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Abstract. This paper concerns some aspects of rough set based data
analysis. In particular rough set look on Bayes’ formula leads to new
methodology of reasoning from data and shows interesting relationship
between Bayes’ theorem, rough sets and flow graphs. Three methods of
flow graphs application in drawing conclusions from data are presented
and examined.

MOTTO:

“It is a capital mistake to theorise before one has data”
Sherlock Holmes

In: A Scandal in Bohemia

1 Introduction

No doubt that the most famous contribution to reasoning from data should be
attributed to the renowned Mr. Sherlock Holmes, whose mastery of using data
in reasoning has been well known world wide for over hundred years.

More seriously, reasoning from data is the domain of inductive reasoning,
which uses data about sample of larger reality as a starting point of inference
— in contrast to deductive reasoning, where axioms expressing some universal
truths are used as a departure point of reasoning.

In the rough set approach granular structure of data imposed by the in-
discernibility relation is used do discover patterns in data. In rough set theory
patterns in data can be characterized by means of approximations, or equiv-
alently by decision rules induced by the data. With every decision rule in a
decision table three coefficients are associated: the strength, the certainty and
the coverage factors of the rule. It is shown that these coefficients satisfy Bayes’
theorem and the total probability theorem. This enables us to use Bayes’ theo-
rem to discover patterns in data in a different way from that offered by standard
Bayesian inference technique employed in statistical reasoning, without referring
to prior and posterior probabilities, inherently associated with Bayesian infer-
ence methodology. Besides, a new form of Bayes’ theorem is introduced, based
on the strength of decision rules, which simplifies essentially computations.
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Furthermore, it is shown that the decision rules define a relation between
condition and decision granules, which can be represented by a flow graph. The
certainty and coverage factors determine a “flow of information” in the graph,
ruled by the total probability theorem and Bayes’ theorem, which shows clearly
the relationship between condition and decision granules determined by the de-
cision table. This leads to a new class of flow networks, unlike to that introduced
by Ford and Fulkerson [1]. The introduced flow graphs may have many appli-
cations not necessarily associated with decision tables, but this requires further
study.

The decision structure of a decision table can be represented in a “decision
space”, which is Euclidean space, in which dimensions of the space are deter-
mined by decision granules, points in the space are condition granules and co-
ordinates of the points are strengths of the corresponding rules. Distance in the
decision space between condition granules allows to determine how “distant” are
decision makers in view of their decisions. This idea can be viewed as a general-
ization of the indiscernibility matrix [7], basic tool to find reducts in information
systems. Besides, the decision space gives a clear insight in the decision structure
imposed by the decision table.

A simple tutorial example is used to illustrate the basis ideas discussed in
the paper.

2 Basic Concepts

In this section we recall basic concepts of rough set theory [4,5,6,7].

An information system is a pair S = (U, A), where U and A, are non-empty
finite sets called the universe, and the set of attributes, respectively such that
a:U — V,, where V,, is the set of all values of a called the domain of a. Any
subset B of A determines a binary relation I(B) on U, which will be called an
indiscernibility relation, and defined as follows: (z,y) € I(B) if and only if a(z) =
a(y) for every a € A, where a(z) denotes the value of attribute a for element z.
Obviously I(B) is an equivalence relation. The family of all equivalence classes
of I(B), i.e., a partition determined by B, will be denoted by U/I(B), or simply
by U/B; an equivalence class of I(B), i.e., block of the partition U/B, containing
x will be denoted by B(z) and called B-granule induced by x.

If (x,y) belongs to I(B) we will say that = and y are B-indiscernible (indis-
cernible with respect to B). Equivalence classes of the relation I(B) (or blocks of
the partition U/B) are referred to as B-elementary sets or B-granules.

If we distinguish in the information system two disjoint classes of attributes,
called condition and decision attributes, respectively, then the system will be
called a decision table and will be denoted by S = (U, C, D), where C and D are
disjoint sets of condition and decision attributes, respectively and C U D = A.

C(z) and D(z) will be referred to as the condition granule and the decision
granule induced by x, respectively.

