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Abstract. Ensembles of learning machines constitute one of the main
current directions in machine learning research, and have been applied
to a wide range of real problems. Despite of the absence of an unified
theory on ensembles, there are many theoretical reasons for combining
multiple learners, and an empirical evidence of the effectiveness of this
approach. In this paper we present a brief overview of ensemble methods,
explaining the main reasons why they are able to outperform any single
classifier within the ensemble, and proposing a taxonomy based on the
main ways base classifiers can be generated or combined together.

1 Introduction

Ensembles are sets of learning machines whose decisions are combined to im-
prove the performance of the overall system. In this last decade one of the main
research areas in machine learning has been represented by methods for con-
structing ensembles of learning machines. Although in the literature [86, 129,
130, 69, 61, 23, 33, 12, 7, 37] a plethora of terms, such as committee, classifier
fusion, combination, aggregation and others are used to indicate sets of learning
machines that work together to solve a machine learning problem, in this paper
we shall use the term ensemble in its widest meaning, in order to include the
whole range of combining methods. This variety of terms and specifications re-
flects the absence of an unified theory on ensemble methods and the youngness
of this research area. However, the great effort of the researchers, reflected by
the amount of the literature [118, 70, 71] dedicated to this emerging discipline,
achieved meaningful and encouraging results.

Empirical studies showed that both classification and regression problem en-
sembles are often much more accurate than the individual base learner that
make them up [8, 29, 40], and recently different theoretical explanations have
been proposed to justify the effectiveness of some commonly used ensemble meth-
ods [69, 112, 75, 3].

The interest in this research area is motivated also by the availability of very
fast computers and networks of workstations at a relatively low cost that allow
the implementation and the experimentation of complex ensemble methods using
off-the-shelf computer platforms. However, as explained in Sect. 2 of this paper



there are deeper reasons to use ensembles of learning machines. motivated by
the intrinsic characteristics of the ensemble methods.

This work presents a brief overview of the main areas of research, without
pretending to be exhaustive or to explain the detailed characteristics of each
ensemble method.

The paper is organized as follows. In the next section the main reasons for
combining multiple learners are depicted. Sect. 3 presents an overview of the
main ensemble methods reported in the literature, distinguishing between gen-
erative and non-generative methods, while Sect. 4 outlines some open problems
not covered in this paper.

2 Reasons for Combining Multiple Learners

Both empirical observations and specific machine learning applications confirm
that a given learning algorithm outperforms all others for a specific problem
or for a specific subset of the input data, but it is unusual to find a single ex-
pert achieving the best results on the overall problem domain. As a consequence
multiple learner systems try to exploit the local different behavior of the base
learners to enhance the accuracy and the reliability of the overall inductive learn-
ing system. There are also hopes that if some learner fails, the overall system
can recover the error. Employing multiple learners can derive from the applica-
tion context, such as when multiple sensor data are available, inducing a natural
decomposition of the problem. In more general cases we can dispose of different
training sets, collected at different times, having eventually different features
and we can use different specialized learning machine for each different item.

However, there are deeper reasons why ensembles can improve performances
with respect to a single learning machine. As an example, consider the following
one given by Tom Dietterich in [28]. If we have a dichotomic classification prob-
lem and L hypotheses whose error is lower than 0.5, then the resulting majority
voting ensemble has an error lower than the single classifier, as long as the er-
ror of the base learners are uncorrelated. In fact, if we have 21 classifiers, and
the error rates of each base learner are all equal to p = 0.3 and the errors are
independent, the overall error of the majority voting ensemble will be given by
the area under the binomial distribution where more than L/2 hypotheses are
wrong:

L
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Porror = ( ; )p (1-p) = Prrror = 0.026 < p = 0.3
(i=[L/2])

This result has been studied by mathematicians since the end of the XVIII
century in the context of social sciences: in fact the Condorcet Jury Theorem [26])
proved that the judgment of a committee is superior to those of individuals, pro-
vided the individuals have reasonable competence (that is, a probability of being
correct higher than 0.5). As noted in [85], this theorem theoretically justifies



recent research on multiple "weak” classifiers [63, 51, 74], representing an in-
teresting research direction diametrically opposite to the development of highly
accurate and specific classifiers.

