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Abstract. Multimedia applications often involve one-to-many, or many-
to-many, communication. These applications can be supported efficiently
with network layer multicast. While multicast is a promising technology,
monitoring multicast routing infrastructure and the performance of ap-
plications that use it presents challenges not found with unicast. In this
paper we describe a monitoring architecture, and an implementation
of the architecture, that uses application level monitoring to assess the
performance of multicast-capable infrastructure. The architecture makes
use of standards-based management technologies and allows both active
and passive monitoring. The implementation has been tested extensively
and provides a network operator with a network-wide view of multicast
performance.

1 Introduction

IP multicast is an efficient way to provide support for one-to-many communi-
cation. Multicast was first used for distribution of real-time multimedia content
in the Internet nearly a decade ago [6]. It experienced rapid deployment in the
early 1990s, and it has been an active area for protocol development, resulting in
several intra- and inter-domain protocols (e.g, DVMRP [9], PIM [§], MSDP [Ig]).
Despite its initial promise and its ability to enable new applications, its growth
slowed and it has yet to see widespread use in the Internet. Several issues have
inhibited the deployment of multicast, including pricing models, security, and
the complexity of routing protocols. One factor in particular, that has prevented
wider deployment, is a lack of adequate management tools available to network
operators. Without the kinds of tools available in the unicast domain, network
operators find it difficult to monitor and debug their multicast networks[]
Management and monitoring of multicast networks is an inherently hard task.
In contrast to the unicast domain, where a mature set of tools exists, multicast
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! For simplicity, we use the term multicast network to refer to an IP network in which
multicast forwarding is enabled on the routers. For the purposes of this paper, the
particular multicast routing protocol employed — DVMRP, PIM, MOSPF, etc. — is
not important.
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presents some unique challenges. First, whereas unicast traffic generally follows a
single end-to-end path between a source and destination, multicast distribution
involves transmission along a tree from a single sender to multiple receivers.
Further, membership in a multicast group can be dynamic, so the tree itself can
change over the lifetime of a multicast session, even if the topology is static.
Finally, in contrast to unicast, the state needed to forward a multicast packet is
not instantiated until a session is initiated, making it difficult to determine the
status of multicast routing until traffic is flowing.

Early attempts to provide management functionality for multicast networks
resulted in a set of ad hoc tools. These included mitrace [IT], which provides
information about the set of links on the path from a sender to a single re-
ceiver in a multicast tree, and mrinfo [19], a utility that returns information
about a multicast router’s local configuration. These tools provided only limited
information about multicast configuration and operation, and were not always
implemented on all multicast routing platforms. More recently, tools such as
mhealth [14], which discovers and displays an entire multicast tree, have pro-
vided additional information for network operators. Similarly, multicast-related
MIBs, which have been defined (e.g., [I2I15/16]), further enhance the set of tools
available for managing multicast. Nonetheless, the state of network management
tools for multicast lags far behind what is available for unicast infrastructure and
continues to impede deployment.

In this paper we present an architecture for remote management of multi-
cast routing infrastructure and describe our implementation of this architecture.
The goal of our work was to provide a tool that would give a network opera-
tor, from a single management station, a system wide view of the end-to-end
performance of a multicast network. In designing this system, we were guided
by several key requirements. First, we wanted a system that would be based on
standard protocols. This facilitates integration with other management tools and
leverages existing technology. Second, we desired a clean separation of function-
ality between data collection and data analysis. The purpose of this separation
is to enable a data collection architecture based on Internet standards, while
enabling independent development of analysis and management tools. Third,
we wanted a monitoring architecture that allowed both passive monitoring of
existing multicast sessions, while also permitting creation of test sessions and
the artificial generation of multicast traffic. Finally, we wanted a system that
supported both long term background monitoring, as well as active debugging
of multicast sessions.

Our architecture and implementation, which we call RMPMon, meet these re-
quirements. By combining known standard technologies, and extending exist-
ing management standards to enable a novel method of generating test traffic,
our system can provide an operator responsible for managing a multicast net-
work with better information than was previously available. Because it is based
around standard technology, we believe RMPMon can facilitate the development
of additional management tools for multicast and help further deployment of
this promising technology. The rest of this paper is organized as follows. In the
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following section, we present relevant background about the standard protocols
that we make use of in our architecture. In Sect. B] we describe extensions to
these protocols that provide additional building blocks for our system. The ar-
chitecture, implementation and evaluation of our tool are presented in Sect.
We discuss related work in Sect. [l and conclude with a discussion of future work
in Sect.

2 Background

We built RMPMon around two key Internet protocols: the Simple Network Man-
agement Protocol (SNMP) [5] and the Real-Time Transport Protocol (RTP)
[27]. Using SNMP has several benefits. As the standard management protocol
for IP networks, it is widely available in existing network management platforms,
which provides the opportunity to integrate our tool into these platforms. In ad-
dition, we are able to leverage important features in SNMP, such as its security
model, and we can take advantage of existing public domain implementations
and focus on those pieces of functionality unique to our system. Finally, SNMP
uses unicast transport, so we do not require multicast to be deployed everywhere
between our management station and the systems we are monitoring.

RTP is a transport protocol for real-time applications which supports unicast
and multicast applications. In the remainder of this section we present a brief
overview of SNMP and RTP to provide background for the remainder of the

paper.

2.1 SNMP

SNMP is used to manage a wide range of devices, protocols and applications in
the Internet. Management information can pertain to hardware characteristics,
configuration parameters or protocol statistics. For example, SNMP can query a
router to determine the bandwidth of one of its interfaces or the number of pack-
ets that it has forwarded. SNMP is built around the concept of a Management
Information Base, or MIB, which defines a set of managed objects for a device
or protocol. A MIB consists of a set of objects, or MIB variables, related to the
device or protocol being managed. Each object has a unique name, syntax and
encoding, as well as a set of properties. The properties associated with an object
determine whether the object is readable, writable, or both. Managed objects
may be either static or dynamic. Static objects always exist while dynamic ob-
jects are created or deleted as a protocol or device changes state. For example, in
the TCP MIB, the number of active TCP connections is a static object, whereas
an object representing the state of a particular connection is dynamic.

A network management station uses SNMP to manage a remote device by
communicating with an agent running on that device. The remote agent in-
teracts directly with the managed objects on that device. SNMP defines several
commands that are used between the management station and the remote agent.
There are two categories of SNMP commands:
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— The value of MIB variables are retrieved from a remote agent using the
commands Get, GetNext, and GetBulk.
— The value of MIB variables can be set using the Set command.

In the simplest cases, the Set command can be used to configure parameters
of a protocol or device. However, setting MIB variables can also cause other
actions to be taken, making it a powerful tool in managing a remote client. This
functionality is a key enabler in the system we describe later. We next describe
how SNMP is used in the context of the RTP protocol.

2.2 RTP and Related MIBS

RTP is a transport protocol intended for use by real-time applications, such as
video-conferencing and playback of recorded multimedia content [27)]. Because
these applications often involve more than two participants, RTP was defined
to accommodate multicast communication. An RTP session is identified by a
destination address, either multicast or unicast, and a destination port number.
Within the context of multicast, a host can join the relevant multicast group
to become a receiver of a session, or a host can transmit packets to the session
address to become a sender to a session, or both.

Real-time sessions require timely delivery of data for the data to be useful,
and these applications are assumed to be tolerant of modest amounts of packet
losses. In addition, feedback in the form of acknowledgments or requests for re-
transmission presents scalability problems for large multicast sessions. For these
reasons, RTP does not provide reliable data transport. Nonetheless, some feed-
back among session participants can be useful to RTP-based applications, as a
means to share state about performance, to identify sources, and for monitoring
purposes. This functionality is provided by a companion protocol, RT'CP. Session
participants (both senders and receivers) periodically transmit RTCP packets.
These packets are sent to the destination IP address of the session using a dif-
ferent port number than the data packets.

RTCP control packets include the following information:

— FEach participant periodically transmits identifying information, such as user
name and email address.

— FEach receiver periodically transmits condition reports. These reports include
the loss rate and an estimate of delay variance that the receiver experiences
for each source.

Thus, every session participant learns the identities of all active participants
as well as the loss rate and other performance statistics experienced by each
receiver

2 In order to limit bandwidth consumed by the control protocol, the frequency at
which a participant transmits RTCP packets is inversely proportional to the number
of session participants. The utility of RTCP reporting with very large sessions is
an open question, and several ideas to address the scalability question have been
proposed.
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Management information for RTP is defined in an associated MIB [4]. The
RTP MIB is organized into 3 tables ] These are the session table, the sender ta-
ble, and the receiver table. Each entryﬂ in the session table contains information
about an active session at the host. Each entry in the sender table contains in-
formation about a sender to one of these active sessions. The session and sender
fields provide a unique index for each entry in the sender table. Finally, each en-
try in the receiver table contains information about a single sender /receiver pair
for each session. The session, sender and receiver fields provide a unique index
for entries in the receiver table. The objects represented in these tables are all
dynamic. That is, they are instantiated when a host joins a session, when a new
sender is identified, or when a receiver report from a new session is received,
respectively. The MIB variables in the receiver table include such things as the
number of packets received, the number lost, and the measured delay jitter.

SNMP is used to query or set the values of these MIB variables. For example,
by querying the receiver table, a management client can determine the loss rate
experienced between a particular sender/receiver pair. In addition, using the
Set command, a management client can create new entries in these tables. By
creating an entry in the session table and setting a MIB variable to make that
entry active, a management client can cause a remote agent to join a multicast
group as a receiver. We use this functionality extensively in the management
framework that we describe in Section [

3 RTP Sender MIB

RTP and the RTP MIB provide necessary building blocks for our management
system. However, they are not sufficient to enable the entire range of function-
ality we required. Therefore, we defined a new MIB that extends the capability
of multicast management to enable active monitoring. We refer to this new MIB
as the RTP Sender MIB.

The RTP Sender MIB is an extension to the RTP MIB described above. The
MIB describes data streams that are generated by a remote agent. Specifically, it
contains a table describing the characteristics of the data streams, and links the
source to an existing entry in the RTP MIB. Entries are indexed by a test name
and a user name to provide user based access control. Each entry contains the
following objects: packet generation rate, packet length, and outgoing interface.
When an entry is set to active, the remote agent begins transmitting packets
according to the parameters in the sender entry.

Allowing the generation of test traffic by remote agents has certain inherent
security risks. This problem is addressed with a view based access control mech-
anism that is implemented, as described above, in the MIB. Only authenticated

3 RFC 2959 actually defines 6 tables. The latter three provide reverse lookups to
enable efficient indexing. Since they provide performance improvements, and do not
directly address issues of functionality, we do not discuss them further here.

4 In SNMP terminology, a table entry is referred to as a row.
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users are able to create active streams on the agent, where the authentication is
part of the SNMP security framework.

The active sender MIB provides an important function to the monitoring
architecture. The management client can create a new entry in a remote agent’s
sender table and populate the MIB variables with appropriate packet generation
statistics. The remote agent then generates traffic according to these parameters
when the management client sets the entry to become active. In this way, the
management client can generate test traffic at one or more remote agents and
monitor receipt of this traffic using the RTP MIB.

4 RTP-Based Monitoring System

We now describe the management and monitoring system that we have devel-
oped. We begin with a high level description of the architecture of the system
and its features. We next describe our implementation. Finally, we describe our
experience with the implementation and present results of measurements we’ve
gathered in our lab.

