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Abstract. Metamodelling is becoming a standard way of defining languages 
such as the UML. A language definition distinguishes between concrete syntax, 
abstract syntax and semantics domain. It is possible to define all three using a 
metamodelling approach, but it is less clear how to define the transformations 
between them. This paper proposes an approach which uses metamodelling 
patterns that capture the essence of mathematical relations. It shows how these 
patterns can be used to define both the relationship between concrete syntax and 
abstract syntax, and between abstract syntax and semantics domain, for a 
fragment of UML. A goal of the approach is to provide a complete specification 
of a language from which intelligent tools can be generated. The extent to 
which the approach meets this goal is discussed in the paper.        

1 Introduction 
In this paper we use the term ‘metamodel’ to mean the rendering of a language 
definition as an object model. Metamodelling is perhaps best know in its application 
to the UML where a subset of UML is used to define (the abstract syntax of) itself 
[12] – hence the use of ‘meta’. Recently, it has been demonstrated that metamodelling 
can be used to define concrete syntax and semantics, as well as abstract syntax 
[5][7][1][4][14]. This involves defining a model of concrete syntax and a model of the 
semantics domain, in addition to a model of abstract syntax, and then modelling, 
somehow, the transformation relationship between these three components. So far, 
this has been done in a rather ad-hoc way, using associations that directly connect 
elements in one component with elements in another, and then writing constraints on 
one or other side of the association. This paper takes a more systematic approach that 
has the following two advantages: 

(a) It locates all aspects of the relationship in a separate part of the metamodel, 
thereby achieving a better separation of concerns and avoiding clutter in the 
metamodel for the components being mapped. 

(b) A relationship model need not be biased towards one or other direction in 
the relationship. This facilitates the construction of bidirectional mapping 
tools. 

With regard to (b), we are particularly interested in automatically generating tools to 
support modelling with a language from the metamodel of that language. We give two 
examples, both of which require bidirectional mappings. 

The first example is a model editor, where a model is input and viewed through 
one or more concrete syntaxes (e.g. a textual and diagrammatic syntax), and where 
the (abstract syntax of the) model can be directly manipulated, e.g. through property 



 

panes in a GUI. For such a tool, it must be possible to change the model using one 
medium (e.g. property panes) and generate or update views of the model in other 
mediums (e.g. diagrams). Here, bidirectional mappings between concrete and abstract 
syntax (AS and CS) are required, so changes in one can easily be propagated to the 
other. 

The second example would be a tool that supports the exploration of a model by 
allowing one to build examples and counter-examples, that could, for example, be 
shown to domain experts to validate the model. These examples could be generated 
from a model, or constructed directly by hand, which requires the mapping from 
model to example to be precisely specified. There is also the possibility of checking 
given examples against a model and (partially) generating the model from examples, 
requiring the mapping to be bidirectional. 

Our approach is based on a very simple idea: take the mathematical model of 
relations, and encode it as an object model. This leads to a particular style or pattern 
of modelling, which, amongst other benefits, can guide the metamodeller in what they 
need to consider when defining a mapping. The paper is structured as follows. Section 
2 gives the metamodel for the components to be related – concrete syntax, abstract 
syntax and semantics domain – for a fragment of UML. Section 3 describes the 
general approach to expressing transformation relationships, by adopting a modelling 
style inspired by mathematical relations. Section 4 shows the application of the 
approach to defining the relationships between concrete and abstract syntax, and 
between abstract syntax and semantics domain. Finally, Section 5 points to ongoing 
and future work, including the use of a package template mechanism, which can be 
automated, to encode the modelling styles described here, the development of 
specialised notation for describing such mappings, the generation of mapping tools 
from the definitions and the application of the techniques to modelling relationships 
or transformations in general.   

2 Metamodels for AS, CS and Semantics Domain 
Metamodels in this paper are expressed using a subset of UML comprising class 
diagrams and OCL for writing constraints. This subset corresponds closely with the 
language used by MOF [11] to define metamodels, and is similar to that implemented 
(and formalised) by the USE tool [15]. In this section we define the metamodels for 
three components of the language fragment, between which we will then model 
relationships. The language fragment contains packages, classes and associations, 
which map down onto a semantics domain of snapshots, objects and links. A simple 
model of generalisation between classes is included. 

2.1 Abstract Syntax 

The abstract syntax is given by Fig. 1. A package may contain classes, associations 
and other packages. An association contains two association ends (we consider binary 
associations only). The diagram would be accompanied by a series of OCL 
constraints which we’ll summarise here for brevity: 

– A package may not be contained in itself (not a member of allNested). 
– upper >= lower for association ends. 
– A class can not be a direct or indirect parent of itself (in allParent). 



 

– The names of association ends of which the same class is the source must be 
unique. 

– The names of classes in a package must be unique. 
– The names of associations in a package must be unique. 
– The names of packages in a package must be unique. 
– For an association, associationEnd.otherEnd results in the same set. 
– For an associationEnd, source = otherEnd.target and target = otherEnd.source. 
– For an association, the package that minimally contains the source and target of 

the association ends is the package that contains the association. 
The last two constraints avoid situations, for example, where a package A contains a 
package B which contains classes X and Y, and also contains an association between 
X and Y. In these situations it would make more sense for the association to be 
contained in B rather than A. 
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Fig. 1 Abstract Syntax 

2.2 Semantics Domain 
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Fig. 2 Semantics Domain 

The semantics domain is given by Fig. 2. Instances of packages are snapshots 
(configurations of objects and links) which contain objects, links and other snapshots. 
A link contains two linked ends. There are fewer constraints this time: 

– A snapshot may not be contained in itself, directly or indirectly 



 

– The snapshot which minimally contains a link must be the snapshot itself. 
– Id’s of objects in a snapshot are unique; similarly for snapshots in a snapshot. 
– For a link, linkEnd.otherEnd results in the same set. 

This time there are no constraints on labels of links or link ends, because it is quite 
possible, indeed desirable, for there to be more than one link end with the same label 
of which the same object is the source, and more than one link with the same label in 
the same snapshot. This is because labels here are used to identify which association 
end / association the link end / link is an instance of. 

2.3 Concrete Syntax 
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Fig. 3 Concrete Syntax 

The metamodel for the concrete syntax is given by Fig. 3. This loses absolute 
positioning information, but retains relative positioning information: whether or not a 
line is connected to a box, by virtue of one of its ends being connected to a box, and 
whether or not a box/line is contained in another box, by virtue of it being part of a 
diagram that represents the content of a box. Again, we summarise the additional 
constraints required: 

– Lines are contained in the diagram that minimally contains the two ends. 
– A box must not contain itself. 

3 Patterns for Modelling Transformations 
The main inspiration for the technique described here is mathematical relations. The 
technique is quite simple: adopt a pattern which models a transformation relationship 
as a (binary) relation (or collection of relations), and encode this as an object model. 
With this in mind, pairs are modelled as objects, and relations as objects that are 
associated with a set of pairs. Pairs in a relation may themselves be associated with 
other relations, and so on recursively. This allows relationships between structures 
with many levels to expressed, as required in language definition. Each of these 
aspects is now explained in detail.  

3.1 Pairs 

Pairs are encoded as objects which are associated with an object from the domain and 
range, respectively. If domain objects come from the class X and range objects from 
the class Y, one can define a class XY representing pairs of X’s and Y’s as given by 



 

Fig. 4. Directed associations ensure that X and Y require no knowledge that they are 
being “paired up”.1 

X XY Y 
x y
1 1

 
Fig. 4 Pairs 

When applying this pattern one substitutes classes for X and Y, and relabels XY and 
its associations as expected. If domain and range objects come from the same class 
(say X), then xDomain and xRange can be used as labels on the association ends, 
instead of x and y. Or some other appropriate naming scheme can be used instead. 

3.2 Relations 

A (binary) relation is then an object associated with a set of pairs. A relation has a 
domain and range. All domain objects associated with the pairs that constitute the 
relation must be selected from the domain, and all range objects from the range. This 
leads to the class diagram in  Fig. 5. 
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Fig. 5 Relations 

Again, associations are only navigable from XrelY so that X and Y remain untouched 
by the definition of the relation. 

Contrary to what might be expected at first sight, the domain and range are not the 
classes (e.g. X and Y) from which domain and range objects are selected, they are 
subsets of these classes. This is an important insight whose full explanation is 
deferred to Section 3.3, which considers how to model transformations between 
nested structures. The implication is that an association between X and Y is not 
sufficient for modelling a relation between X’s and Y’s because it requires the domain 
and range to be the classes X and Y. 

Fig. 5 must be accompanied by an invariant which ensures that the elements of 
pairs in the relation are selected from the domain and range. 

context XrelY inv: 
 domain->includesAll(elements.x->asSet) and 
 range->includesAll(elements.y->asSet) 

And a further constraint is required to ensure that no two pairs in the relation refer to 
exactly the same domain and range elements. This avoids redundancy, and simplifies 
the definition of queries in the sequel. 

                                                           
1 This may be important in a situation where one wishes to define a mapping between models 

that are already populated in some repository. 



 

context XrelY inv: 
 elements->forAll( e, f | 
  (e.x = f.x and e.y = f.y) implies e = f )  

It is also useful to define a number of auxiliary query operations (functions) on the 
class XrelY: 
(i) The image is the set of elements from the range actually mapped onto, under 

the relation.  
context XrelY::image() : Set(Y) 
 post: result = elements.y->asSet 

(ii) The inverse image is the set of elements from the domain actually mapped 
from, under the relation.  

context XrelY::inverse_image() : Set(X) 
 post: result = elements.x->asSet 

(iii) The relation is onto, if the image is the range.  
context XrelY::is_onto() : Boolean 
 post: result = ( image = range ) 

(iv) The relation is total, if the inverse image is the domain.  
context XrelY::is_total() : Boolean 
 post: result = ( inverse_image = domain ) 

(v) The relation is functional, if  and only if an element of the domain maps to at 
most one element in the range.  

context XrelY::is_functional() : Boolean 
 post: result = elements->forAll( p,q | 
      p.x = q.x implies p = q ) 

(vi) The relation is inverse functional, if  and only if an element of the range is 
mapped to from at most one element in the domain.  

context XrelY::is_inverse_functional() : Boolean 
 post: result = elements->forAll( p,q | 
      p.y = q.y implies p = q ) 

(vii) The relation is an injection if it is both functional and inverse functional. 
context XrelY::is_injection() : Boolean 
 post: result = is_functional and is_inverse_functional 

(viii) The relation is a bijection if it is both an injection, onto and total.  
context XrelY::is_bijection() : Boolean 
 post: result = is_injection and is_onto and is_total 

(ix) Looking up an element from the domain returns the pairs in the relation which 
mention that element.  

context XrelY::domainLookup(X:x) : Set(XY) 
 post: result = elements->select( p | p.x = x) 

(x) Looking up an element from the range returns the pairs in the relation which 
mention that element.  

context XrelY::rangeLookup(Y:y) : Set(XY) 
 post: result = elements->select( p | p.y = y) 

When applying this pattern, one substitutes for classes X and Y, relabelling things as 
appropriate, remembering that variables etc. used in the invariants and definitions of 



 

the queries on XrelY will also need to be relabelled. These patterns could be captured 
as package templates, as originally described in the Catalysis method [8], which 
would effectively systemise and automate the substitution process. Templates have 
been already been used to encode patterns like this for metamodelling [1][5]. 

When applying the pattern, it is usually necessary to add additional constraints 
stipulating the specific properties of the relation under consideration. These 
constraints fall into three categories: 

– Definition of the properties of the relation – bijective, functional, total, etc. 
– Definition of the domain and range. 
– Relation specific constraints, with respect to the elements forming the relation 

content. 
The first of these is the simplest to define; it is of the form: 

context Rel inv: f() 

context MyClass inv: myRel.f() 

where ‘f’ is a combination of one or more of the queries – injection, bijection, total, 
etc. For example, one may define a class ArelB according to the pattern described 
here, than add the additional constraint: 

context ArelB inv: is_bijection() 

which will ensure that all relations of the class will be bijections. If it is the case that 
only some relations of this class should be bijections, then one should apply the 
constraint directly and only to the object representing that relation. So, for example, if 
myRel:ArelB is declared in a class MyClass, one might write: 

context MyClass inv: myRel.is_bijection() 

The second kind of constraint defines the domain and range of the relation. The 
constraints must be formed to involve the ‘domain’ and ‘range’ navigable features 
from the relation and are generally of the form: 

domain = <set expression> 
range = <set expression> 

where ‘set expression’ is an OCL expression resulting in a collection of objects of the 
appropriate class. These definitions will nearly always appear as part of the definition 
of a class which uses a relation. For example, if MyClass also has declared 
myAs:Set(A) and myBs:Set(B), one could write: 

context MyClass inv: 
 myRel.domain = myAs and myRel.range = myBs 

to define the domain and range for myRel. 
The final kind of constraint is often the most complex. It is often of the form: 
 elements->forAll( e | <expression> ) 

where ‘expression’ puts constraints on the elements that form the relation content. 
The detail of the expression is dependent on the overall application and purpose of the 
specified transformation. Examples of these constraints can be found in section 4. 

3.3 Relating Structures 

For most practical modelling, it is necessary to combine different relations. The core 
pattern here is the idea that an element of a relation can itself be associated with other 



 

relations. A typical example of this is the specification of a relationship between two 
corresponding containers, as illustrated in Fig. 6. 
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Fig. 6 Relating Structures 

This shows the definition of a relationship between a container of A objects and a 
container of B objects. Given a specific pair of an AContainer and a BContainer, it is 
necessary to state how the contents of the AContainer map into the contents of the 
BContainer. This is modelled as a relation between A’s and B’s. Thus the class 
AContainerBContainer is associated with the class ARelB. Additional constraints can 
be added to determine the properties of the relationship between the contents of the 
containers. 

First, the domain of the relation should be the contents of the AContainer and the 
range should be the contents of the BContainer, as follows: 

context AContainerBContainer inv: 
 aRelB.domain = aContainer.contents and 
 aRelB.range = bContainer.contents 

This illustrates why the domain and range of a relation can not be the classes from 
which the domain and range elements are selected, respectively. If they were we 
would lose the opportunity to distinguish between the case when the mapping of 
contents of an AContainer or BContainer covers all the contents or only some of 
them. As it stands which can choose to force the mapping to cover all the contents of 
the AContainer by making it total, and to cover all the contents of the BContainer by 
making it onto: 

context AContainerBContainer inv: 
 aRelB.total() and aRelB.onto() 

If the domain and range were set to be the classes A and B, respectively, then the 
above constraint would only be desirable if the aContainer.contents was the set of all 
instances of the class A; similarly for bContainer.contents. This will rarely be the 
case. If we did not model the relation as a class, but instead chose to represent it as an 



 

association between classes A and B, it would be impossible to express the behaviour 
captured by the invariant above. It would be possible to use an association with a 
corresponding association class to replace the class AB, however that would begin to 
interfere with classes A and B, assuming an implementation of a bidirectional 
association which requires each role end to require a feature (attribute or query) to be 
added to the class at the opposite end. 

Additional constraints may be added to AContainerBContainer to impose further 
properties on the mapping between contents. For example, to require the relation to be 
functional, so that every element in aContainer.contents maps to at most one element 
in bContainer.contents, the following constraint can be used: 

context AContainerBContainer inv: 
 aRelB.isFunctional() 

The pattern may be repeated to map nested structures, as illustrated by Fig. 7. 
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Fig. 7 Transformation between Nested  Structures 

 



 

3.4 Separation of Concerns 

A mapping can be made easier to understand and managed in a modelling tool, for 
example, by wrapping the two sides of the relationship and the relationship itself in 
separate packages.  An example of using packages in this way is provided by Fig. 8. 

4 Application of the Patterns 
4.1 Abstract Syntax to Semantics Domain 
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Fig. 8 Semantics Relation 

Fig. 8 shows the basic structure of the mapping. We have omitted the details of the 
abstract syntax (AS) and semantics domain (SD) packages as they are provided in 
Section 2. We have also omitted cardinalities on associations, where they match the 
patterns described in Section 3 (which is all of them), and labels on association ends 
where the label matches the name of the target class. We have omitted domain and 
range associations (see Section 3 for details). All queries introduced in Section 3 are 
assumed to be replicated according to the application of the pattern. So, for example, 
on the class ClassRelObject we have, amongst other queries: 

context ClassRelObject::image() : Set(Object) 
 post: result = elements.object->asSet 



 

What remains, is to provide the various constraints according to the guidelines set out 
in Section 3. First, we define the domains and ranges of the various relations. 

context PackageSnapshot inv: 
 packageRelSnapshot.domain = package.package and 
 packageRelSnapshot.range = snapshot.snapshot and 
 classRelObject.domain = package.class and 
 classRelObject.range = snapshot.object and 
 associationRelLink.domain = package.association and 
 associationRelLink.range = snapshot.link 

context AssociationLink inv: 
 associationEndRelLinkEnd.domain = association.associationEnd 
 and associationEndRelLinkEnd.range = link.linkEnd 

Next, come the properties of the relations: 
context PackageSnapshot inv: 
 classRelObject.is_onto() and 
 classRelObject.is_inverse_functional() and 
 associationRelLink.is_onto() and 
 associationRelLink.is_inverse_functional() and
 packageRelSnapshot.is_injection() and 
 packageRelSnapshot.is_onto() 

context AssociationLink inv: 
 associationEndRelLinkEnd.is_bijection() 

The reasoning behind these decisions runs as follows. All objects must be related to 
exactly one class (inverse_functional and onto), but some classes may not be 
represented by objects in a snapshot, and there may be many objects per class (so not 
total and not functional). Similarly for links of associations. On the other hand, a 
snapshot of a package which contains other packages may contain snapshots for the 
latter, but only one of each (functional). A contained snapshot must always be related 
to exactly one contained package (inverse_functional and onto). This reflects the 
observation that, at least for in this language, contained packages just allow the 
namespace of a package to be further partitioned, and this should be replicated in 
snapshots. Although there may be many links per association, each link must have 
exactly two link ends which correspond directly with the association ends of the 
association associated with the link. Thus associationEndRelLinkEnd is a bijection. 

Finally, we deal with the constraints specific to this metamodel. First some simple 
constraints which ensure names tie up correctly: 

context PackageSnapshot inv: 
 package.name = snapshot.package 

context ClassObject inv: 
 class.name = object.class 

context AssociationLink inv: 
 association.name = link.label 

context AssociationEndLinkEnd inv: 
 associationEnd.name = linkEnd.label and 

Second, a constraint is required to ensure that cardinality of associations is preserved 
in snapshots. 



 

context PackageSnapshot inv: 
 package.association.associationEnd->forAll(ae |  
 snapshot.allObject()->select(o | 
 classRelObject.rangeLookup(o).class = {ae.source}) 
 ->forAll(o | let n = o.sourceOf->select(le | 
  associationRelLink.domainLookup(ae.owner).linkEnd 
  ->includes(le))->size in n <= ae.upper and n >= ae.lower)) 

The constraint works by taking each association end ae accessible to the package, 
then taking each object o accessible to the snapshot of the class at the source of ae,  
counting all the link ends of ae sourced on o, and checking that this falls within the 
upper and lower bounds declared in ae. Note the use of range and domain lookups to 
find pairs in a relation. This allows one to find the elements related in the domain 
(range) to the range (domain) element in question. 

Third, a constraint is required to ensure that a linkEnd is targeted on an object of a 
class conformant with the class at the target of the corresponding associationEnd: 

context PackageSnapshot inv: 
 associationRelLink.elements->forAll(el | 
  el.link.linkEnd->forAll(le | let classOfObject = 
   classRelObject.rangeLookup(le.target).class in  
   classOfObject->union(classOfObject.allParents) 
    ->includes(el.association.associationEndRelLinkEnd 
     ->rangeLookup(le).associationEnd.target)) 

4.2 Concrete to Abstract Syntax 

Fig. 9 shows the basic structure of the mapping. The diagram is subject to the same 
conventions and omissions as Fig. 8. Again, we provide the various constraints 
according to the guidelines set out in Section 3. First, we define the domains and 
ranges of the various relations. 

context BoxPackage inv: 
 boxRelPackage.domain = box.content.box->select(hasTab) and 
 boxRelPackage.range = package.package and 
 boxRelClass.domain = box.content.box->select(not hasTab) and 
 boxRelClass.range = package.class and 
 boxRelPackage.domain->union(boxRelClass.domain)= 
    box.content.box and 
 lineRelAssociation.domain = box.content.line and 
 lineRelAssociation.range = package.association 

context LineAssociation inv: 
 LineEndRelAssociationEnd.domain = line.lineEnd and 
 LineEndRelAssociationEnd.range = association.associationEnd 

That is, classes are the boxes in the contained diagram that do not have tabs and 
packages are the ones that do (and these are the only boxes allowed); associations are 
the lines in the diagram. 