This simple example shows also an important issue in the design of ensem-
bles of learning machines: the effectiveness of ensemble methods relies on the
independence of the error committed by the component base learner. In this ex-
ample, if the independence assumption does not hold, we have no assurance that
the ensemble will lower the error, and we know that in many cases the errors are
correlated. From a general standpoint we know that the effectiveness of ensemble
methods depends on the accuracy and the diversity of the base learners, that is
if they exhibit low error rates and if they produce different errors [49, 123, 92].
The correlated concept of independence between the base learners has been com-
monly regarded as a requirement for effective classifier combinations, but recent
works have shown that not always independent classifiers outperform dependent
ones [84]. In fact there is a trade-off between accuracy and independence: more
accurate are the base learners, less independent they are.

Learning algorithms try to find an hypothesis in a given space H of hypothe-
ses, and in many cases if we have sufficient data they can find the optimal one for
a given problem. But in real cases we have only limited data sets and sometimes
only few examples are available. In these cases the learning algorithm can find
different hypotheses that appear equally accurate with respect to the available
training data, and although we can sometimes select among them the simplest
or the one with the lowest capacity, we can avoid the problem averaging or
combining them to get a good approximation of the unknown true hypothesis.

Another reason for combining multiple learners arises from the limited repre-
sentational capability of learning algorithms. In many cases the unknown func-
tion to be approximated is not present in H, but a combination of hypotheses
drawn from H can expand the space of representable functions, embracing also
the true one. Although many learning algorithms present universal approxima-
tion properties [55, 100], with finite data sets these asymptotic features do not
hold: the effective space of hypotheses explored by the learning algorithm is a
function of the available data and it can be significantly smaller than the vir-
tual H considered in the asymptotic case. From this standpoint ensembles can
enlarge the effective hypotheses coverage, expanding the space of representable
functions.

Many learning algorithms apply local optimization techniques that may get
stuck in local optima. For instance inductive decision trees employ a greedy local
optimization approach, and neural networks apply gradient descent techniques
to minimize an error function over the training data. Moreover optimal training
with finite data both for neural networks and decision trees is NP-hard [13, 57].
As a consequence even if the learning algorithm can in principle find the best
hypothesis, we actually may not be able to find it. Building an ensemble using,
for instance, different starting points may achieve a better approximation, even
if no assurance of this is given.



Another way to look at the need for ensembles is represented by the classical
bias—variance analysis of the error [45, 78]: different works have shown that
several ensemble methods reduce variance [15, 87] or both bias and variance [15,
39, 77]. Recently the improved generalization capabilities of different ensemble
methods have also been interpretated in the framework of the theory of large
margin classifiers [89, 113, 3], showing that methods such as boosting and ECOC
enlarge the margins of the examples.

3 Ensemble Methods Overview

A large number of combination schemes and ensemble methods have been pro-
posed in literature. Combination techniques can be grouped and analysed in
different ways, depending on the main classification criterion adopted. If we
consider the representation of the input patterns as the main criterion, we can
identify two distinct large groups, one that uses the same and one that uses
different representations of the inputs [68, 69].

Assuming the architecture of the ensemble as the main criterion, we can dis-
tinguish between serial, parallel and hierarchical schemes [85], and if the base
learners are selected or not by the ensemble algorithm we can separate selection-
oriented and combiner-oriented ensemble methods [61, 81]. In this brief overview
we adopt an approach similar to the one cited above, in order to distinguish be-
tween non-generative and generative ensemble methods. Non-generative ensem-
ble methods confine theirselves to combine a set of given possibly well-designed
base learners: they do not actively generate new base learners but try to combine
in a suitable way a set of existing base classifiers. Generative ensemble methods
generate sets of base learners acting on the base learning algorithm or on the
structure of the data set and try to actively improve diversity and accuracy of
the base learners.

3.1 Non-generative Ensembles

This large group of ensemble methods embraces a large set of different ap-
proaches to combine learning machines. They share the very general common
property of using a predetermined set of learning machines previously trained
with suitable algorithms. The base learners are then put together by a combiner
module that may vary depending on its adaptivity to the input patterns and on
the requirement of the output of the individual learning machines.

The type of combination may depend on the type of output. If only labels
are available or if continuous outputs are hardened, then majority voting, that
is the class most represented among the base classifiers, is used [67, 104, 87].

This approach can be refined assigning different weights to each classifier
to optimize the performance of the combined classifier on the training set [86],
or, assuming mutual independence between classifiers, a Bayesian decision rule
selects the class with the highest posterior probability computed through the
estimated class conditional probabilities and the Bayes’ formula [130, 122]. A



Bayesian approach has also been used in Consensus based classification of multi-
source remote sensing data [10, 9, 19], outperforming conventional multivariate
methods for classification. To overcome the problem of the independence assump-
tion (that is unrealistic in most cases), the Behavior-Knowledge Space (BKS)
method [56] considers each possible combination of class labels, filling a look-up
table using the available data set, but this technique requires a huge volume of
training data.

