A QoS Network Management System for Robust
and Reliable Multimedia Services

S. Das, K. Yamada, H. Yu, S. S. Lee, and M. Gerla

Computer Science Department
University of California, Los Angeles
Los Angeles, CA 90095-1596
{shanky, kenshin, heeyeoly, sslee, gerla}@cs.ucla.edu

Abstract. In this paper, we introduce a practical network management
system with QoS for multimedia traffic. Today, multimedia applications
have evolved significantly and have become an essential part of the Inter-
net. In order to effectively support the newly emerging network traffic,
the underlying network protocols need to be aware of the characteristics
and demands of the traffic. The proposed network system is ready to ad-
dress the varied characteristics of multimedia traffic and can assure a high
degree of adherence to the quality of service demanded from it. Consid-
ering the need for reliable QoS services, the system is also equipped with
fault tolerance capability by provisioning multiple QoS paths. Moreover,
the system has been practically designed and implemented to provide
“cost-effective” QoS support with respect to control overhead. It deploys
measurement-based QoS path computation and call admission scheme
which may be deemed ineffective for bursty multimedia traffic. However,
results conclusively prove that provisioning multiple paths and utilizing
them in parallel in our system not only provides high fault tolerance
capability but also effectively accommodates multimedia traffic by re-
lieving its burstiness with multiple paths. We present the architecture of
the system and discuss the benefits gained for multimedia traffic.

1 Introduction

Recently, the Internet has become a significant medium for real-time data as
demands for multimedia services become more and more pervasive. In order
to accommodate such new types of traffic in the Internet, researchers have ad-
dressed various issues with respect to provisioning QoS. QoS provisioning issues
consist of several building blocks such as resource assurance, service differentia-
tion, and routing strategies. Among these, QoS routing as a routing strategy is
essential since it executes computations to find QoS-feasible paths. [L2] address
a possible use of the Bellman-Ford algorithm in the link state (OSPF) routing
environment for QoS routing. In addition, [34] showed specifications and fea-
sibility of such QoS routing approaches. The development of the Multiprotocol
Label Switching Protocol (MPLS) [5] and the increased acceptance of Traffic
Engineering as an important component of routing protocols has accelerated the
coming of age of QoS routing.

The original version of this chapter was revised: The copyright line was incorrect.This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-540-45812-8_28

K.C. Almeroth and M. Hasan (Eds.): MMNS 2002, LNCS 2496, pp. 1-11], 2002.
© IFIP International Federation for Information Processing 2002

http://dx.doi.org/10.1007/978-3-540-45812-8_28

2 S. Das et al.

In this paper, we present a practical QoS network management system based
on the proposed OSPF-based QoS architecture. This consists of OSPF with
traffic engineering extensions running as the routing protocol, MPLS for explic-
itly routing packets, and a QoS path provisioning algorithm that also serves as
a fundamental call admission control (CAC). The proposed network system is
equipped with fault tolerance capabilities for unreliable network environment.
This fault tolerance issue in QoS provisioning is considered as a very important
aspect especially when mission-critical applications are running. This issue has
been highlighted in [6/7]. Accordingly, a novel approach was recently introduced
in [8] which deploys an effective algorithm to produce multiple QoS paths. Mul-
tiple QoS path provisioning also showed various benefits such as even network
resource utilization and cost-effective link state information acquisition [9]. In
addition, our proposed system in this paper provides statistical QoS guarantees.
That is, it deploys measurement-based path computations and call admissions
without any resource reservations. This helps in reducing the system complex-
ity and achieving relatively fast QoS provisioning. It is well known that multi-
media applications are likely to produce highly bursty traffic with hardly pre-
dictable characteristics [IOJTT]. This high burstiness keeps measurement-based
approaches from properly performing. This is because the severe traffic fluctua-
tion misleads the approaches into producing non-feasible QoS paths and making
incorrect call admission decisions. The system that we propose carries out rather
reliable call admissions and performs well since it provisions multiple QoS paths
and spreads network traffic over them. Thus, it diffuses traffic burstiness and
attenuates its negative impact.

Targeting such a fault-tolerant and reliable QoS-service architecture, we have
implemented a QoS testbed. In this paper, we present the system architecture
with the QoS routing approach for multiple path and show the fault tolerance
capability with reliable multimedia services. In Section [the routing algorithms
are briefly reviewed. Section Bl depicts the entire network system architecture,
and Section] presents experiment results obtained with the implemented net-
work system and demonstrates its effectiveness in representative traffic scenarios.

2 QoS Algorithms

The network system presented in this paper has QoS routing mechanisms which
are ready to serve QoS applications in both conventional and fault-tolerant ways.
The mechanisms serve as a simple call admission control (CAC). When a QoS
application comes in and looks for its corresponding QoS services, it consults the
underlying QoS routing algorithm (i.e., Q-OSPF with the enhanced routing algo-
rithms in our case) for feasible paths. If no feasible path is found, the connection
is rejected and the application exits. Thus, the QoS routing path computation
algorithm not only provides the capability of finding QoS paths but also plays an
important role in CAC. As previously mentioned and discussed in [§], we adopted
the two different QoS routing algorithms in our system; the conventional single
path algorithm and the newly introduced multiple path algorithm.

A QoS Network Management System 3

The single QoS path computation algorithm with multiple QoS constraints
derives from the conventional Bellman-Ford algorithm as a breadth-first search
algorithm minimizing the hop count and yet satisfying multiple QoS constraints.
Each node in the network builds the link state database which contains all the
recent link state advertisements from other nodes. With Q-OSPF, the topolog-
ical database captures dynamically changing QoS information. The link state
database accommodates all the QoS conditions, and we define each condition
as a QoS metric and each link in the network is assumed to be associated with
multiple QoS metrics which are properly measured and flooded by each node.
Each of these QoS metrics has its own properties when operated upon in the
path computation. The principal purpose of the path computation algorithm
is to find the shortest (i.e., min-hop) path among those which have enough re-
sources to satisfy given multiple QoS constraints, rather than the shortest path
with respect to another cost metric (e.g., maximizing available bandwidth or
minimizing end-to-end delay).

The proposed multiple QoS path algorithm is a heuristic solution. We do
not limit ourselves to strictly “path disjoint” solutions. Rather, the algorithm
searches for multiple, maximally disjoint paths (i.e., with the least overlap among
each other) such that the failure of a link in any of the paths will still leave (with
high probability) one or more of the other paths operational. The multiple path
computation algorithm can then be derived from the single path computation
algorithm with simple modifications. This multiple path computation algorithm
produces incrementally a single path at each iteration rather than multiple paths
at once. All the previously generated paths are kept into account in the next
path computation. The detailed descriptions of the single and the multiple path
algorithms are in [8].

3 System Architecture

The testbed consists of PCs running Linux, and all the QoS-capable features
are embedded in the Linux kernel. Each of the machines has several modules
running on it, namely the link emulator, metric collector, OSPF daemon, MPLS
forwarding and the applications, and the entire system architecture is depicted
in Fig. [The following sections describe in more detail each of these modules
individually, explaining their functions and their implementation issues.

3.1 Link Emulator

The testbed that we implement uses the wired Ethernet LAN in the lab, as the
physical communication medium. Since we want to emulate several scenarios
with widely varying link capacities and propagation delays, we require a network
emulator to do the job for us. We emulate the characteristics of bandwidth and
delay over a link using tc, the Linux kernel traffic shaper and controller. tc can
emulate a wide variety of policies with hierarchies of filters and class based queues
on the outgoing interfaces. We require simple bandwidth and delay emulation

4 S. Das et al.

CBR
Generator

MPEG4
Streaming
Server

: LSA Flooding
: QoS Path : Measuring
Computation QoS Metrics

Q-OSPF Metric
Daemon Collector

MPEG4
Player
(Client)

Link
Emulator

Linux Kernel with MPLS

Fig. 1. The entire QoS system architecture for the experiment testbed.

which can be done quite easily. A simple “tc qdisc add dev ethO root tbf
rate 10kbps latency 10ms” emulates a 10 Kbps link with a latency of 10 ms
on the ethO interface. Since we have bursty multimedia traffic, the buffer size is
also an important factor, and after a few experiments, we settled on a value of
25 Kbits as a reasonable buffer to accommodate burstiness.

