
A Relational Approach to
Defining Transformations in a Metamodel

David Akehurst and Stuart Kent

Computing Laboratory, University of Kent, Canterbury, UK
dha@ukc.ac.uk, sjhk@ukc.ac.uk

Abstract. Metamodelling is becoming a standard way of defining languages
such as the UML. A language definition distinguishes between concrete syntax,
abstract syntax and semantics domain. It is possible to define all three using a
metamodelling approach, but it is less clear how to define the transformations
between them. This paper proposes an approach which uses metamodelling
patterns that capture the essence of mathematical relations. It shows how these
patterns can be used to define both the relationship between concrete syntax and
abstract syntax, and between abstract syntax and semantics domain, for a
fragment of UML. A goal of the approach is to provide a complete specification
of a language from which intelligent tools can be generated. The extent to
which the approach meets this goal is discussed in the paper.

1 Introduction
In this paper we use the term ‘metamodel’ to mean the rendering of a language
definition as an object model. Metamodelling is perhaps best know in its application
to the UML where a subset of UML is used to define (the abstract syntax of) itself
[12] – hence the use of ‘meta’. Recently, it has been demonstrated that metamodelling
can be used to define concrete syntax and semantics, as well as abstract syntax
[5][7][1][4][14]. This involves defining a model of concrete syntax and a model of the
semantics domain, in addition to a model of abstract syntax, and then modelling,
somehow, the transformation relationship between these three components. So far,
this has been done in a rather ad-hoc way, using associations that directly connect
elements in one component with elements in another, and then writing constraints on
one or other side of the association. This paper takes a more systematic approach that
has the following two advantages:

(a) It locates all aspects of the relationship in a separate part of the metamodel,
thereby achieving a better separation of concerns and avoiding clutter in the
metamodel for the components being mapped.

(b) A relationship model need not be biased towards one or other direction in
the relationship. This facilitates the construction of bidirectional mapping
tools.

With regard to (b), we are particularly interested in automatically generating tools to
support modelling with a language from the metamodel of that language. We give two
examples, both of which require bidirectional mappings.

The first example is a model editor, where a model is input and viewed through
one or more concrete syntaxes (e.g. a textual and diagrammatic syntax), and where
the (abstract syntax of the) model can be directly manipulated, e.g. through property

panes in a GUI. For such a tool, it must be possible to change the model using one
medium (e.g. property panes) and generate or update views of the model in other
mediums (e.g. diagrams). Here, bidirectional mappings between concrete and abstract
syntax (AS and CS) are required, so changes in one can easily be propagated to the
other.

The second example would be a tool that supports the exploration of a model by
allowing one to build examples and counter-examples, that could, for example, be
shown to domain experts to validate the model. These examples could be generated
from a model, or constructed directly by hand, which requires the mapping from
model to example to be precisely specified. There is also the possibility of checking
given examples against a model and (partially) generating the model from examples,
requiring the mapping to be bidirectional.

Our approach is based on a very simple idea: take the mathematical model of
relations, and encode it as an object model. This leads to a particular style or pattern
of modelling, which, amongst other benefits, can guide the metamodeller in what they
need to consider when defining a mapping. The paper is structured as follows. Section
2 gives the metamodel for the components to be related – concrete syntax, abstract
syntax and semantics domain – for a fragment of UML. Section 3 describes the
general approach to expressing transformation relationships, by adopting a modelling
style inspired by mathematical relations. Section 4 shows the application of the
approach to defining the relationships between concrete and abstract syntax, and
between abstract syntax and semantics domain. Finally, Section 5 points to ongoing
and future work, including the use of a package template mechanism, which can be
automated, to encode the modelling styles described here, the development of
specialised notation for describing such mappings, the generation of mapping tools
from the definitions and the application of the techniques to modelling relationships
or transformations in general.

2 Metamodels for AS, CS and Semantics Domain
Metamodels in this paper are expressed using a subset of UML comprising class
diagrams and OCL for writing constraints. This subset corresponds closely with the
language used by MOF [11] to define metamodels, and is similar to that implemented
(and formalised) by the USE tool [15]. In this section we define the metamodels for
three components of the language fragment, between which we will then model
relationships. The language fragment contains packages, classes and associations,
which map down onto a semantics domain of snapshots, objects and links. A simple
model of generalisation between classes is included.

