (e.g., putting the seat backwards
when the door is opened), and memorization (e.g., reaching a previously memorized
seat position). Finally there are some constraints that some seat functions (heating, dis-

placement) have to obey and that depend on the environment of the car.

Figure 3 describes the simulation environment of the car that we have designed

using Tcl/Tk.

4.2 Class and Structure Diagrams for the Seat Controller

<<boundary>> +J

<<capsule>>
Memorization

SeatController

<<lIslet>>
MotorController

<<S_capsule>>

<<capsule>>
Courtesy

<<capsule>>
Calibration

<<boundary>> +J

Drivers

SeatEnvironment

Fig. 4. Top level class diagram for the seat controller

11

12 Charles André et al.

<<S_capsule>>
Drivers <<S_capsule>>
Encoder

<<Lport>>
+cmdin() : D_Cmd
<<output>> <<pluget>>
+acceptCommand() D_Cmd

<<o_port>>

+logicalState() : D_Cmd~
<<Lport>> Esterel relation:
+cmdG1() : G_Cmd M#Z#P
+cmdG2() : G_.Cmd

|
2 <<S_capsule>> |
<<S_capsule>> MotorDriver |
Group .
<<Iputs>
Fack(‘
I:c”lf(L)”» +enableln(<<pluget>> <<pluget>>
<<i_port>> 3 <<’4’é’|”>>_ Cmd G_Cmd Cmd
+cmdin() : G_Cmd +|cm nl(é me Cmd
+logicalState() : G_Cmd t(ggzj/l{caw;)ate() ctm <<Lport>> <<input>>
<<o-port>> +enal;7|eOut() +cmd10: Cmd gt
+cmdOut() : G_Cmd~ <<oport>> +cmd2() : Cmd +P()
+cmdOut() : Cmd~ +cmd3() : Cmd +Z()
(a) Details of the MotorController (b) The «plugets» used by the Motor-
«lslet» Controller
Fig. 5. The MotorController «Islet» and its «pluget»s
cmdin:G_Cmd
Y
always)
A 4 A 4
\cgucalsma:e G_Cm emdoutG_cmd

Fig. 6. Structure diagram for a group of three motors

Figure 4 presents a snapshot of the main classes of the application. The details of
the MotorController «Islet» and the «plugets» that it uses are described on figure 5.
The stereotypes «input» and «output» correspond to simple ports, composed of a single
signal whereas «i_port» and «o_port» denote compound ports with several signals. The
ports are typed with «pluget»s: for instance, this figure shows that Cmd stands for a
combination of three signals: M, P, and Z; the Esterel relation (in the note) expresses
that these signal are mutually exclusive (in the same instant). G_Cmd itself is composed
of 3 «i_port»s of type Cmd. The ~ character corresponds to the “conjugated” pluget
(obtained by reversing inputs and outputs).

The structure diagram of figure 6 describes the internal organization and connec-
tions of the components of a (motor) Group, composed of 3 MotorDrivers. Note the

Synchronized UML 13

bus-like notation to represent the broadcast/combine of signals, and also the template-
like notation which expresses that it is more a role diagram than an instance one.

4.3 Behavioral Aspects of the Seat Controller

MotorDriver

cmdin.zZ/cmdOut.Z ° cmdin.Z/cmdOut.p logicalState.p

notenableln enableln enableln notenableln
/ecmdOut.Z /emdOut.Z|

logicalState.Mor logicalState.P-
logicalState.

Fig. 7. SyncChart for «S_capsule» Motordriver

As already mentionned we restrict to the state representation (inter-objects). Each
«S_capsule» is associated with a syncChart to express its internal state model. As a
matter of example, figure 7 presents the syncChart of the MotorDriver capsule (see
figure 4). Note the use of the dot notation to refer to the constituents of a port (e.g.,
logicalState.M).

5 Perspectives

In this paper we described some tracks to integrate the Synchronous Model as smoothly
as possible into UML. We try to use, whenever applicable, lightweight extensions. How-
ever, the representation of synchronous behavior is still on the heavyweight side. We
strive to “alleviate” them, and there might be hope to succeed (at least partially) with
some forthcoming UML 2.0 proposals.

The work presented here is still in progress and will follow three main axes. The
first is to provide tools to manipulate the synchronous islets, the structure diagrams,
and especially the Synchronous Interface Behavior notation. There is still work to do so
that SIB may cope with the synchronous hypotheses, in a graphically convincing way.
It is mostly a matter of notation and layout, but this is an important issue in modeling.

14 Charles André et al.

Second, we wish to extend the model of “synchronous” islets to cope with the re-
laxed synchronized models. This would open the way to a wider range of applications,
including distributed ones.