3.2 Metric Collector

To provide QoS, reserving bandwidth and bounding on delay for a connection,
we require the knowledge of link characteristics at all times. This information
is needed by the QoS allocation module which looks at the current usage of
the network and figures out if the new request can be satisfied or not. The link
metric collection module, therefore, is an integral part of any routing scheme
implementation that provides QoS routing.

The OSPFD (OSPF daemon) implementation does not have any link charac-
teristics measurement module. The metrics we are interested in are the available
bandwidth in the link and the delay. One could think of other metrics also, such
as queue length, loss probability, etc., but bandwidth and delay are the two
most important metrics used in QoS routing. Thus, our design goal was to write
a module to measure these two metrics and integrate this code with the existing
OSPFD implementation.

For bandwidth metric collection, we opted to simply use the log file main-
tained in /proc/net/dev/ which contains information about the number of pack-
ets and bytes received and transmitted on each interface. By examining this file
at regular intervals, we calculate the bandwidth used on the each outgoing inter-
face. Delay metric collection is done using the ‘ping’ utility to send ping probes to
the other side of the link and collect the delay value. The metric collection code
sends ping message and collects bandwidth values from the /proc/net/dev log
file, every time interval (typically 10 ms). The values collected are exponentially
averaged to smooth out the fluctuations.

3.3 Q-OSPF Daemon

To propagate QoS metrics among all routers in the domain, we need to use an
Interior Gateway Protocol (IGP). OSPF is one of the major IGPs and significant

A QoS Network Management System 5

researches have been recently made on OSPF with traffic engineering extensions.
We selected the open source OSPF daemon (OSPFD) [12]13] to implement our
QoS routing scheme. [14] defines Opaque LSA for OSPF nodes to distribute
user-specific information. Likewise, we define our specific Opaque LSA entries
by assigning new type values in the Opaque LSA format shown in Fig.

When OSPFD runs at routers, it tries to find its neighbor nodes by send-
ing HELLO messages. After establishing neighbor relationship, OSPFD asks the
metric measurement module to calculate the QoS metrics of the established link.
OSPFD gives as input the local interface address and the neighbor router inter-
face address to the metric measurement module and generates the opaque LSA
for each interface. The LSA contains the available bandwidth and queuing delay
metric obtained from the metric measurement module. LSA update frequency
is currently restricted to MinLSInterval (5 seconds). In our implementation, we
followed this restriction, but we feel that the LSA update interval is an impor-
tant parameter for the correctness of our algorithms because if there are too
frequent changes to the generated LSA, there will be miscalculations during the
QoS path computation due to the flooding delay.

In addition to LSA flooding, OSPFD exchanges router LSAs to build a full
network topology. Router LSAs originate at each router and contain information
about all router links such as interface addresses and neighbor addresses. We bind
the link metrics that we are interested in, viz. bandwidth and delay to the opaque
LSA specified by the link interface address. Thus, we introduce the pointer from
each link of a router LSA to the corresponding opaque LSA as shown in Fig. Bl
Whenever OSPFD receives router LSAs or opaque LSAs, it just updates the link
pointer to point to the new traffic metrics reported by that link.

LS age Options LS type 10 Link state header
Opaque type Opagque ID
A vertising rou ;r Q Opaque LSA
S sequence number ALSAB
. LSA
LS checksum Length Link3 J/ paque
Type=2 Length =32 Link TLV ° HostA |," [Rouier Opaque LSA
Type = 1 Length =1 Link type LinkV \Linkz Linkl info [-7/ LSAC
. paque LSA
Al pop=1 | SWOTLV Link2 info [*
Type=4 [Length=4 Local interface @ Link3 info [~ -] Router Opaque LSA
Local interface address IP address sub TLV \ LSAD Opaque LSA
Type = 32768 ‘ Length =4 Available bandwidth Link1 Link2 Link3
Available bandwidth (bps) IEEE floating point subTLV Opaque LSA| | Opaque LSA| | Opaque LSA
Type = 32769 ‘ Length =4 Link delay AV BW AV BW AV BW
Delay (sec) IEEE floating point subTLV Delay Delay Delay
Fig. 2. Opaque LSA format. Fig. 3. Router LSAs.

3.4 MPLS

One of the key assumptions for Q-OSPF to be effective is the capability of setting
up explicit paths for all packets of a stream to use. Thus, we need to pin down the

6 S. Das et al.

path that a connection uses. One of the main advantages of MPLS is its efficient
support of explicit routing through the use of Label Switched Paths (LSPs).
With destination-based forwarding as in the conventional datagram networks,
explicit routing is usually provided by attaching to each packet the network-layer
address of each node along the explicit path. This approach makes the overhead
in the packet prohibitively expensive. This was the primary motivation behind
deploying MPLS at the lower layer instead of using something like IP source-
routing or application level forwarding.

3.5 Applications

An integral part to the whole process of making a testbed was the development
of applications running on top of this architecture. These applications request
QoS-constrained routes, generate traffic, and in turn change the QoS metrics
of the network. We used the open source Darwin Streaming Server distributed
by Apple [I5] to stream MPEG-4 files using RTSP over RTP. The open source
mp4player from the MPEGA4IP project [16] was used to play these files over the
network. Modifications to the source code involved extending the capabilities
of the server and the player for streaming and playing over multiple paths,
and designing an interface for the server to interact with Q-OSPF daemon and
request paths to the client. For the experiments involving CBR traffic, we used
a home-brewed traffic generator which generates UDP traffic at a given rate in
either single path or multiple path mode.

4 Experiments

We performed two kinds of experiments for this paper. The first set of exper-
iments involves comparing the performance of Q-OSPF with respect to the
throughput of multimedia traffic using single paths and using multiple paths.
The second set involves comparing the performance of Q-OSPF with respect to
fault tolerance and robustness of multimedia connections using single path and
using multiple path. Fig. @ shows the network topology for the experiments. 9
nodes (i.e., routers) are connected directly to each other through 1.5 Mbps links.
We performed experiments in certain representative scenarios where multiple
path is expected to give better results as well as in totally general scenarios.

1. The first experiment involved sending six streams of multimedia traffic from
QOS6 to QOS5. There are three disjoint paths available that satisfy the
bandwidth constraints, QOS6 - QOS2 - QOS1 - QOS5, QOS6 - QOST -
QOS4 - QOS5, QOS6 - QOS9 - QOS8 - QOS5. Let us name them QPathl,
QPath2 and QPath3 respectively. We run the experiment in both Single Path
and Multi Path mode. In single path mode, each stream uses one of the three
QPaths, while in multi path mode, each stream uses all the three QPaths.
Results are in Fig.[d and Fig.[6.

A QoS Network Management System

1400 T 1400
int

1200 1200

| |

1000

Traffic Bandwidth (Kbps)
Traffic Bandwidth (Kops)

0 20 40 60 80 100 120 0 20 40 60 80 100 120
Time (sec) Time (sec)

Fig. 5. Throughput profile on the three Fig. 6. Throughput profile on the three
QPaths: single path QPaths: multi path

2. The second experiment involved sending three CBR streams of 800 Kbps
first on the three QPaths, and then introducing the six multimedia streams
later. In the single path case, the calls get accepted and follow the same
paths as before, two streams each sharing one QPath, but in this case due
to burstiness, the total throughput on each path frequently goes above the
1.5 Mbps limit, and thus there are losses. One the other hand, with multi
path mode, the traffic on all the paths is much smoother, and thus the
total traffic never goes above 1.5 Mbps on any link and thus there are no
losses. This scenario demonstrates the benefits on multi path with respect
to smoothening the bursty traffic. Results are in Fig. [l and Fig. B

3. The last experiment in this set was a totally general scenario, in which ran-
dom connections were set up, and the traffic characteristics were measured.
We first perform the experiment for well behaved CBR traffic in the single
path mode and then perform it with bursty multimedia traffic first using
single path mode and then multiple path.