2.1 Abstract Syntax

The abstract syntax is given by Fig. 1. A package may contain classes, associations
and other packages. An association contains two association ends (we consider binary
associations only). The diagram would be accompanied by a series of OCL
constraints which we’ll summarise here for brevity:

– A package may not be contained in itself (not a member of allNested).
– upper >= lower for association ends.
– A class can not be a direct or indirect parent of itself (in allParent).

– The names of association ends of which the same class is the source must be
unique.

– The names of classes in a package must be unique.
– The names of associations in a package must be unique.
– The names of packages in a package must be unique.
– For an association, associationEnd.otherEnd results in the same set.
– For an associationEnd, source = otherEnd.target and target = otherEnd.source.
– For an association, the package that minimally contains the source and target of

the association ends is the package that contains the association.
The last two constraints avoid situations, for example, where a package A contains a
package B which contains classes X and Y, and also contains an association between
X and Y. In these situations it would make more sense for the association to be
contained in B rather than A.

name : String

Class

name : String

Association
associationEnd
2 owner

1

name : String
upper : Int
lower : Int

Association
End

target

source

1

1

1

otherEnd

parent
*

allParent

*
name : String

Package

class
* owner

1

association
*

owner 1

owner

*package 0..1

sourceOf*

targetOf
*

allNested
*

Fig. 1 Abstract Syntax

2.2 Semantics Domain

id : String
class : String

Object

label : String

Link

linkEnd

2 owner

1
label : String

Link
End

target

source

1

1

1

otherEnd

id : String
package : String

Snapshot

sourceOf*

*

targetOf

owner

1

*

object

owner1

*

link

owner0..1snapshot *

Fig. 2 Semantics Domain

The semantics domain is given by Fig. 2. Instances of packages are snapshots
(configurations of objects and links) which contain objects, links and other snapshots.
A link contains two linked ends. There are fewer constraints this time:

– A snapshot may not be contained in itself, directly or indirectly

– The snapshot which minimally contains a link must be the snapshot itself.
– Id’s of objects in a snapshot are unique; similarly for snapshots in a snapshot.
– For a link, linkEnd.otherEnd results in the same set.

This time there are no constraints on labels of links or link ends, because it is quite
possible, indeed desirable, for there to be more than one link end with the same label
of which the same object is the source, and more than one link with the same label in
the same snapshot. This is because labels here are used to identify which association
end / association the link end / link is an instance of.

2.3 Concrete Syntax

Diagram

hasTab : Bool
label : String

Box
arrowhead : String
hasArrow : Bool
label : String

LineEnd

label : String

Line
2

lineEnd
owner
1

owner
1

* line

box
*

1 owner

content

0..1

0..1 container

0..1 *
lineEndbox

Fig. 3 Concrete Syntax

The metamodel for the concrete syntax is given by Fig. 3. This loses absolute
positioning information, but retains relative positioning information: whether or not a
line is connected to a box, by virtue of one of its ends being connected to a box, and
whether or not a box/line is contained in another box, by virtue of it being part of a
diagram that represents the content of a box. Again, we summarise the additional
constraints required:

– Lines are contained in the diagram that minimally contains the two ends.
– A box must not contain itself.

3 Patterns for Modelling Transformations
The main inspiration for the technique described here is mathematical relations. The
technique is quite simple: adopt a pattern which models a transformation relationship
as a (binary) relation (or collection of relations), and encode this as an object model.
With this in mind, pairs are modelled as objects, and relations as objects that are
associated with a set of pairs. Pairs in a relation may themselves be associated with
other relations, and so on recursively. This allows relationships between structures
with many levels to expressed, as required in language definition. Each of these
aspects is now explained in detail.

3.1 Pairs

Pairs are encoded as objects which are associated with an object from the domain and
range, respectively. If domain objects come from the class X and range objects from
the class Y, one can define a class XY representing pairs of X’s and Y’s as given by

Fig. 4. Directed associations ensure that X and Y require no knowledge that they are
being “paired up”.1

X XY Y
x y
1 1

Fig. 4 Pairs

When applying this pattern one substitutes classes for X and Y, and relabels XY and
its associations as expected. If domain and range objects come from the same class
(say X), then xDomain and xRange can be used as labels on the association ends,
instead of x and y. Or some other appropriate naming scheme can be used instead.

