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Abstract. The channel assignment problem (CAP) in a cellular network
requires finding a channel assignment to the call requests from cells such
that three types of interference constraints are not only satisfied, but also
the number of channels (channel span) is minimized. This paper presents
a three-stage iterative algorithm, called the Quasi-solution state evolu-
tion algorithm for CAP (QCAP). QCAP evolutes quasi-solution states
where a subset of call requests is assigned channels and no more re-
quest can be satisfied without violating the constraint. The first stage
computes the lower bound on the channel span. After the second stage
greedily generates an initial quasi-solution state, the third stage evolutes
them for a feasible solution by iteratively generating best neighborhoods,
with help of the dynamic state jump and the gradual span expansion for
global convergence. The performance is evaluated through solving bench-
mark instances in literature, where QCAP always finds the optimum or
near-optimum solution in very short time.

1 Introduction

This paper presents a heuristic algorithm called QCAP, a Quasi-solution state
evolution algorithm for the Channel Assignment Problem (CAP) in a cellular
network. Traffic demands for mobile communication have been rapidly increased
in voice and data services, due to portability and availability in everyplace with
no requirement for hard wires. Besides, the successful introduction of packet
communications using mobile networks has accelerated the explosive growth of
demands. On the other hand, the electromagnetic spectrum allocated for this
system has been limited, because of a variety of significant applications using
radio waves. Thus, the efficient use of precious frequency band resources has
been an important task in the research/development communities in mobile
communication networks. The concept of the cellular network has been widely
adopted as the efficiency realization [1]. This cellular network allows the reuse of
the same channel in geographically separated regions simultaneously. As a result,
CAP has become the critical problem to be solved for its efficient solutions. A
solution for CAP is not only requested to avoid the mutual radio interference
between closer channels, but also to maximize the channel utilization.



Due to the NP-hardness of CAP [2], a number of polynomial time approxima-
tion algorithms have been reported [5]-[16]. In [5], Sivarajan et al. proposed eight
different greedy algorithms based on graph coloring algorithms. They referred
practical benchmark instances of 21 cells. Their algorithms and these bench-
marks have been widely used for performance evaluations in many literature. In
[6], Kunz proposed a neural network algorithm using continuous sigmoid neu-
rons for a limited case of CAP, which does not consider the adjacent channel
constraint. He provided a practical benchmark instance of 25 cells. In [7], Fun-
abiki et al. proposed another neural network algorithm using binary neurons for
the general CAP. In [8], Wang et al. proposed a two-phase adaptive local search
algorithm named CAP3. They showed its superiority through solving a subset
of Sivarajan’s benchmarks, Kunz’s benchmark, and Kim’s benchmarks. In [9],
Sung et al. proposed a generalized sequential packing (GSP) algorithm with its
two variations for CAP, and a lower bound on the number of channels (chan-
nel span). In [10], Hurley et al. proposed an integrated system called FASoft,
which incorporates various CAP algorithms. In [11], Rouskas et al. proposed an
iterative heuristic algorithm for CAP. They provided benchmark instances of
49 cells. In [12], Beckmann et al. proposed a hybrid algorithm composed of a
genetic algorithm and the frequency exhaustive strategy. They evaluated the per-
formance through solving a subset of Sivarajan’s benchmarks. In [13], Funabiki
et al. proposed a neural network algorithm combined with heuristic methods for
CAP. In [14][15], Murakami et al. proposed a genetic algorithm using several
schemes to improve the convergence property. This algorithm is only applicable
to simple cases of CAP without considering the interference between different
channels. They provided benchmark instances of 49, 80, and 101 cells. In [16],
Matsui et al. proposed a genetic algorithm to determine the sequence of cells for
assigning channels by a greedy method for CAP. Unfortunately, none of existing
algorithms can find optimum solutions for small size benchmark instances whose
lower bounds are known.

QCAP evolutes quasi-solution states through three stages to provide the high
quality solution in short computation time. A quasi-solution state represents a
channel assignment to a subset of call requests where no more call request in
any cell can be assigned a channel without violating the constraint. When the
full set of call requests is assigned channels, it becomes a solution. The first
stage computes the lower bound on the channel span. The second stage greed-
ily generates an initial quasi-solution state. The third stage iteratively evolutes
quasi-solution states to a feasible channel assignment, by iteratively generating
best neighbor states, while schemes of the dynamic state jump and the grad-
ual span expansion are used together for global convergence. The performance
is evaluated through solving benchmark instances, where the comparisons with
existing results confirm the superiority of QCAP.



2 Problem Formulation of CAP

CAP in this paper follows the common problem formulation defined by Gamst
et al. [3] as in literature. The servicing region in a cellular network is managed
as a set of disjoint hexagonal cells. Each cell occupies a unit area for providing
communication services to users that are located in the cell area. When a user
requests a call for communication services, a channel must be assigned to the
user through which voice or data packets are communicating between the user’s
mobile terminal and a base station. This channel assignment must satisfy the
constraints to avoid the mutual radio interference between closer channels. In
CAP, the following three types of constraints have been considered:

1) Co-Channel Constraint (CCC): the same or its adjacent channels cannot be
reused in the cells that are located within a specified distance from each
other in the network. This set of channel-reuse prohibited cells is called a
cluster. In a cluster, any pair of channels assigned to call requests from the
cells must have a specified channel distance.

2) Adjacent Channel Constraint (ACC): adjacent channels cannot be assigned
to adjacent cells in the network simultaneously. In other words, any pair
of channels assigned to adjacent cells must have a specified distance. The
distance for ACC is usually larger than that for CCC.

3) Co-Site Constraint (CSC): any pair of channels in the same cell must have a
specified distance. The distance for CSC is usually larger than that for ACC.

The channel distance is described by the difference on the channel indices in the
channel domain. In this paper, the cell cluster size for CCC is denoted by ”Nc”,
the channel distance to satisfy CCC is by ”cij”, the distance for ACC is by ”acc”,
and the distance for CSC is by ”cii” as in existing papers. The goal of CAP is
to find a channel assignment to every call request with the minimum number
of channels or channel span subject to the above three constraints. The three
constraints in an N -cell network are altogether described by an N×N symmetric
compatibility matrix C. A non-diagonal element cij (i 6= j) in C represents the
minimum distance to be separated between a channel in cell i and a channel in
cell j. A diagonal element cii in C represents the minimum distance between
any pair of channels in cell i.

A set of call requests in the N -cell network is given by an N -element demand
vector D. The i-th element di in D represents the number of channels to satisfy
the call requests in cell i. Let a binary variable xik represent whether channel k
be assigned to cell i (xik = 1) or not (xik = 0) for i = 1, ..., N and k = 1, ..., M .
Note that M represents the channel span required for the instance. Then, CAP
is defined as follows:

minimize M such that
xik = 0 or 1, for i ∈ {1, ..., N} and k ∈ {1, ...,M}
M∑

k=1

xik = di, for i ∈ {1, ..., N}
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Fig. 1. A CAP example for the improved lower bound formula.

|k − l| ≥ cij , for k, l ∈ {1, ...,M} , i, j ∈ {1, ..., N}
and xik = xjl = 1. (1)

3 Proposal of QCAP

3.1 Lower Bound Computation

The first stage of QCAP computes the lower bound LB on the channel span for
the initial value of M using the following three formulas, based on [4][9] with
some improvement. The first lower bound formula gives the channel span to
afford every call request in one cell while satisfying CSC by cii:

LB1 ≥ 1 + cii (di − 1) . (2)

When two cells in the same cluster have the same number of call requests in
an instance such as Rouskas’s benchmarks, additional channels are required to
satisfy these call requests from both cells simultaneously:

LB1 ≥ 1 + cii (di − 1) + cij (3)

where cells i and j are located in the same cluster to be mutually interfered by
CCC or ACC, and have the same number of call requests. Figure 1 illustrates
an example channel assignment with cii = 5 and cij = 2 for this special case.
Each number inside a hexagonal cell represents the number of call requests. Each
of five call requests from cell A is assigned a channel with the interval of five
channels, and each of four requests from cell B is assigned a channel between two
neighboring channels assigned to cell A. Consequently, two additional channels
are necessary to assign the last call request from cell B to satisfy cij = 2.

The second lower bound formula gives the channel span to afford every re-
quest call from one cell, namely the center cell, and from its surrounding adjacent



cells while satisfying ACC:

LB2 ≥ 2acc + (di − 2) (2acc− 1) + cij


∑

j∈Pi

dj


 (4)

where Pi consists of the cells that are adjacent to cell i. The first two terms
represent the number of channels that the channel assignment to the center cell
forbids from the assignment to the surrounding cells to satisfy ACC. The last
term represents the number of channels required to satisfy the call requests in
the surrounding cells to satisfy CCC.

The third lower bound formula gives the channel span to afford every call
request from the same cluster of cells while satisfying CCC:

LB3 ≥ 1 + cij


 ∑

j∈Qi

dj − 1


 (5)

where the cell set Qi consists of the cells that are located in the same cluster as
cell i.