Third, we need to define a methodology mixing the classical UML notation and
the synchronous models (be they strict or relaxed). Indeed, the modeling entities we
proposed here are not supposed to replace the classical UML classes, state machines,
sequence diagrams, etc. nor are they to supersede well-known extensions such as cap-
sules. We plan to use all of them together, having recurse to the synchronous model
only for those parts of the system that are control-dominated, that have to face strin-
gent constraints and formal analysis. Being able to model such a system composed of
collaborating synchronous and asynchronous parts is still a challenge.

References

[1] C. André. Representation and Analysis of Reactive Behavior: a Synchronous Approach. In
Computational Engineering in Systems Applications (CESA). IEEE-SMC, 1996.

[2] C. André, F. Boulanger, M.-A. Peraldi, J.-P. Rigault, and G. Vidal-Naquet. Objects and
Synchronous Programming. RAIRO-APII-JESA, 31(3), 1997.

[3] C. André, M.-A. Peraldi-Frati, and J.-P. Rigault. Scenario and Property Checking of Real-
Time Systems Using a Synchronous Approach. In 4th International Symposium on Object-
Oriented Real-Time Distributed Computing (ISORC 2001), Magdeburg, Germany, May
2001. IEEE.

[4] C. André, F. Boulanger, and A. Girault. Software Implementation of Synchronous Pro-
grams. In Proceedings of the Second International Conference on Application of Con-
currency to System Design, Newcastle upon Tyne, UK, June 25-29, 2001, pages 133-142.
IEEE Computer Society, 2001. IEEE Computer Society Press Order Number PR01071
Library of Congress Number 2001090878 ISBN 0-7695-1071-X.

[5] C. André and M.-A. Péraldi. Predictability of a RTx2000-based Implementation. In Real-
Time System, volume 10, pages 223-244, May 1996.

[6] G. Berry. A Hardware Implementation of Pure ESTEREL. Miami, January 1991. ACM
Workshop on Formal Methods in VVLSI Design.

[7] G. Berry. Essay in Honor of Robin Milner, chapter The Foundations of Esterel. MIT Press,
2000.

[8] L. Blanc. Répartition de systémes temps réel a contréle prédominant. PhD thesis, Univer-
sité de Nice-Sophia Antipolis, October 1999.

[9] F. Boniol. Etude d’une sémantique de la réactivité : variations autour du modéle synchrone
et application aux systemes embarqués. PhD thesis, ONERA-CERT (Toulouse), December
1997.

[10] F. Boulanger. Intégration de modules synchrone dans la programmation par objets. PhD
thesis, Supelec, université de Paris Sud, December 1993.

[11] F. Boussinot, G. Doumenc, and J.-B. Stefani. Reactive Objects. Ann. Telecommunication,
51(9-10):459-473, 1996.

[12] P. Caspi and R. Salem. The Quasi-Synchronous Approach to Distributed Control Systems.
In F.Cassez, C.Jard, B.Rozoy, and M.Ryan, editors, Proceedings of the Summer School
"Modelling and Verification of Parallel Processes” (MOVEP’2k), pages 253-262, 2000.

[13] W. Damm and D. Harel. LSCs: Breathing life into Message Sequence Charts. In 3rd IFIP
Int. Conf. on Formal Methods for Open Object-based Distributed Systems (FMOODS’99),
pages 293-312. Kluwer Academic Publisher, 1999.

[14]

[15]
[16]

[17]
(18]

[19]

[20]
[21]
[22]

(23]

Synchronized UML 15

B. P. Douglass. Doing Hard Time: Developping Real Time Systems with UML, Objects,
Frameworks, and Patterns. Addison-Wesley, 1999.

Esterel Technologies. http://www.esterel-technologies.com.

S. Gérard. Modélisation UML exécutable pour les systemes embarqués de I’automobile.
PhD thesis, Université d’Evry, October 2001.

N. Halbwachs. Synchronous Programming of Real Time Systems. Kluwer Academic Pub-
lisher, 1993.

D. Harel. StateCharts: a Visual Formalism for Complex Systems. Science of Computer
programming, 8, 1987.

L. Kabous and W. Nebel. Modeling Hard Real-Time Systems with UML: the OOHARTS
Approach. In Proceedings «UML»’99, number 1723 in LNCS, Fort Collins, CO, USA,
October 1999. Springer Verlag.

Y. le Biannic, E. Nassor, E. Ledinot, and S. Dissoubray. Spécifications objets UML de
logiciels temps réel. In RTS, March 2000.

E. Rudolph, P. Graubmann, and J. Grabowski. Tutorial on Message Sequence Charts. Com-
puter Networks and ISDN Systems, 28, December 1996.

B. Selic, G. Gullerkson, and P. T. Ward. Real-time Object-Oriented modeling. John Wiley
and Sons, 1994.

B. Selic and J. Rumbaugh. Using UML for Modeling Complex Real Time Systems. Tech-
nical report, ObjecTime, 1998. http://www.objectime.com.