Where we interpret the classifier outputs as the support for the classes, fuzzy
aggregation methods can be applied, such as simple connectives between fuzzy
sets or the fuzzy integral [23, 22, 66, 128]; if the classifier outputs are pos-
sibilistic, Dempster-Schafer combination rules can be applied [108]. Statistical
methods and similarity measures to estimate classifier correlation have also been
used to evaluate expert system combination for a proper design of multi-expert
systems [58].

The base learners can also be aggregated using simple operators as Minimum,
Mazimum, Average and Product and Ordered Weight Averaging [111, 18, 80]. In
particular, on the basis of a common bayesian framework, Josef Kittler provided
a theoretical underpinning of many existing classifier combination schemes based
on the product and the sum rule, showing also that the sum rule is less sensitive
to the errors of subsets of base classifiers [69].

Recently Ljudmila Kuncheva has developed a global combination scheme
that takes into account the decision profiles of all the ensemble classifiers with
respect to all the classes, designing Decision templates that summarize in ma-
trix format the average decision profiles of the training set examples. Different
similarity measures can be used to evaluate the matching between the matrix of
classifier outputs for an input z, that is the decision profiles referred to z, and the
matrix templates (one for each class) found as the class means of the classifier
outputs [81]. This general fuzzy approach produce soft class labels that can be
seen as a generalization of the conventional crisp and probabilistic combination
schemes.

Another general approach consists in explicitly training combining rules, us-
ing second-level learning machines on top of the set of the base learners [34].
This stacked structure makes use of the outputs of the base learners as features
in the intermediate space: the outputs are fed into a second-level machine to
perform a trained combination of the base learners.

3.2 Generative Ensembles

Generative ensemble methods try to improve the overall accuracy of the ensemble
by directly boosting the accuracy and the diversity of the base learner. They can
modify the structure and the characteristics of the available input data, as in
resampling methods or in feature selection methods, they can manipulate the
aggregation of the classes (Output Coding methods), can select base learners
specialized for a specific input region (mizture of experts methods), can select a
proper set of base learners evaluating the performance and the characteristics of



the component base learners (test-and-select methods) or can randomly modify
the base learning algorithm (randomized methods).

Resampling methods Resampling techniques can be used to generate different
hypotheses. For instance, bootstrapping techniques [35] may be used to generate
different training sets and a learning algorithm can be applied to the obtained
subsets of data in order to produce multiple hypotheses. These techniques are
effective especially with unstable learning algorithms, which are algorithms very
sensitive to small changes in the training data, such as neural-networks and
decision trees.

In bagging [15] the ensemble is formed by making bootstrap replicates of
the training sets, and then multiple generated hypotheses are used to get an
aggregated predictor. The aggregation can be performed averaging the outputs in
regression or by majority or weighted voting in classification problems [120, 121].

While in bagging the samples are drawn with replacement using a uniform
probability distribution, in boosting methods the learning algorithm is called
at each iteration using a different distribution or weighting over the training
examples [111, 40, 112, 39, 115, 110, 32, 38, 33, 32, 16, 17, 42, 41]. This tech-
nique places the highest weight on the examples most often misclassified by the
previous base learner: in this way the base learner focuses its attention on the
hardest examples. Then the boosting algorithm combines the base rules taking
a weighted majority vote of the base rules. Schapire and Singer showed that the
training error exponentially drops down with the number of iterations [114] and
Schapire et al. [113] proved that boosting enlarges the margins of the training
examples, showing also that this fact translates into a superior upper bound
on the generalization error. Experimental work showed that bagging is effective
with noisy data, while boosting, concentrating its efforts on noisy data seems to
be very sensitive to noise [107, 29].

Another training set sampling method consists in constructing training sets
by leaving out disjoint subsets of the training data as in cross-validated commit-
tees [101, 102] or sampling without replacement [116].

Another general approach, named Stochastic Discrimination [73, 74, 75, 72,
is based on randomly sampling from a space of subsets of the feature space un-
derlying a given problem, then combining these subsets to form a final classifier,
using a set-theoretic abstraction to remove all the algorithmic details of classi-
fiers and training procedures. By this approach the classifiers’ decision regions
are considered only in form of point sets, and the set of classifiers is just a sam-
ple into the power set of the feature space. A rigorous mathematical treatment
starting from the ”representativeness” of the examples used in machine learning
problems leads to the design of ensemble of weak classifiers, whose accuracy is
governed by the law of large numbers [20].