3.2 Relations

A (binary) relation is then an object associated with a set of pairs. A relation has a
domain and range. All domain objects associated with the pairs that constitute the
relation must be selected from the domain, and all range objects from the range. This
leads to the class diagram in Fig. 5.

X XY Y
x y
1 1

XRelY

domain range * ** elements

relation1

Fig. 5 Relations

Again, associations are only navigable from XrelY so that X and Y remain untouched
by the definition of the relation.

Contrary to what might be expected at first sight, the domain and range are not the
classes (e.g. X and Y) from which domain and range objects are selected, they are
subsets of these classes. This is an important insight whose full explanation is
deferred to Section 3.3, which considers how to model transformations between
nested structures. The implication is that an association between X and Y is not
sufficient for modelling a relation between X’s and Y’s because it requires the domain
and range to be the classes X and Y.

Fig. 5 must be accompanied by an invariant which ensures that the elements of
pairs in the relation are selected from the domain and range.

context XrelY inv:
 domain->includesAll(elements.x->asSet) and
 range->includesAll(elements.y->asSet)

And a further constraint is required to ensure that no two pairs in the relation refer to
exactly the same domain and range elements. This avoids redundancy, and simplifies
the definition of queries in the sequel.

1 This may be important in a situation where one wishes to define a mapping between models

that are already populated in some repository.

context XrelY inv:
 elements->forAll(e, f |
 (e.x = f.x and e.y = f.y) implies e = f)

It is also useful to define a number of auxiliary query operations (functions) on the
class XrelY:
(i) The image is the set of elements from the range actually mapped onto, under

the relation.
context XrelY::image() : Set(Y)
 post: result = elements.y->asSet

(ii) The inverse image is the set of elements from the domain actually mapped
from, under the relation.

context XrelY::inverse_image() : Set(X)
 post: result = elements.x->asSet

(iii) The relation is onto, if the image is the range.
context XrelY::is_onto() : Boolean
 post: result = (image = range)

(iv) The relation is total, if the inverse image is the domain.
context XrelY::is_total() : Boolean
 post: result = (inverse_image = domain)

(v) The relation is functional, if and only if an element of the domain maps to at
most one element in the range.

context XrelY::is_functional() : Boolean
 post: result = elements->forAll(p,q |
 p.x = q.x implies p = q)

(vi) The relation is inverse functional, if and only if an element of the range is
mapped to from at most one element in the domain.

context XrelY::is_inverse_functional() : Boolean
 post: result = elements->forAll(p,q |
 p.y = q.y implies p = q)

(vii) The relation is an injection if it is both functional and inverse functional.
context XrelY::is_injection() : Boolean
 post: result = is_functional and is_inverse_functional

(viii) The relation is a bijection if it is both an injection, onto and total.
context XrelY::is_bijection() : Boolean
 post: result = is_injection and is_onto and is_total

(ix) Looking up an element from the domain returns the pairs in the relation which
mention that element.

context XrelY::domainLookup(X:x) : Set(XY)
 post: result = elements->select(p | p.x = x)

(x) Looking up an element from the range returns the pairs in the relation which
mention that element.

context XrelY::rangeLookup(Y:y) : Set(XY)
 post: result = elements->select(p | p.y = y)

When applying this pattern, one substitutes for classes X and Y, relabelling things as
appropriate, remembering that variables etc. used in the invariants and definitions of

the queries on XrelY will also need to be relabelled. These patterns could be captured
as package templates, as originally described in the Catalysis method [8], which
would effectively systemise and automate the substitution process. Templates have
been already been used to encode patterns like this for metamodelling [1][5].

When applying the pattern, it is usually necessary to add additional constraints
stipulating the specific properties of the relation under consideration. These
constraints fall into three categories:

– Definition of the properties of the relation – bijective, functional, total, etc.
– Definition of the domain and range.
– Relation specific constraints, with respect to the elements forming the relation

content.
The first of these is the simplest to define; it is of the form:

context Rel inv: f()

context MyClass inv: myRel.f()

where ‘f’ is a combination of one or more of the queries – injection, bijection, total,
etc. For example, one may define a class ArelB according to the pattern described
here, than add the additional constraint:

context ArelB inv: is_bijection()

which will ensure that all relations of the class will be bijections. If it is the case that
only some relations of this class should be bijections, then one should apply the
constraint directly and only to the object representing that relation. So, for example, if
myRel:ArelB is declared in a class MyClass, one might write:

context MyClass inv: myRel.is_bijection()