4.1 Architecture

The system we developed consists of two key components: remote agents running
on managed devices (hosts or routers) that participate in the monitoring system
and a management client. The remote agents implement the RTP MIB and the
RTP Sender MIB, and they communicate with the management station using
SNMP. In response to SNMP commands, they join RTP sessions as senders or
receivers. As senders, they generate test traffic for controlled experiments. As
receivers, they receive RTP data packets and RTCP control packets, and they
maintain statistics about session participants and performance. Since these data
are part of the RTP MIB, they can be returned to the management client in
response to SNMP queries.

The management client communicates with remote agents via SNMP. The
management client controls the monitoring by causing remote agents to join
sessions as senders or receivers, and the remote agent collects statistics from the
remote agents. The management station is then able to analyze the data and
present it to a network operator in useful ways.

This architecture has several desirable features. First, the separation of func-
tionality between the remote agents is a flexible design that enables extensibility.
Rather than designing a monolithic system in which the data collection and anal-
ysis are tightly coupled, we have separated the two primary components. Hence,
new management applications can be written that use the basic functionality
provided by the remote agents in new and interesting ways.

Another key feature of the architecture is that by incorporating the RTP
Sender MIB, it is capable of both active and passive monitoring. Passive moni-
toring is used to monitor actual user multicast sessions. In this case, the man-
agement client causes one or more remote agents to join the session as receivers.
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These receivers monitor session performance (i.e., loss rate, delay jitter), and
send and receive RTCP messages to and from other session participants Re-
porting information can then be returned to the management station. Note that
RTCP receiver reports are transmitted to the session’s multicast address and
are seen by all receivers in a session. Therefore, by creating a single receiver at
a remote agent, the monitoring system is able to collect information about all
senders and receivers in a session, regardless of their location in the network.
This presents the network operator with a network-wide view at very little over-
head beyond the existing session traffic. Note, however, that even though RTCP
receiver reports are distributed to all group members, using more than one re-
mote agent to collect and report data may be useful. As an example, querying
MIB values of more than one session participant allows consistency checking,
which can identify situations in which routing problems prevent distribution of
receiver reports to all session participants.

Passive monitoring provides performance information for actual user sessions.
However, one of the difficulties of monitoring multicast infrastructure is that it is
hard to assess performance when sessions are not active. Active monitoring fills
this void. With active monitoring, rather than joining a user multicast session, a
special session dedicated to monitoring is created. The management client uses
the RTP MIB and RTP Sender MIB to create receivers and senders for this
testing session. The traffic generation parameters of the sender or senders are
controlled by the management station. In this way, the network operator is given
a view of performance that is independent of user sessions.

This system can be used for both long term background monitoring as well as
for reactive debugging. In the former case, a long running test session could be
used to collect performance statistics over time. In the latter, network operators
who are alerted to potential problems can create active sessions to help debug
network problems.

4.2 Implementation

We have implemented the architecture described above in order to test our ideas
and gain experience with them in both laboratory and production environments.
One of our design goals was to leverage prior work and experience, concentrating
our effort on those parts of the design unique to our system and easing the
task of porting our implementation to other platforms. As such, we have taken
extensive advantage of open source implementations that provide some of the
needed functionality. In this section, we describe the implementation of both the
remote agents and management station.

The remote agent is built within the AgentX framework [7], which supports
extensible SNMP agents. Specifically, it allows a single master SNMP agent to
run on a client and dispatch SNMP commands to subagents. AgentX defines the

5 We anticipate that future extensions to the RTP MIB will allow the network oper-
ator to make a remote agent’s participation in the session invisible to other session
participants by setting its TTL to zero.
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interface between the master and subagents. We implemented the remote agent
as an AgentX subagent. The remote agent implements both the RTP MIB and
RTP Sender MIB, and registers these MIBs with the master SNMP agent on the
host. It also implements an RTP application. For the SNMP functionality, we
used Net-SNMP, an open source SNMP library [20]. For the RTP functionality,
we used the UCL RTP library, which implements RTP (including RTCP) for
multicast as well as unicast sessions [23]. The remote agent is capable of acting
as a sender or receiver of multiple RTP sessions. The application extracts relevant
information to populate the MIB with session conditions in real-time.

We also implemented an application to serve as our management client.
This application was built by extending the Scotty management application [2§].
Scotty includes extensions to TCL that provide access to SNMP functions. In
addition, it incorporates tkined, a graphical network editor designed for man-
agement applications. Thus, a user can manipulate a graphical user interface
depicting agents in the network that are being managed. User interface actions
then cause SNMP commands to be issued by the management client to the re-
mote agents. Data collected by the management client can then be displayed in
the user interface. We added functionality to tkined to enable management of the
RTP agents. Scripts were written to allow simple activation of pre-configured ses-
sions for debugging and real-time monitoring purposes. Additional functionality
was added for monitoring existing RTP sessions.

4.3 Experience

RMPMon was originally developed on FreeBSD and has been ported to Solaris and
HP-UX. We have tested it extensively in our lab, and it is now being evaluated
for use by a major ISP. In this section, we describe its use in more detail and
show results from its use.

Experiments. As part of our debugging and analysis of the tool, we have
performed many experiments with it in our lab. We now describe one such test.
We use this test to demonstrate some of the tool’s functionality and to gain some
understanding of the overhead associated with it. We will then describe in less
detail other uses of the tool.

Figure [ shows a snapshot of the management client’s graphical interface.
The network operator can use this interface to dynamically create an object
based network map and associate these objects with network devices. The map
in the figure shows the topology used in the experiment we describe here. The test
network consists of 14 Pentium III class PCs running FreeBSD 4.3. Three of these
(cubix09, cubix10, and cubix1l) are configured to act as routers for both unicast
and multicast traffic. The remaining 11 are end hosts attached to one of six
subnets. All host interfaces provide 100 Mbit/s switched ethernet connectivity.
In order to simulate conditions of network loss, we used the dummynet software
[10] to create artificial loss. Dummynet implements a configurable traffic shaper
based on the FreeBSD firewall code, enabling a user to create virtual traffic
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flow pipes based on a source and destination identifier and to configure certain
characteristics for those flows. In this case, we used the pseudo-random fixed
packet loss rate parameter to introduce 4% loss on the outgoing link from cubix09
to cubix10, the outgoing link from cubix10 to Net3, and the outgoing link from
cubix11 to Net5. In this way, traffic between any pair of end hosts would traverse
0, 1, 2 or 3 lossy links[

Once the network map is configured (Fig. [l), the experiment is controlled
through the SNMP-Multicast pulldown menu shown in Fig. 2 For example, to
start an RTP listener on a remote agent, the operator selects an object (e.g.,
cubix02) and then selects Start RTP Listeners on the pulldown menu. Similarly,
remote senders are started via the Start RTP Senders option. For this experiment,
we configured cubix02, cubix05, cubix07, and cubix16 as senders, each generating
64 kbps data streams. All of the end hosts were configured as receivers, and
they all participated in RTCP exchanges. Cubix04 was selected as the host to be
queried by the management client [l

The output of the experiment is shown in Figs. Bland H Figure Bl shows a
Reception Quality Matriz. We developed this tool by integrating the interface
from the Reception Quality Matrix (which was originally implemented in version
4 of the Robust Audio Tool [22]) into our management client. The tool reports
on connectivity between all senders and receivers, with each column representing
a sender and each row representing a receiver. Each cell in the matrix indicates
the loss rate between a sender and receiver. In addition, color codings indicate

5 Configuring the loss is not done with the management tool. Rather, this is part of
the general network setup for the experiment.

" Recall from Section 2:2] that we only need to query a single remote agent since all
remote agents exchange RTCP receiver reports.
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0-5% loss (green), 5-10% loss (orange), and loss over 10% (red), to assist in easy
identification of problems.