8

Traffic Bandwidth (Kbps)

S. Das et al.

1800 T 1800
int

1600 1600

1400

1200

Traffic Bandwidth (Kops)
E
{

0 20 40 60 80 100 120 140 160 0 20 40 60 80 100 120 140
Time (sec) Time (sec)

Fig. 7. Throughput profile on the three Fig. 8. Throughput profile on the three
QPaths: single path QPaths: multi path

Owing to performance bounds of the multimedia server and the CPUs of the
nodes, we reduced the bandwidth emulated on each link to 1 Mbps. The total
number of connections generated in both CBR and multimedia case was 28.
These connections were generated using randomly chosen source and desti-
nation from the 9 QoS routers. The measured traffic characteristics are the
usual throughput profile on the links. Fig. [0l shows the throughput charac-
teristics on each link when CBR traffic is in the network and Q-OSPF is in
single path mode. Fig. [0 shows the throughput characteristics when mul-
timedia traffic (of the same average bandwidth as the CBR in the previous
experiment) is in the network and Q-OSPF is in single path mode. We can
see that with multimedia the performance of Q-OSPF is visibly worse and
the traffic frequently goes above the threshold of 1 Mbps. Fig. [T shows the
throughput characteristics when multiple paths are provisioned. Here we see
that on each link the burstiness is much less and the overall QoS constraints
are being satisfied. The throughput is below the 1 Mbps limit. Thus, we
clearly see the benefits of using multiple paths even in a completely random
general scenario.

The second set of experiments examines the fault tolerance capability by

provisioning multiple QoS paths between source and destination and spreading
packets over the multiple paths. The network topology is the same as in Fig. @
Here again we experiment with two extreme traffic scenarios, well behaved CBR
traffic and bursty multimedia traffic. The pairs of source and destination nodes
for the connections are randomly selected, and the link failures occur also ran-
domly during the execution of the experiments. For the link failure model, we
used a exponential distribution such that the average link down time is equal to
5 seconds. The number of multiple paths requested is kept at 3. The statistics
which we collect during this experiment is the amount of time for which each
connection is down. A connection is said to be down when none of its packets
are reaching the destination for 2 seconds.

A QoS Network Management System 9

o

600

Throughput (Kbps)
Throughput (Kbps)

400 |-t

1400 - - - - - 1400 y 1
Q0S2-QoS1 —— ' QoS1 - QoS5 [f—
QoS3 - Q0S1 - Q0S4 - Q0S5 ----- 085 -
1200 ; Q0S5 - QoS -+ Q0S5 - Q0S5 - 1 1200 QoS1 - |
QoS1 - QoS2 Q0S2 - Q0S6 -~ Qoss-
; QoS3 -QoS2 ----- QoS7 - QoS6 g2
- QOS Qosa -
1000 i Qo 3 1 1000 087 - B
) QoS3 Qost ——
0°§4€¥Q S8 o
0S5 - Qo! 4 QoS1 -
800 e T 10085 - Q084 e Q0S6 - Q089 ~---- 800 Qo4 - 1
QoS7 - Q0S9 -~ osa -
087
0S3 -
034 -
0S6 -
0S4 -
QoS5 -
036 -
7

200 |4

2l ; i
0 20 40 60 80 100 120 140 160 180 S w0 00
Time (sec) Time (sec)

160 180

Fig. 9. Throughput profile on every link: Fig. 10. Throughput profile on every
CBR: Single Path link: Multimedia: Single Path

1400 v

o

1200 Qo

0000000

1000

800

O

O

600

Throughput (Kbps)

2
22B2DDRRRRLRELRRLRVAVVAN

o o
£09090000000000000000000

o

200 -

0 20 40 60 80 100 120 140 160 180
Time (sec)

Fig.11. Throughput profile on every
link: Multimedia: Multi Path

The duration of the experiments was 10 minutes each. Fig. and Fig. [3]
show the connection down-time percentage when single path or multiple paths
are provisioned for the connections for both the CBR traffic case and the mul-
timedia case. The result shows that multiple path provisioning has lower con-
nection down rate as expected. We can see that the benefits although almost
equal are slightly lesser than in the CBR traffic case. The reason is that a lot
of multimedia calls do not get 3 multiple paths due to the burstiness of existing
connections which fill up the pipe. Thus, we show that we have greater fault tol-
erance for multimedia traffic when we provision multiple QoS paths compared to
single QoS path. Note that the experiments are slightly different in spirit from
the simulation experiments in [8]. In [§], the authors assume that a connection
gets dropped when all its paths have one or more faults, and does not come
up automatically when the fault gets repaired. However, the experiments have
enough similarity to give similar results.