Feature selection methods This approach consists in reducing the number
of input features of the base learners, a simple method to fight the effects of
the classical curse of dimensionality problem [43]. For instance, in the Random



Subspace Method [51, 82], a subset of features is randomly selected and assigned
to an arbitrary learning algorithm. This way, one obtains a random subspace of
the original feature space, and constructs classifiers inside this reduced subspace.
The aggregation is usually performed using weighted voting on the basis of the
base classifiers accuracy. It has been shown that this method is effective for
classifiers having a decreasing learning curve constructed on small and critical
training sample sizes [119]

The Input Decimation approach [124, 98] reduces the correlation among the
errors of the base classifiers, decoupling the base classifiers by training them
with different subsets of the input features. It differs from the previous Random
Subspace Method as for each class the correlation between each feature and the
output of the class is explicitly computed, and the base classifier is trained only
on the most correlated subset of features.

Feature subspace methods performed by partitioning the set of features,
where each subset is used by one classifier in the team, are proposed in [130, 99,
18]. Other methods for combining different feature sets using genetic algorithms
are proposed in [81, 79]. Different approaches consider feature sets obtained by
using different operators on the original feature space, such as Principal Compo-
nent Analysis, Fourier coefficients, Karhunen-Loewe coefficients, or other [21, 34].
An experiment with a systematic partition of the feature space, using nine differ-
ent combination schemes is performed in [83], showing that there are no "best”
combinations for all situations and that there is no assurance that in all cases a
classifier team will outperform the single best individual.

Mixtures of experts methods The recombination of the base learners can
be governed by a supervisor learning machine, that selects the most appropriate
element of the ensemble on the basis of the available input data. This idea led
to the mizture of experts methods [60, 59], where a gating network performs the
division of the input space and small neural networks perform the effective cal-
culation at each assigned region separately. An extension of this approach is the
hierarchical mizture of experts method, where the outputs of the different experts
are non-linearly combined by different supervisor gating networks hierarchically
organized [64, 65, 59].

Cohen and Intrator extended the idea of constructing local simple base learn-
ers for different regions of input space, searching for appropriate architectures
that should be locally used and for a criterion to select a proper unit for each
region of input space [24, 25]. They proposed a hybrid MLP/RBF network by
combining RBF and Perceptron units in the same hidden layer and using a for-
ward selection [36] to add units until an error goal is reached. Although the
resulting Hybrid Perceptron/Radial Network is not in a strict sense an ensemble,
the way by which the regions of the input space and the computational units
are selected and tested could be in principle extended to ensembles of learning
machines.



Output Coding decomposition methods Output Coding (OC) methods
decompose a multiclass—classification problem in a set of two-class subproblems,
and then recompose the original problem combining them to achieve the class
label [94, 90, 28]. An equivalent way of thinking about these methods consists in
encoding each class as a bit string (named codeword), and in training a different
two-class base learner (dichotomizer) in order to separately learn each codeword
bit. When the dichotomizers are applied to classify new points, a suitable misure
of similarity between the codeword computed by the ensemble and the codeword
classes is used to predict the class.

Different decomposition schemes have been proposed in literature: In the
One-Per-Class (OPC) decomposition [5], each dichotomizer f; has to separate a
single class from all others; in the PairWise Coupling (PWC) decomposition [50],
the task of each dichotomizer f; consists in separating a class C; form class C},
ignoring all other classes; the Correcting Classifiers (CC) and the PairWise Cou-
pling Correcting Classifiers (PWC-CC) are variants of the PWC decomposition
scheme, that reduce the noise originated in the PWC scheme due to the process-
ing of non pertinent information performed by the PWC dichotomizers [96].

Error Correcting Output Coding [30, 31] is the most studied OC method, and
has been successfully applied to several classification problems [1, 11, 46, 6, 126,
131]. Thisdecomposition method tries to improve the error correcting capabili-
ties of the codes generated by the decomposition through the maximization of
the minimum distance between each couple of codewords [77, 90]. This goal is
achieved by means of the redundancy of the coding scheme [127].