An example of a decision table is shown in Table 1.
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Table 1. An example of decision table

Fact no. Driving conditions Consequence N
weather road time accident
1 misty icy day yes 80
2 foggy icy night yes 140
3 misty not icy night yes 40
4 sunny icy day no 500
5 foggy icy night no 20
6 misty not icy night no 200

In the table, 6 facts concerning 980 cases of driving a car in various driving
conditions are presented. In the table columns labeled weather, road and time,
called condition attributes, represent driving conditions. The column labeled by
accident, called decision attribute, contains information whether an accident has
occurred or not. N denotes the number of analogous cases.

3 Decision Rules

Each row of the decision table determines a decision rule, e.g., row 1 determines
the following decision rule “f weather is misty and road is icy and time is day
then accident occurred” in 80 cases.

Let S = (U,C, D) be a decision table. Every € U determines a sequence
c1(x),...,cen(x), di(2),...,dn(z) where {c1,...,¢,} = Cand {d1,...,dn} = D.

The sequence will be called a decision rule induced by z (in S) and denoted
by c1(z),...,cn(x) = di(z),...,dn(x) or in short C' —, D.

The number supp,.(C,D) = |C(x) N D(x)| will be called a support of the
decision rule C —, D and the number

supp, (C, D)

will be referred to as the strength of the decision rule C' —, D, where |X| denotes
the cardinality of X.

With every decision rule C —, D we associate a certainty factor of the
decision rule, denoted cer,.(C, D) and defined as follows:

IC@NDE)| 0 (C,D)
wre (GO =0T T r @)

where C(z) # 0 and 7(C(z)).

The certainty factor may be interpreted as conditional probability that y be-
longs to D(z) given y belongs to C'(z), symbolically 7, (D|C), i.e., cer,(C, D) =
7 (D|C).
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If cer,(C,D) = 1, then C —, D will be called a certain decision rule; if
0 < cer,(C, D) < 1 the decision rule will be referred to as an uncertain decision
rule.
Besides, we will also use a coverage factor (see [8]) of the decision rule, de-
noted cov,(C, D) defined as
|C@)ND(z)| _ 0z (C,D)

COU.I(C’D): |D(;(;)| B W(D(x))’

where D(z) # 0 and w(D(z)) = lD\T(JgT)" Similarly

cov, (C, D) =, (C|D).

If C —, D is a decision rule then D —, C will be called an inverse decision
rule. The inverse decision rules can be used to give explanations (reasons) for a
decision.

In Table 2 the strength, certainty and coverage factors for Table 1 are given.

Table 2. Characterization of decision rules

fact no.  Strength  Certainty Coverage

1 0.082 1.000 0.308
2 0.143 0.877 0.538
3 0.041 1.167 0.154
4 0.510 1.000 0.695
5 0.020 0.123 0.027
6 0.204 0.833 0.278

4 Properties of Decision Rules

Decision rules have important probabilistic properties which are discussed next
[2,3].
Let C —, D be a decision rule. Then the following properties are valid:

Z cer, (C,D) =1 (1)

yeC(x)
Z covy, (C,D) =1 (2)
y€D(z)

T(D(x) = Y cer,(C,D)-7(C(x)) = 3)
y€eC(x)

= Z oy (C,D)

yeC(x)
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m(C(@)= ) cov, (C,D)-7(D(y)) = (4)

yED(x)

Z oy (C,D)

yeD(x)

cer, (C,D) = . = ()

cov, (C,D) = : = (6)

That is, any decision table, satisfies (1)—(6). Observe that (3) and (4) refer
to the well known total probability theorem, whereas (5) and (6) refer to Bayes’
theorem.

Thus in order to compute the certainty and coverage factors of decision rules
according to formula (5) and (6) it is enough to know the strength (support) of
all decision rules only.

Formulas (5) and (6) can be rewritten as

cery (C, D) = cov, (C, D) - v, (C, D) (7)
covy (C, D) = cer, (C, D) - v, * (C, D) (8)

x cery (C,
where 7m(c7 D) = 12515\‘ = covxEC,g;

Let us observe that

cov,, (C,D) -7 (D (x)) =0, (C,D) (9)
cer, (C,D) -7 (C(x)) =0, (C,D) (10)

5 Granularity of Data and Flow Graphs

With every decision table we associate a flow graph, i.e., a directed acyclic graph
defined as follows: to every decision rule C' —, D we assign a directed branch x
connecting the input node C(x) and the output node D(x). Strength of the deci-
sion rule represents a throughflow of the corresponding branch. The throughflow
of the graph is governed by formulas (1),...,(6).