10 S. Das et al.

o1 e o1

Connection Down Rate
onnection Down Rate

[

0.001
o1 02 03 04 05 06 07 08 02 03 04 05 06 07 08

Link Failure Rate Link Failure Rate

Fig. 12. Connection down rate as a func- Fig. 13. Connection down rate as a func-
tion of link failure rates: CBR tion of link failure rates: Multimedia

5 Conclusion

We proposed a QoS network management system in which QoS provisioning
mechanisms are measurement-based and multiple QoS paths are computed. With
the practical system implementation and experiments, we discussed the inter-
action of measurement-based call admission and bursty multimedia traffic. The
experiment results verified that the bursty nature of multimedia traffic degrades
the performance of measurement-based approaches. However, when multiple QoS
paths are provisioned, the burstiness becomes diffused and its negative impact
is lessened as the results showed. We also evaluated the fault tolerance capa-
bility of the network and found that the multiple paths provide a high degree
of robustness in servicing QoS applications. In conclusion, provisioning multiple
paths during call admission not only attenuates the impact of the burstiness but
also provides highly robust QoS services.

References

1. R. Guerin, A. Orda, and D. Williams. QoS Routing Mechanisms and OSPF Exten-
sions. In Proc. of Global Internet (Globecom), Phoenix, Arizona, November 1997.
o

2. Dirceu Cavendish and Mario Gerla. Internet QoS Routing using the Bellman-Ford
Algorithm. In IFIP Conference on High Performance Networking, 1998. [

3. G. Apostolopoulos, S. Kama, D. Williams, R. Guerin, A. Orda, and T. Przygienda.
QoS Routing Mechanisms and OSPF Extensions. Request for Comments 2676,
Internet Engineering Task Force, August 1999. [I]

4. Alex Dubrovsky, Mario Gerla, Scott Seongwook Lee, and Dirceu Cavendish. In-
ternet QoS Routing with IP Telephony and TCP Traffic. In Proc. of ICC, June
2000. [

5. E. Rosen, A. Viswanathan, and R. Callon. Multiprotocol Label Switching Archi-
tecture. Request for Comments 3031, Internet Engineering Task Force, January
2001. I

10.

11.

12.
13.
14.
15.

16.

A QoS Network Management System 11

. Shigang Chen and Klara Nahrstedt. An Overview of Quality of Service Routing

for Next-Generation High-Speed Networks: Problems and Solutions. 12(6):64-79,
November 1998. [2]

. Henning Schulzrinne. Keynote: Quality of Service - 20 Years Old and Ready to

Get a Job? Lecture Notes in Computer Science, 2092:1, June 2001. International
Workshop on Quality of Service (IWQoS). [2]

. Scott Seongwook Lee and Mario Gerla. Fault Tolerance and Load Balancing in

QoS Provisioning with Multiple MPLS Paths. Lecture Notes in Computer Science,
2092:155-, 2001. International Workshop on Quality of Service (IWQoS). 21213}
o)

. Scott Seongwook Lee and Giovanni Pau. Hierarchical Approach for Low Cost

and Fast QoS Provisioning. In Proc. of IEEE Global Communications Conference
(GLOBECOM), November 2001. [

S. Floyd. Comments on Measurement-based Admissions Control for Controlled-
load Services, 1996.

Lee Breslau, Sugih Jamin, and Scott Shenker. Comments on the Performance
of Measurement-Based Admission Control Algorithms. In INFOCOM (3), pages
1233-1242, 2000.

J. Moy. OSPF Version 2. Request for Comments 2328, Internet Engineering Task
Force, April 1998. B

John T. Moy. OSPFD Routing Software Resources. http://www.ospf.org.

R. Coltun. The OSPF Opaque LSA Option. Technical report.

Apple Computer. The Darwin Streaming Server.
http://www.opensource.apple.com/projects/streaming. [6
Bill May David Mackie and Alix M. Franquet. The MPEG4-IP Project.
http://mpegdip.sourceforge.net.

	A QoS Network Management System for Robustand Reliable Multimedia Services
	1 Introduction
	2
QoS Algorithms
	3
System Architecture
	3.1
Link Emulator
	3.2
Metric Collector
	3.3
Q-OSPF Daemon
	3.4
MPLS
	3.5
Applications

	4
Experiments
	5
Conclusion
	References