The second kind of constraint defines the domain and range of the relation. The
constraints must be formed to involve the ‘domain’ and ‘range’ navigable features
from the relation and are generally of the form:

domain = <set expression>
range = <set expression>

where ‘set expression’ is an OCL expression resulting in a collection of objects of the
appropriate class. These definitions will nearly always appear as part of the definition
of a class which uses a relation. For example, if MyClass also has declared
myAs:Set(A) and myBs:Set(B), one could write:

context MyClass inv:
 myRel.domain = myAs and myRel.range = myBs

to define the domain and range for myRel.
The final kind of constraint is often the most complex. It is often of the form:
 elements->forAll(e | <expression>)

where ‘expression’ puts constraints on the elements that form the relation content.
The detail of the expression is dependent on the overall application and purpose of the
specified transformation. Examples of these constraints can be found in section 4.

3.3 Relating Structures

For most practical modelling, it is necessary to combine different relations. The core
pattern here is the idea that an element of a relation can itself be associated with other

relations. A typical example of this is the specification of a relationship between two
corresponding containers, as illustrated in Fig. 6.

 AContainer

A

AContainerBContainer

B

BContainer

* *

AB

ARelB

* * domain rangeelements *

relation

aContainer

a b

bContainer
scope

aRelB 1

1

contents contents

1

1 1

Fig. 6 Relating Structures

This shows the definition of a relationship between a container of A objects and a
container of B objects. Given a specific pair of an AContainer and a BContainer, it is
necessary to state how the contents of the AContainer map into the contents of the
BContainer. This is modelled as a relation between A’s and B’s. Thus the class
AContainerBContainer is associated with the class ARelB. Additional constraints can
be added to determine the properties of the relationship between the contents of the
containers.

First, the domain of the relation should be the contents of the AContainer and the
range should be the contents of the BContainer, as follows:

context AContainerBContainer inv:
 aRelB.domain = aContainer.contents and
 aRelB.range = bContainer.contents

This illustrates why the domain and range of a relation can not be the classes from
which the domain and range elements are selected, respectively. If they were we
would lose the opportunity to distinguish between the case when the mapping of
contents of an AContainer or BContainer covers all the contents or only some of
them. As it stands which can choose to force the mapping to cover all the contents of
the AContainer by making it total, and to cover all the contents of the BContainer by
making it onto:

context AContainerBContainer inv:
 aRelB.total() and aRelB.onto()

If the domain and range were set to be the classes A and B, respectively, then the
above constraint would only be desirable if the aContainer.contents was the set of all
instances of the class A; similarly for bContainer.contents. This will rarely be the
case. If we did not model the relation as a class, but instead chose to represent it as an

association between classes A and B, it would be impossible to express the behaviour
captured by the invariant above. It would be possible to use an association with a
corresponding association class to replace the class AB, however that would begin to
interfere with classes A and B, assuming an implementation of a bidirectional
association which requires each role end to require a feature (attribute or query) to be
added to the class at the opposite end.

Additional constraints may be added to AContainerBContainer to impose further
properties on the mapping between contents. For example, to require the relation to be
functional, so that every element in aContainer.contents maps to at most one element
in bContainer.contents, the following constraint can be used:

context AContainerBContainer inv:
 aRelB.isFunctional()

The pattern may be repeated to map nested structures, as illustrated by Fig. 7.

AContainer

A

AContainerBContainer

B

BContainer

* *

AB

ARelB

* * domain rangeelements *

relation

aContainer

a b

bContainer

scope

aRelB 1

1

contents contents
1

AContainer
Container

AContainerContainer
BContainerContainer

BContainer
Container

* *

AContainerRelBContainer

* * domain rangeelements *

relation

aContainer
Container

BContainer
Container scope

aRelB 1

1

contents contents
1

Fig. 7 Transformation between Nested Structures

3.4 Separation of Concerns

A mapping can be made easier to understand and managed in a modelling tool, for
example, by wrapping the two sides of the relationship and the relationship itself in
separate packages. An example of using packages in this way is provided by Fig. 8.