Next, come the properties of the relations. At this point we can determine the 
relationship between the symbols in the diagram and the defined model; for instance, 
do we allow partial diagrams, and/or model elements to be represented multiple times 
in a diagram. The following constraints define complete diagrams, with one element 
mapping to one symbol: 

context LineAssociation inv: 
 LineEndRelAssociationEnd.is_bijection() 



 

context BoxPackage inv: 
 boxRelPackage.is_bijection() and 
 boxRelClass.is_bijection() and 
 lineRelAssociation.is_bijection() and 
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Fig. 9 CS-AS transformation 

An alternative, allowing diagrams to be partial views, would be to weaken these 
properties, by making them total injections, but not onto. To enable elements to be 
represented multiple times on a diagram, the relations no longer be inverse functional. 
Associations always have two ends and so must Lines, hence the relationship between 
LineEnds and AssociationEnds is always a bijection. 

Finally, we deal with the constraints specific to this metamodel. First some simple 
constraints that ensure element names correspond to labels in boxes. The first of these 
also ensures that the diagram owning the box representing a top level package only 
contains that box and is not contained in any other box. 

context BoxPackage inv: 
 box.label=package.name and package.owner=null implies 
  (box.diagram.box={self} and box.diagram.line->isEmpty 
  and box.diagram.container=null) 

context BoxClass inv: 
 box.label = class.name 

context LineAssociation inv: 
 line.label = association.name  



 

context LineEndAssociationEnd inv: 
 lineEnd.label = associationEnd.name 

Second, we must ensure that the boxes at the ends of the lines are mapped to the 
classes at the ends of the association represented by the line: 

context BoxPackage inv: 
 lineRelAssociation.elements->forAll(el | 
  el.line.lineEnd->forAll(le | 
   boxRelClass.domainLookup(el.association.associationEnd 
    ->one(ae | ae.label = le.label).target).box = le.box))) 

The constraint works by running through all line-association relationships, and for 
each one checking that each line-end of the line in the relationship connects to the box 
that corresponds to the class at the target of the association end that corresponds to 
that line-end.  

5 Conclusions 
We have introduced a novel approach to defining transformation relationships 
between different components of a language definition rendered as a metamodel. This 
uses a particular style or pattern of modelling that takes its inspiration from 
mathematical relations. We have demonstrated the approach through the definition of 
a small, UML-like language. There are a number of possible developments to explore. 

– Application of the approach to a more sophisticated language. Although we 
expect the approach will scale up, we are conscious that other patterns of 
combining relations will probably be required (e.g. relation composition), and 
are nervous about the size of the metamodel that might be required. 

– Encoding the patterns as package templates [5][6]. This will provide one 
approach to taming the complexity of large definitions, not least by allowing 
whole chunks of metamodel to be generated simply through the substitution of 
template parameters (templates just provide a formal encoding of the systematic 
rules we have been using when applying the patterns of section 3). 

– Development of specialised notation for describing such relationships. This 
would be an alternative to using templates. It is recognised that metamodelling is 
missing language constructs for describing relationships between models, 
including metamodels and their component parts. For example, an OMG RFP to 
add such a facility to the MOF is soon to be issued. An approach which provides 
some specialised syntax for the modelling patterns presented here would be a 
candidate solution. 

– Application of the techniques to the OMG’s Model Driven Architecture (MDA) 
[13]. MDA requires transformations between different modelling languages and 
different models in the same language. It would be a good test of the approach to 
see how amenable it is to defining such relationships. 

– Automated generation / configuration of tools. The idea here is to use a 
metamodel definition as direct input to a (meta)tool that can then execute and / 
or monitor the relationship in one or other direction, or generate a tool that can 
do this. A prototype (meta)tool that generates relationship management tools is 
described in [2]. This was used to build the diagrammatic language editor for an 
automaton model checker [3]. This was based on a less flexible method for 



 

modelling relationships [2]. Work is in progress to update the metatool based on 
the approach described in this paper. 

– Alignment with other approaches to language definition. We are particularly 
keen to explore the relationship between metamodelling and graph grammars 
[9][10]. In particular, triple graph grammars [16] provide the basis of  a rule 
based approach to expressing mappings that would complement well the 
metamodelling approach described here. 
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