Looking at Fig.[3l we see that the results are consistent with the experimental
setup. cubix07 and cubix13, the two hosts on Net5, experience high loss (10-11%)
for packets transmitted by senders cubix02 and cubix05. The paths between these
senders and receivers traverse all three of the lossy links[B Paths that traverse
two of the lossy links result in more moderate loss (e.g., 7% loss between cubix02
and cubix01), and single loss paths yield 3%-5% loss (e.g., cubix16 to cubix01).
In all cases, hosts that are connected by paths that do not include links with
loss report 0% loss.

In addition to reporting performance conditions in different places of the net-
work, the tool can be used to deduce where in the network loss is occurring. For
example, given that there is only a single link between cubix16 and cubix01, one
can conclude that it is this link that is responsible for the loss. The loss between
cubix02 and cubix01 can then be attributed in part to loss on the aforementioned
link, and additional loss experienced on the link between cubix09 and cubix10.

A second tool that we developed is the Loss Graph tool which provides an-
other view of loss rates. It periodically queries an agent to build up a series of
values over time to indicate longer term performance of the agents. The tool
takes a single source/receiver pair, and plots the reported loss at a user specified
query interval. It also provides the facility to display the results over a variety
of time scales. Figure Hlindicates the loss reported by host cubix07 from source
cubix02 over a half hour time scale. The long timescale helps to draw attention to
the trends over time, something that is not apparent from the snapshot results
provided by the Reception Quality Matriz.

8 Loss on these links is random, accounting in part for the slight variation between
the expected loss rate, which is approximately 12%, and the reported loss rates.
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Overhead. The kind of experiment described above could be used by a net-
work operator to monitor performance in a production network. It is important
to consider the overhead created by such monitoring. There are two kinds of
overhead: packets generated by the test traffic (RTP and RTCP), and packets
associated with SNMP traffic between the management client and the remote
agents. The amount of RTP traffic is directly controlled by the network operator,
who determines both the number of senders to instantiate and the rate at which
they send. On network links of even moderate speed, it should be possible to
accurately measure loss using fairly modest data rates.

In order to gain some understanding of the overhead caused by the SNMP
traffic we measured the SNMP traffic between the management client and remote
agents. The average aggregate rate for this traffic (including both directions)
was approximately 4 kbps. However, this data is very bursty as a result of the
management station periodically polling the remote agents. Polling resulted in
transfer of about 10 kbytes of data, followed by a quiescent period. The overhead
of SNMP traffic will obviously be impacted by the frequency of the polling and by
the number of participants in the session being monitored | While we can’t draw

9 The overhead need not grow linearly with the number of session participants. The
tool queries a single session participant, and there is some fixed overhead associated
with this query. The incremental cost of returning information about another receiver
should be small. Further, for very large groups, the management client can have the
flexibility to request information about a subset of session participants. Also note
that for active monitoring, RMPMon need not scale to very large number of remote
agents. A network operator can monitor performance across its network by deploying
one remote agent per routing center, likely on the order of several tens of locations.
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firm conclusions from one experiment, the results indicate that the overhead of
the tool is likely minimal.

Further, we have not optimized the performance of our implementation.
SNMP provides flexibility in how data is retrieved from remote agents. For ex-
ample, an entire table can be retrieved with the GetBulk command, or a single
object can be retrieved in one message. The optimal strategy depends on several
factors, such as the percentage of objects in a table which are needed by the
management station. We have not paid particular attention to these issues, con-
centrating on functionality rather than efficiency in our implementation. Simple
analysis of packet traces in our experiments indicates that we can easily achieve
a factor of 2 reduction in the overhead with a more careful implementation.

The decision to retrieve data from a single host connected to the session was
motivated by the network configuration as well as implementation simplicity as
far as SNMP management is concerned. This would not help in situations where
RTCP packet loss is very high, or indeed where multicast connectivity is broken.
For a small increase in SNMP traffic overhead, an efficient management client
could selectively ask each member of the session for its own specific values. In
the case of calculating loss, the RTP agent would return the MIB variables de-
noting lost packets and expected packets for each source that it hears. In this
way, GetBulk requests might still be used for sessions with multiple senders to
maintain low SNMP packet overhead, whilst retrieving more accurate informa-
tion for the management station. This would provide the additional advantage
of helping to detect active sources and receivers that are not ubiquitously heard
by all members. A simple table view would highlight these inconsistencies.