Classification of objects in this representation boils down to finding the max-
imal output flow in the flow graph, whereas explanation of decisions is connected
with the maximal input flow associated with the given decision.

A flow graph for decision table shown in Table 1 is given in Figure 1.
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Fig. 1. Flow graph

6 Decision Space

With every decision table having one n-valued decision attribute we can associate
n-dimensional Euclidean space, where decision granules determine n axis of the
space and condition granules determine points of the space. Strengths of decision
rules are to be understood as coordinates of corresponding granules.

Distance 6(z,y) between granules = and y in the n-dimensional decision space
is defined as

Z(xz *Z/j)Q

i=1

where x = (21,...,2,) and y = (y1,...,yn) are vectors of strengths of cor-
responding decision rules.

A decision space for Table 1 is given in Figure 2.

Distances between granules A, B, C and D are shown in Table 3.

Table 3. Distance matrix

A B C D

A

B 0.064

C 0.208 0.210

D 0.517 0.510 0.309
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no
A

%

D(0.000,0.510)
0.5

C(0.041, 0.204)

B(0.143, 0.020)
1 > yes
A (0.082, 0.000) 0.5

Fig. 2. Decision space

7 Flow Diagrams, Another Approach

Flow diagrams can be also employed without referring to decision tables, but
using other kind of information about the problem we are interested in. We will
consider here two cases. In the first case, called in the classical flow network ter-
minology supply-demand problem [1], we are given demand of some commodities
and we want to find supply of components necessary to produce the commodities.
The second case, which will be considered here, is in some sense inverse.

For the sake of simplicity we will explain the problem by means of a simple
example for paint demand in a car factory.

Suppose that cars are painted into two colors Y; and Y, and that these
colors can be obtained by mixing three paints X7, X2 and X3 in the following
proportions:

— Y] contains 20% of X1, 70% of X and 10% of Xs,
— Y5 contains 30% of X1, 50% of X5 and 20% of X35.

We have to find demand of each paint and their distribution among colors Y;
and Y5.

Employing terminology introduced in previous sections we can represent our
problem by means of flow graph shown in Figure 3. Thus in order to solve our
task first we have to compute strength of each decision rule using formula (9).
Next applying formula (4) to each X; we obtain demand of each paint. Finally,
employing formula (5) we get the distribution of each paint among colors of cars.

The final result is presented in Figure 4.

For the sake of simplicity we will use the same numerical data to illustrate
the inverse problem. Suppose we want to know distribution of votes of three
disjoint group X;, X5 and X3 of voters among two political parties Y7 and Y5
assuming now that we are given data, as shown in Figure 5.
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cov=0.20

Fig. 4. Final results

That is the group X consists of 24% of voters, X5 - 62% and X3 - 14%.
Votes distribution among parties is as follows:

— group X3 gave 50% of its votes for each party,
— group X5 gave 68% of votes for party Y7 and 32% for party Y5,
— group X3 gave 43% votes for party Y7 and 57% votes for party Y.

Proceeding in the inverse order as in the previous example we get the final results
shown in Figure 4.

That is, first we apply formula (10) and compute strength of each decision
rule. Having done this we use formula (6) and compute coverage factors of each
decision rule. Next applying formula (3) we obtain the final results, i.e., party
Y7 obtained 60% votes, whereas party Y obtained 40% votes. Votes distribution
for each party is as follows:

— party Y7 obtained 20% votes from group Xi, 70% from group X and 10%
from group Xs,

— party Y3 obtained 30% votes from group X7, 50% from group X5 and 20%
from group Xs.
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n(X,)=0.24

1(X,)=0.62

n(X,)=0.14

Fig. 5. Inverse problem

8 Conclusions

Decision tables display interesting probabilistic features, i.e., the obey the total
probability theorem and Bayes’ theorem. This gives rise to a new perspective
on Bayesian inference methodology, leads to new algorithms and new areas of
applications.

Furthermore, representation of decision tables by flow graphs and decision
spaces gives new insight into the data analysis processes.
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