4 Application of the Patterns
4.1 Abstract Syntax to Semantics Domain

name : String

Class

name : String

Association

name : String
upper : Int
lower : Int

Association
End

name : String

Package

id : String
class : String

Object

label : String

Link

label : String

Link
End

id : String
package : String

Snapshot

AS SDSemantics

Package
Snapshot

Class
Object

Association
Link

Class
Rel

Object
Association

Rel
Link

AssociationEnd
Rel

LinkEnd

AssociationEnd
LinkEnd

scope
scope

elements

elements

relation
relation

scope

relation

elements

Package
Rel

Snapshot

scope

elements

relation

Fig. 8 Semantics Relation

Fig. 8 shows the basic structure of the mapping. We have omitted the details of the
abstract syntax (AS) and semantics domain (SD) packages as they are provided in
Section 2. We have also omitted cardinalities on associations, where they match the
patterns described in Section 3 (which is all of them), and labels on association ends
where the label matches the name of the target class. We have omitted domain and
range associations (see Section 3 for details). All queries introduced in Section 3 are
assumed to be replicated according to the application of the pattern. So, for example,
on the class ClassRelObject we have, amongst other queries:

context ClassRelObject::image() : Set(Object)
 post: result = elements.object->asSet

What remains, is to provide the various constraints according to the guidelines set out
in Section 3. First, we define the domains and ranges of the various relations.

context PackageSnapshot inv:
 packageRelSnapshot.domain = package.package and
 packageRelSnapshot.range = snapshot.snapshot and
 classRelObject.domain = package.class and
 classRelObject.range = snapshot.object and
 associationRelLink.domain = package.association and
 associationRelLink.range = snapshot.link

context AssociationLink inv:
 associationEndRelLinkEnd.domain = association.associationEnd
 and associationEndRelLinkEnd.range = link.linkEnd

Next, come the properties of the relations:
context PackageSnapshot inv:
 classRelObject.is_onto() and
 classRelObject.is_inverse_functional() and
 associationRelLink.is_onto() and
 associationRelLink.is_inverse_functional() and
 packageRelSnapshot.is_injection() and
 packageRelSnapshot.is_onto()

context AssociationLink inv:
 associationEndRelLinkEnd.is_bijection()

The reasoning behind these decisions runs as follows. All objects must be related to
exactly one class (inverse_functional and onto), but some classes may not be
represented by objects in a snapshot, and there may be many objects per class (so not
total and not functional). Similarly for links of associations. On the other hand, a
snapshot of a package which contains other packages may contain snapshots for the
latter, but only one of each (functional). A contained snapshot must always be related
to exactly one contained package (inverse_functional and onto). This reflects the
observation that, at least for in this language, contained packages just allow the
namespace of a package to be further partitioned, and this should be replicated in
snapshots. Although there may be many links per association, each link must have
exactly two link ends which correspond directly with the association ends of the
association associated with the link. Thus associationEndRelLinkEnd is a bijection.

Finally, we deal with the constraints specific to this metamodel. First some simple
constraints which ensure names tie up correctly:

context PackageSnapshot inv:
 package.name = snapshot.package

context ClassObject inv:
 class.name = object.class

context AssociationLink inv:
 association.name = link.label

context AssociationEndLinkEnd inv:
 associationEnd.name = linkEnd.label and

Second, a constraint is required to ensure that cardinality of associations is preserved
in snapshots.

context PackageSnapshot inv:
 package.association.associationEnd->forAll(ae |
 snapshot.allObject()->select(o |
 classRelObject.rangeLookup(o).class = {ae.source})
 ->forAll(o | let n = o.sourceOf->select(le |
 associationRelLink.domainLookup(ae.owner).linkEnd
 ->includes(le))->size in n <= ae.upper and n >= ae.lower))

The constraint works by taking each association end ae accessible to the package,
then taking each object o accessible to the snapshot of the class at the source of ae,
counting all the link ends of ae sourced on o, and checking that this falls within the
upper and lower bounds declared in ae. Note the use of range and domain lookups to
find pairs in a relation. This allows one to find the elements related in the domain
(range) to the range (domain) element in question.