Other Usage Scenarios. Above we described an experiment that demon-
strated how RMPMon could be used to measure application level performance
across a multicast network. We now mention some other ways in which it can
be useful.

RMPMon can be used for passive monitoring of an actual user multicast ses-
sion. In this case, the management station need only create one receiver some-
where in the network. By participating in the RTCP exchanges, this receiver
collects session-wide information, which is returned to the management station
via SNMP. This scenario demonstrates one of the advantages of our approach.
If the receiver is located along the existing distribution tree, then no additional
RTP traffic is distributed and no additional forwarding state is created. Using
SNMP to retrieve reporting statistics from the agent is more efficient that hav-
ing the management station receive both the RTP data packets and the RTCP
control packets.

A second way in which RMPMon can be used is for consistency checking. In
this scenario, every remote agent is asked for a list of active sources that it hears
in the session. A simple consistency check across the data returned can indicate
whether there is full, partial or no multicast connectivity to all relevant areas of
the network.
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RMPMon could be used in conjunction with other debugging tools. For example,
mirace can be used to debug problem areas in the case of poor connectivity
between clients. This action can be initiated from the Reception Quality Matrix
display. It might also help to identify routing anomalies in case data does not
flow over the intended or preferred path.

RMPMon can also be used in conjunction with other tools that monitor mul-
ticast routing performance. For example, MSDP Source Active messages are
triggered by data packets. If MSDP messages are being monitored, RMPMon can
be used to generate multicast traffic at remote places in the network. A network
manager can then verify that the proper MSDP messages are seen in MSDP
protocol exchanges. Instantiating remote senders and receivers can also be used
to verify that distribution trees are correct. For example, a receiver could be
created and then terminated in order to verify that pruning is working correctly
in a protocol such as DVMRP.

Additional management applications could be developed to extend the use
of the tool. For example, rather than continuously displaying the reception qual-
ity matrix, the management client could monitor when certain thresholds of
performance (e.g., loss rate) are crossed and alert the network operator.

5 Related Work

There has been a significant body of work in the area of multicast management
and monitoring that has resulted in tools to support network, application, and
session layer monitoring. Here we briefly review the work most closely related to
ours. The interested reader is referred to [26] for a more in depth review.

The need for management tools became evident with the rapid growth of
the MBone in the early 1990s. Mrinfo was an early tool that queried multicast
routers for their adjacencies. Using this tool, one could then build a map of the
multicast topology. Multicast traceroute, or mtrace, defined a protocol for query-
ing routers along a path from receiver to source. This could be used to determine
the path from sender to receiver, and ultimately an entire distribution tree. In
addition, it can provide statistics about the number of multicast packets, and
their loss rate, traversing a link. Mtrace remains an effective tool for debugging
multicast reachability problems. Mantra [21I] is a more recent system that de-
termines multicast routing information by querying routers for this information.
These tools all have the characteristic that they operate at the network level and
retrieve adjacency or routing information from the routers themselves. Our work
takes the alternative, and complementary approach, of monitoring performance
information at the application level. There are tradeoffs associated with both
approaches [21] and we believe that both kinds of tools are needed.

The earliest multicast debugging tools were developed outside the context of
a general management framework. More recently, MIBs have been defined for
multicast protocols. Tools such as mrtree, mstat and muview [I7] are based on
SNMP and take advantage of information in these multicast-related MIBs. As
such, they represent a logical progression in the development of multicast tools.
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RMPMon is also based on SNMP, and provides functionality not present in other
SNMP-based tools.