ECOC methods present several open problems. The tradeoff between error
recovering capabilities and complexity/learnability of the dichotomies induced
by the decomposition scheme has been tackled in several works [3, 125], but an
extensive experimental evaluation of the tradeoff has to be performed in order
to achieve a better understanding of this phenomenon. A related problem is the
analysis of the relationship between codeword length and performances: some
preliminary results seem to show that long codewords improve performance [46].
Another open problem, not sufficiently investigated in literature [46, 91, 11], is
the selection of optimal dichotomic learning machines for the decomposition unit.
Several methods for generating ECOC codes have been proposed: exhaustive
codes, randomized hill climbing [31], random codes [62], and Hadamard and BCH
codes [14, 105]. An open problems is still the joint maximization of distances
between rows and columns in the decomposition matrix. Another open problem
consists in designing codes for a given multiclass problem. An interesting greedy
approach is proposed in [94], and a method based on soft weight sharing to learn
error correcting codes from data is presented in [4]. In [27] it is shown that given
a set of dichotomizers the problem of finding an optimal decomposition matrix is
NP-complete: by introducing continuous codes and casting the design problem
of continuous codes as a constrained optimization problem, we can achieve an
optimal continuous decomposition using standard optimization methods.

The work in [91] highlights that the effectiveness of ECOC decomposition
methods depends mainly on the design of the learning machines implementing



the decision units, on the similarity of the ECOC codewords, on the accuracy of
the dichotomizers, on the complexity of the multiclass learning problem and on
the correlation of the codeword bits. In particular, Peterson and Weldon [105]
showed that if errors on different code bits are dependent, the effectiveness of
error correcting code is reduced. Consequently, if a decomposition matrix con-
tains very similar rows (dichotomies), each error of an assigned dichotomizer
will be likely to appear in the most correlated dichotomizers, thus reducing the
effectiveness of ECOC. These hypotheses have been experimentally supported
by a quantitative evaluation of the dependency among output errors of the de-
composition unit of ECOC learning machines using mutual information based
measures [92, 93].

Test and select methods The test and select methodology relies on the idea of
selection in ensemble creation [117]. The simplest approach is a greedy one [104],
where a new learner is added to the ensemble only if the resulting squared error
is reduced, but in principle any optimization technique can be used to select the
"best” component of the ensemble, including genetic algorithms [97].

It should be noted that the time complexity of the selection of optimal sub-
sets of classifiers is exponential with respect to the number of base learners
used. From this point of view heuristic rules, as the ”choose the best” or the
”choose the best in the class”, using classifiers of different types strongly reduce
the computational complexity of the selected phase, as the evaluation of dif-
ferent classifier subsets is not required [103]. Moreover test and select methods
implicitly include a ”production stage”, by which a set of classifiers must be
generated.

Different selection methods based on different search algorithm mututated
from feature selection methods (forward and backward search) or for the solu-
tion of complex optimization tasks (tabu search) are proposed in [109]. Another
interesting approach uses clustering methods and a misure of diversity to gener-
ate sets of diverse classifiers combined by majority voting, selecting the ensemble
with the highest performance [48]. Finally, Dynamic Classifier Selection meth-
ods [54, 129, 47] are based on the definition of a function selecting for each pat-
tern the classifier which is probably the most accurate, estimating, for instance
the accuracy of each classifier in a local region of the feature space surrounding
an unknown test pattern [47].

Randomized ensemble methods Injecting randomness into the learning al-
gorithm is another general method to generate ensembles of learning machines.
For instance, if we initialize with random values the initial weights in the back-
propagation algorithm, we can obtain different learning machines that can be
combined into an ensemble [76, 101].

Several experimental results showed that randomized learning algorithms
used to generate base elements of ensembles improve the performances of single
non-randomized classifiers. For instance in [29] randomized decision tree ensem-
bles outperform single C4.5 decision trees [106], and adding gaussian noise to



the data inputs, together with bootstrap and weight regularization can achieve
large improvements in classification accuracy [107].

4 Conclusions

Ensemble methods have shown to be effective in many applicative domains and
can be considered as one of the main current directions in machine learning re-
search. We presented an overview of the ensemble methods, showing the main
areas of research in this discipline, and the fundamental reasons why ensemble
methods are able to outperform any single classifier within the ensemble. A gen-
eral taxonomy, distinguishing between generative and non—generative ensemble
methods, has been proposed, considering the different ways base learners can be
generated or combined together.

Several important issues have not been discussed in this paper. In partic-
ular the theoretical problems behind ensemble methods need to be reviewed
and discussed more in detail, even if a general theoretical framework for en-
semble methods has not been developed. Other open problems not covered in
this work are the relationships between ensemble methods and data complex-
ity [52, 53, 88], a systematic research of hidden commonalities among all the
combination approaches despite their superficial differences, and a general anal-
ysis of the relationships between ensemble methods and the characteristics of
the base learners used in the ensemble itself.
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