Third, a constraint is required to ensure that a linkEnd is targeted on an object of a
class conformant with the class at the target of the corresponding associationEnd:

context PackageSnapshot inv:
 associationRelLink.elements->forAll(el |
 el.link.linkEnd->forAll(le | let classOfObject =
 classRelObject.rangeLookup(le.target).class in
 classOfObject->union(classOfObject.allParents)
 ->includes(el.association.associationEndRelLinkEnd
 ->rangeLookup(le).associationEnd.target))

4.2 Concrete to Abstract Syntax

Fig. 9 shows the basic structure of the mapping. The diagram is subject to the same
conventions and omissions as Fig. 8. Again, we provide the various constraints
according to the guidelines set out in Section 3. First, we define the domains and
ranges of the various relations.

context BoxPackage inv:
 boxRelPackage.domain = box.content.box->select(hasTab) and
 boxRelPackage.range = package.package and
 boxRelClass.domain = box.content.box->select(not hasTab) and
 boxRelClass.range = package.class and
 boxRelPackage.domain->union(boxRelClass.domain)=
 box.content.box and
 lineRelAssociation.domain = box.content.line and
 lineRelAssociation.range = package.association

context LineAssociation inv:
 LineEndRelAssociationEnd.domain = line.lineEnd and
 LineEndRelAssociationEnd.range = association.associationEnd

That is, classes are the boxes in the contained diagram that do not have tabs and
packages are the ones that do (and these are the only boxes allowed); associations are
the lines in the diagram.

Next, come the properties of the relations. At this point we can determine the
relationship between the symbols in the diagram and the defined model; for instance,
do we allow partial diagrams, and/or model elements to be represented multiple times
in a diagram. The following constraints define complete diagrams, with one element
mapping to one symbol:

context LineAssociation inv:
 LineEndRelAssociationEnd.is_bijection()

context BoxPackage inv:
 boxRelPackage.is_bijection() and
 boxRelClass.is_bijection() and
 lineRelAssociation.is_bijection() and

CS ASCSAS

Box
Package

Box
Class

Line
Association

Box
Rel

Class
Line
Rel

Association

LineEnd
Rel

AssociationEnd

LineEnd
AssociationEnd

scope
scope

elements

elements

relation
relation

scope

relation

elements

Box
Rel

Package

scope

elements

relation

name : String

Class

name : String

Association

name : String
upper : Int
lower : Int

Association
End

name : String

Package

hasTab : Bool
label : String

Box

arrowhead : String
hasArrow : Bool
label : String

LineEnd

Line

Fig. 9 CS-AS transformation

An alternative, allowing diagrams to be partial views, would be to weaken these
properties, by making them total injections, but not onto. To enable elements to be
represented multiple times on a diagram, the relations no longer be inverse functional.
Associations always have two ends and so must Lines, hence the relationship between
LineEnds and AssociationEnds is always a bijection.

Finally, we deal with the constraints specific to this metamodel. First some simple
constraints that ensure element names correspond to labels in boxes. The first of these
also ensures that the diagram owning the box representing a top level package only
contains that box and is not contained in any other box.

context BoxPackage inv:
 box.label=package.name and package.owner=null implies
 (box.diagram.box={self} and box.diagram.line->isEmpty
 and box.diagram.container=null)

context BoxClass inv:
 box.label = class.name

context LineAssociation inv:
 line.label = association.name

context LineEndAssociationEnd inv:
 lineEnd.label = associationEnd.name

Second, we must ensure that the boxes at the ends of the lines are mapped to the
classes at the ends of the association represented by the line:

context BoxPackage inv:
 lineRelAssociation.elements->forAll(el |
 el.line.lineEnd->forAll(le |
 boxRelClass.domainLookup(el.association.associationEnd
 ->one(ae | ae.label = le.label).target).box = le.box)))

The constraint works by running through all line-association relationships, and for
each one checking that each line-end of the line in the relationship connects to the box
that corresponds to the class at the target of the association end that corresponds to
that line-end.

5 Conclusions
We have introduced a novel approach to defining transformation relationships
between different components of a language definition rendered as a metamodel. This
uses a particular style or pattern of modelling that takes its inspiration from
mathematical relations. We have demonstrated the approach through the definition of
a small, UML-like language. There are a number of possible developments to explore.

– Application of the approach to a more sophisticated language. Although we
expect the approach will scale up, we are conscious that other patterns of
combining relations will probably be required (e.g. relation composition), and
are nervous about the size of the metamodel that might be required.

– Encoding the patterns as package templates [5][6]. This will provide one
approach to taming the complexity of large definitions, not least by allowing
whole chunks of metamodel to be generated simply through the substitution of
template parameters (templates just provide a formal encoding of the systematic
rules we have been using when applying the patterns of section 3).