3.2 Greedy Initial State Generation

The second stage adopts the requirement exhaustive strategy in [5], to produce
an initial quasi-solution state with the lower bound span, where as many call
requests as possible are assigned channels greedily. The unsatisfied cell index list
Lcell is initialized by sorting cells in descending order of cell degrees [5]:

degreei =




N∑

j=1

djcij


− cii. (6)

An unsatisfied cell represents a cell where some of its call requests are not as-
signed channels. A variable indicating the number of assigned channels, assigni,
is introduced for cell i, where assigni < di indicates cell i is an unsatisfied cell.
In this list generation, the tiebreak is resolved randomly when two or more cells
have the same degree. In addition, when LB1 gives the lower bound LB for an
instance in the first stage, each call request from the corresponding cell is as-
signed a channel with the interval of cii, and this assignment is fixed throughout
search process. The fixed cell index is denoted by F in this paper for convenience.

3.3 Quasi-Solution State Evolution

Next State Generation The third stage evolutes quasi-solution states by
repeatedly generating best neighbor states in terms of the following cost function
to evaluate the violation by the assignment of channel k to cell i:

costik =
N∑

j=1
cij≥1

k+cij−1∑

l=k−cij+1

wjxjl. (7)



A next state generation is initiated by randomly selecting one unsatisfied cell
from Lcell to avoid biased movements. Then, one channel is selected for its
assignment, such that this channel is not only assigned to this cell currently,
but also minimizes costik where the tiebreak is always resolved by selecting the
least index channel. The cell weight wj is introduced to encourage the channel
assignment to cells that are hard to be assigned otherwise as in [17]. Here, two
auxiliary conditions are imposed in the channel selection. One is the prohibition
of selecting a channel in a tabu list to avoid cyclic state transitions. The tabu list
describes the channels that have been selected within the predefined number of
iteration steps Ttabu since its last selection to the corresponding cell. Another is
the prohibition of selecting channels conflicting with the fixed cell assignment.

However, if QCAP only repeats transitions to best neighbor states, it may
cause stagnation of state changes. To provide a hill-climbing capability of es-
caping from local minimum, one channel is sometimes randomly selected, which
is called the random selection. The random selection is applied when the state
has not been improved during the constant number of steps. Besides, the weight
wi associated with each unsatisfied cell in Lcell is incremented by 1 at the same
time, so as to encourage these cells to be assigned channels more progressively
than others.

To retrieve a quasi-solution state after this new channel assignment, every
conflicting assignment with it is sought a new feasible channel assignment. If
an assignable channel is found, it is assigned to the cell. Otherwise, the channel
assignment is cleared, and the cell is inserted into Lcell if it is not there. After
every conflicting one is handled, each cell in Lcell is checked whether a new
channel can be assigned or not. If assignable, this channel is assigned there.

Dynamic State Jump Even several trials of the random selection may not
provide enough state fluctuations to escape from local minimum. In such sit-
uations, QCAP induces the dynamic state jump for big changes from previous
states while maintaining the achieved solution quality. Firstly, the best state in
terms of the number of satisfied call requests is retrieved as the initial state for
different evolutions. The best state that has been visited is memorized in QCAP.
Then, channel assignments in this state are repeatedly shuffled until the half of
assigned call requests in each cell may receive different channels from current
ones in each dynamic state jump. In each shuffle movement, one cell is first ran-
domly selected from cells that have movable assignments. Then, one call request
with an assigned channel in this cell is randomly selected. The call request is
assigned a randomly selected new channel if there is a channel that satisfies the
two conditions: 1) the channel is not currently assigned to any call request in
this cell, and 2) the new assignment is compatible with other channel assign-
ments. When such a channel does not exist, the scheme is terminated. After the
dynamic state jump, each cell in Lcell is sought a channel assignment, to retrieve
a quasi-solution state, and the tabu list is cleared.



Gradual Span Expansion In some CAP instances, the lower bound on the
channel span in the first stage is too small to afford every call request. In such
cases, QCAP gradually expands the channel span until it reaches a feasible
solution. Actually the span expansion is carried out when the state in QCAP
has not been improved after several trials of the dynamic state jump. In each
span expansion, the best state is first retrieved as a current state as in the
dynamic state jump. Then, the channel span M is incremented by ∆M given by
the following formula:

∆M =

⌊
α

(
N∑

i=1

di −
N∑

i=1

assigni

)
/Nc

⌋
,

if ∆M < 1 then ∆M = 1 (8)

where Nc is the cluster size for CCC, α is a constant parameter, and the floor
function bxc returns the maximum integer smaller than or equal to x. This
equation is derived from a conjecture that a new channel can afford another call
request from every cell cluster. After M is expanded, cells in Lcell are sequentially
assigned these expanded channels by the requirement exhaustive strategy. Then,
the dynamic state jump is applied for a better restarting state. At the same
time, every cell weight wi is initialized by 1 for i = 1, ..., N , to reset the search
direction.