The use of multicast in SNMP for communication between management sta-
tions and remote agents has been proposed [I]. This work is largely complemen-
tary to ours, as we have not focused on the communication channel between
the management station and remote agents. One similarity is that both have
mechanisms whereby the management station can cause a remote agent to join
multicast groups. In RMPMon the multicast groups are used for communication
between remote agents while in this other work the multicast groups are used
for communication between the management station and the remote agents.

Ours is by no means the first work to use application level monitoring gen-
erally, or RTP-based monitoring, specifically. Rtpmon, RQM and mhealth are 3
tools that use RTCP reporting information in various ways. Rtpmon [24], de-
veloped at UCB, collects RTCP reporting information on a host and presents a
loss matrix similar to the one we showed in Section {3] RQM, which provided
the interface we used for our loss monitoring matrix, also collects RT'CP report-
ing information for a session. Mhealth [14] is a tool that integrates both network
layer information and application layer information to present both the multicast
topology and end-to-end performance information. Our work extends the idea
of using RTCP receiver reports embodied in all of these tools and embeds it into
an SNMP framework. Incorporating it into a standard management framework
provides several advantages, not the least of which is the ability to instantiate
remote agents to participate in the monitoring.

The Multicast Reachability Monitor (MRM) [3] has been implemented on
some commercial router platforms, and it has been used in an integrated frame-
work for multicast monitoring that includes topology discovery and performance
monitoring [25]. MRM is a protocol for generating test traffic on remote agents,
providing functionality similar to what we achieve with the RTP Sender MIB. It
represents an important development in the ability to monitor multicast routing
infrastructure. We have borrowed this concept and used it within the context
of SNMP. This allows us to take advantage of the authentication and access
control available in SNMP, and it allows integration into a tool that allows both
active and passive monitoring. SMRM [2] is another tool that is very similar to
RMPMon. Like the MRM-based tool, SMRM allows a central management station
to generate test traffic remotely and to collect statistics about performance. The
primary difference between that work and ours is the use of RTP and its MIB
in RMPMon. The use of RTP provides two primary advantages. First, it allows
passive monitoring of multicast sessions that use RTP. Second, we leverage the
reporting functionality of RTCP so that the management station can receive
information about all receivers by querying a single remote agent.

6 Conclusions

In this paper we described a new tool for monitoring and managing multicast
networks. The tool has several desirable features. It is based on standard technol-
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ogy and can thus be integrated with common management platforms. It enables
remote monitoring of multicast infrastructure, using both passive and active
tests. In addition, it does not depend on multicast connectivity between the
management station and remote monitoring agents. We have demonstrated its
use through testing in our lab environment, and it provides useful functionality
at acceptable levels of overhead.

Our current implementation is a prototype that has served as a proof of
concept. We see several opportunities for future work to build on the architecture
and implementation we have presented here:

— Integrating new developments in the area of Source Specific Multicast (SSM)
extensions would be a useful extension to the architecture. Monitoring SSM
groups and providing the capability to generate IGMPv3 source include and
exclude messages and monitor the resulting state in routers in the network
will be key elements in managing single source distribution architecture net-
works. This will require updates to relevant MIBs in addition to implemen-
tation work on the remote agent software.

— We intended to integrate the functionality provided by the RTP Sender MIB
into a generic traffic generation MIB currently being considered in the IETF
[13].

— One of the reasons for basing our implementation on SNMP was to allow for
integration of RMPMon into standard management platforms. For the proto-
type, we built a standalone management client. In the future, we will explore
integrating our work into a common platform, such as HP Open View.

Multicast is a promising technology whose potential value has not yet been
realized. The increasing demand for the delivery of multimedia content in the
Internet may provide a push for multicast. If this is to happen, the long-known
challenges of monitoring and managing multicast infrastructure will need to be
solved. Several years of work have shown that this is indeed a difficult problem.
We believe standards-based tools that allow for end-to-end performance moni-
toring of multicast infrastructure, like the one presented here, must be a part of
the solution.
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