– Development of specialised notation for describing such relationships. This
would be an alternative to using templates. It is recognised that metamodelling is
missing language constructs for describing relationships between models,
including metamodels and their component parts. For example, an OMG RFP to
add such a facility to the MOF is soon to be issued. An approach which provides
some specialised syntax for the modelling patterns presented here would be a
candidate solution.

– Application of the techniques to the OMG’s Model Driven Architecture (MDA)
[13]. MDA requires transformations between different modelling languages and
different models in the same language. It would be a good test of the approach to
see how amenable it is to defining such relationships.

– Automated generation / configuration of tools. The idea here is to use a
metamodel definition as direct input to a (meta)tool that can then execute and /
or monitor the relationship in one or other direction, or generate a tool that can
do this. A prototype (meta)tool that generates relationship management tools is
described in [2]. This was used to build the diagrammatic language editor for an
automaton model checker [3]. This was based on a less flexible method for

modelling relationships [2]. Work is in progress to update the metatool based on
the approach described in this paper.

– Alignment with other approaches to language definition. We are particularly
keen to explore the relationship between metamodelling and graph grammars
[9][10]. In particular, triple graph grammars [16] provide the basis of a rule
based approach to expressing mappings that would complement well the
metamodelling approach described here.

References
[1] 2U Submitters. Submission to UML 2.0 Infrastructure RFP, available from

www.2uworks.org.
[2] Akehurst D. H. Model Translation: A UML-based specification technique and active

implementation technique. PhD Thesis, University of Kent, UK. December 2000.
[3] Akehurst D., Bowman H., Bryans J. and Derrick J. A Manual for a ModelChecker for

Stochastic Automata. Technical Report 9-00, Computing Laboratory, University of Kent,
December 2000.

[4] Alvarez J.M., Clark A., Evans A. and Sammut P. An action semantics for MML. In C.
Kobryn and M. Gogolla, editors, Proceedings of The Fourth International Conference on
the Unified Modeling Language (UML’2001), LNCS. Springer, 2000.

[5] Clark A., Evans A. and Kent S. Engineering modelling languages: A precise meta-
modelling approach. In Proceedings of ETAPS 02 FASE Conference, LNCS. Springer,
April 2002.

[6] Clark A., Evans A. and Kent S. Package Extension. Submitted to UML’02, March 2002.
[7] Clark A., Evans A., Kent S., Brodsky S., and Cook S. A feasibility study in rearchitecting

UML as a family of languages using a precise OO meta-modeling approach. Available
from www.puml.org, September 2000.

[8] D’Souza D. and Wills A. Objects, Components and Frameworks With UML: The
Catalysis Approach. Addison-Wesley, 1998.

[9] Ehrig H., Engels G., Kreowski H-J., and Rozenberg G., editors. Handbook Of Graph
Grammars And Computing By Graph Transformation. Volume 2: Applications,
Languages and Tools. World Scientific, October 1999.

[10] Fischer T., Niere J., Torunski L. and Zündorf A. Story Diagrams: A new Graph
Transformation Language based on UML and Java in 6th Int. Workshop on Theory and
Applications of Graph Transformation, TAGT'98 Selected Papers (Ehrig, Engels,
Kreowski, Rozenberg Eds.) Springer LNCS 1764 (2000).

[11] Object Management Group. The Meta Object Facility (MOF) Version 1.3.1. OMG
document number formal/2001-11-02.

[12] Object Management Group. The Unified Modeling Language Version 1.4. OMG
document number formal/01-09-67.

[13] OMG Architecture Board ORMSC. Model driven architecture (MDA). OMG document
number ormsc/2001-07-01, available from www.omg.org, July 2001.

[14] Reggio G. and Astesiano E. A proposal of a dynamic core for UML metamodelling with
MML. Technical Report DISI-TR-01-17, DISI, Universit di Genova, Italy, 2001.

[15] Richters M. and Gogolla M. Validating UML models and OCL constraints. In A. Evans,
S. Kent and B. Selic, editors, The Third International Conference on the Unified
Modeling Language (UML’2000), York, UK, October 2-6. 2000, Proceedings, LNCS.
Springer, 2000.

[16] Schürr A. Specification of Graph Translators with Triple Graph Grammars, in Tinhofer
G. (ed.) Proc. WG'94 20th Int. Workshop on Graph-Theoretic Concepts in Computer
Science, Herrsching, Germany, LNCS 903, Springer Verlag, 151-163, June 1994.