4 Simulation Results

Benchmark instances in Tables 1- 4 are solved to evaluate the performance of
QCAP. A total of 10 runs are repeated with different random numbers in each
instance. The tables show the instance number, the constraint parameters (Nc,
acc, cii), the lower bound on the channel span (LB) in the first stage of QCAP,
the average channel spans in solutions (M), and the average computation time
(seconds) on Pentium-III 800 MHz by QCAP in each instance. Besides, the
existing results on channel spans in literature are also summarized there. Note
that only the best result among several versions of their algorithms in [5], [9],
[10], and [11] is described to simplify comparisons and save the space. In Table 4,
”> x” indicates that they cannot find a feasible assignment using x channels.

These tables suggest that QCAP finds the optimum solution with the lower
bound on the channel span by any run for each CAP instance in less than one
second, except for three instances 23, 25, and 27. In two instances 23 and 25,
QCAP always finds a solution that requires one more channel than the lower
bound. The more accurate lower bound formula might clarify that the obtained
solutions by QCAP are their real lower bounds. On the other hand, the existing
algorithms require several versions of procedures and/or many repeated runs
with different random numbers to reach the optimum solution. For example,
the genetic algorithm in [12] can reach the lower bound solution for the hard
instance 10 by Sivarajan in only 1 run among 50 runs with different random
numbers. Besides, it takes several thousand of iteration steps for convergence.



The simplicity and the search efficiency reveal that the proposed QCAP is a very
practical and powerful tool to solve the important task of channel assignments
in the cellular network.

Table 1. Simulation Results for CAP instances by Sivarajan.

Instance Constraint QCAP Existing results
No. Nc acc cii LB M time(s) [5] [8] [9] [10] [11] [12]

1 12 2 5 427 427 0.238 460 - 440 427 440 -
2 7 2 5 427 427 0.094 447 433 436 427 436 427
3 12 2 7 533 533 0.002 536 - 533 - 533 -
4 7 2 7 533 533 0.036 533 533 533 - 533 533
5 12 1 5 381 381 0.003 381 - 381 - 381 -
6 7 1 5 381 381 0.000 381 381 381 - 381 381
7 12 1 7 533 533 0.003 533 - 533 - 533 -
8 7 1 7 533 533 0.002 533 533 533 - 533 533

9 12 2 5 258 258 0.087 283 - 273 258 287 -
10 7 2 5 253 253 0.329 270 263 268 253 269 253
11 12 2 7 309 309 0.026 310 309 309 - 309 -
12 7 2 7 309 309 0.019 310 309 309 - 309 309
13 12 2 12 529 529 0.007 529 529 529 - 529 -

Table 2. Simulation Results for CAP instances by Kunz.

Instance QCAP Existing results
No. LB M time(s) [8] [10]

14 73 73 0.003 73 73

5 Conclusion

This paper has presented QCAP, a quasi-solution state algorithm for the chan-
nel assignment problem in the cellular network. The performance is evaluated
through solving benchmark instances, where the comparisons to the existing
CAP algorithms confirm the extensive search capability and the efficiency of
QCAP. The study on the tighter lower bound of the channel span is essential to
further improve the performance.



Table 3. Simulation Results for CAP instances by Rouskas.

Instance Constraint QCAP Existing results
No. Nc acc cii LB M time(s) [5] [11]

15 12 2 5 468 468 0.237 486 470
16 7 2 5 468 468 0.158 481 470
17 12 2 7 484 484 0.119 520 484
18 7 2 7 484 484 0.301 523 484
19 12 1 5 413 413 0.175 422 414
20 7 1 5 346 346 0.052 349 346
21 12 1 7 484 484 0.005 484 484
22 7 1 7 484 484 0.004 484 484

23 12 2 5 273 274 3.557 307 298
24 7 2 5 253 253 0.245 275 266
25 12 2 7 273 274 5.098 330 301
26 7 2 7 262 262 0.628 297 275
27 12 2 12 447 447 1.015 447 447

Table 4. Simulation Results for CAP instances by Murakami.

Instance Constraint QCAP Existing results
No. N Nc acc cii LB M time(s) [14] [15] [16]

28 49 7 1 1 22 22 0.006 24 24 22
29 49 7 1 1 21 21 0.005 - 24 -
30 49 7 1 1 26 26 0.008 - >24 -
31 80 7 1 1 22 22 0.031 >24 - 24
32 101 7 1 1 22 22 0.038 >24 - 24
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