Skip to main content

Evolutionary Algorithms and Rough Sets-Based Hybrid Approach to Classificatory Decomposition of Cortical Evoked Potentials

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2475))

Abstract

This paper presents a novel approach to decomposition and classification of rat’s cortical evoked potentials (EPs). The decomposition is based on learning of a sparse set of basis functions using Evolutionary Algorithms (EAs). The basis functions are generated in a potentially overcomplete dictionary of the EP components according to a probabilistic model of the data. Compared to the traditional, statistical signal decomposition techniques, this allows for a number of basis functions greater than the dimensionality of the input signals, which can be of a great advantage. However, there arises an issue of selecting the most significant components from the possibly overcomplete collection. This is especially important in classification problems performed on the decomposed representation of the data, where only those components that provide a substantial discernibility between EPs of different groups are relevant. In this paper, we propose an approach based on the Rough Set theory’s (RS) feature selection mechanisms to deal with this problem. We design an EA and RS-based hybrid system capable of signal decomposition and, based on a reduced component set, signal classification.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Freeman, W. J.: Measurement of Cortical Evoked Potentials by Decomposition of their Wave Forms. J. of Cybernetics and Information Science, 2–4 (1979) 22–56

    Google Scholar 

  2. Chapman, R.M. and McCrary, J.W.: EP Component Identification and Measurement by Principal Components Analysis. Brain and Cognition. 27 (1995) 288–301

    Article  Google Scholar 

  3. Makeig, S., Bell, A. J., Jung, T.-P., and Sejnowski, T. J.: Independent Component Analysis of Electroencephalographic Data. Advances in Neural Information Processing Systems 8 (1996) 145–151

    Google Scholar 

  4. Makeig, S., Jung, T.-P., Bell, A. J., Ghahremani, D., and Sejnowski, T. J.: Blind Separation of Auditory Event-related Brain Responses into Independent Components. Proc. Natl. Acad. Sci. USA 94 (1997) 10979–10984

    Article  Google Scholar 

  5. Raz, J., Dickerson, L., and Turetsky, B.: A Wavelet Packet Model of Evoked Potentials. Brain and Language 66 (1999) 61–88

    Article  Google Scholar 

  6. Milanova, M., Smolinski, T. G., Boratyn, G. M., Zurada, J. M., and Wrobel, A.: Sparse Correlation Kernel Analysis and Evolutionary Algorithm-based Modeling of the Sensory Activity within the Rat’s Barrel Cortex. Proc. of the International Workshop on Pattern Recognition with Support Vector Machines (SVM2002), Niagara Falls, Canada, August 10 (2002)

    Google Scholar 

  7. Olshausen, B. and Field, D. J.: Sparse Coding with an Overcomplete Basis Set: A Strategy Employed by V1? Vision Research 37(23) (1997) 3311–3325

    Article  Google Scholar 

  8. Olshausen, B.: Sparse Codes and Spikes. In: Rao, R. P. N., Olshausen, B. A., Lewicki, M. S. (eds.): Probabilistic Models of Perception and Brain Function. MIT Press, Cambridge, MA (2001) 245–260

    Google Scholar 

  9. Chen, S., Donoho, D. L., and Saunders, M. A.: Atomic Decomposition by Basis Pursuit. Technical report, Dept. Stat., Stanford University (1996)

    Google Scholar 

  10. Mallat, S. G. and Zhang, Z.: Matching Pursuits with Time-Frequency Dictionaries. IEEE Trans. on Signal Processing 41(12) (1993) 3397–3415

    Article  MATH  Google Scholar 

  11. Lewicki, M. and Sejnowski, T.: Learning Overcomplete Representations. Neural Computation 12 (2000) 337–365

    Article  Google Scholar 

  12. Swiniarski, R.: Rough Sets and Principal Component Analysis and Their Applications in Data Model Building and Classification. In: Pal, S. K. and Skowron, A. (eds.): Rough Fuzzy Hybridization: A New Trend in Decision-Making. Springer-Verlag, Singapore (1999) 275–300

    Google Scholar 

  13. Vapnik, V.: The Nature of Statistical Learning Theory. Springer-Verlag, New York (1995)

    MATH  Google Scholar 

  14. Lewicki, M. S. and Olshausen, B. A.: Probabilistic Framework for Adaptation and Comparison of Image Codes. J. Opt. Soc. of Am., 16 (1999) 1587–1600

    Article  Google Scholar 

  15. Field, D. J.: What is the Goal of Sensory Coding? Neural Computation 6 (1994) 559–601

    Article  Google Scholar 

  16. Yoshioka, M. and Omatu, S.: Independent Component Analysis Using Time Delayed Sampling. IEEE International Joint Conference on Neural Networks, Como, Italy, July 24–27 (2000)

    Google Scholar 

  17. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. Springer-Verlag, New York (1996)

    MATH  Google Scholar 

  18. Jolliffe, I. T.: Principal Component Analysis. Springer-Verlag, New York (1986)

    Google Scholar 

  19. Pawlak, Z.: Rough Sets. International J. of Computer and Information Sciences 11 (1982) 341–356

    Article  MATH  MathSciNet  Google Scholar 

  20. Marek, W. and Pawlak, Z.: Rough Sets and Information Systems. Fundamenta Matematicae 17 (1984) 105–115

    MathSciNet  Google Scholar 

  21. Nguyen, S. H. and Nguyen, H. S.: Discretization Methods in Data Mining. In: Polkowski, L. and Skowron A. (eds.): Rough Sets in Knowledge Discovery. Physica-Verlag, Heidelberg (1998) 451–482

    Google Scholar 

  22. Nguyen, S. H.: Discretization Problems for Rough Set Methods. Proc. of the First International Conference on Rough Sets and Current Trend in Computing (RSCTC’98), June 1998, Warsaw, Poland (1998) 545–552.

    Google Scholar 

  23. Wrobel, A., Kublik, E., and Musial, P.: Gating of the Sensory Activity within Barrel Cortex of the Awake Rat. Exp. Brain Res. 123 (1998) 117–123

    Article  Google Scholar 

  24. Kublik, E., Musial, P., and Wrobel, A.: Identification of Principal Components in Cortical Evoked Potentials by Brief Surface Cooling. Clinical Neurophysiology 112 (2001) 1720–1725

    Article  Google Scholar 

  25. ROSETTA: A Rough Set Toolkit for Analysis of Data. Available: http://www.idi.ntnu.no/~aleks/rosetta/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Smolinski, T.G., Boratyn, G.M., Milanova, M., Zurada, J.M., Wrobel, A. (2002). Evolutionary Algorithms and Rough Sets-Based Hybrid Approach to Classificatory Decomposition of Cortical Evoked Potentials. In: Alpigini, J.J., Peters, J.F., Skowron, A., Zhong, N. (eds) Rough Sets and Current Trends in Computing. RSCTC 2002. Lecture Notes in Computer Science(), vol 2475. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45813-1_82

Download citation

  • DOI: https://doi.org/10.1007/3-540-45813-1_82

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44274-5

  • Online ISBN: 978-3-540-45813-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics