Skip to main content

Concept of a Problem Solving Environment for Flood Forecasting

  • Conference paper
  • First Online:
Recent Advances in Parallel Virtual Machine and Message Passing Interface (EuroPVM/MPI 2002)

Abstract

Flood forecasting is a complex problem that requires cooperation of many scientists in different areas. In this paper, the concept of a Collaborative Problem Solving Environment for Flood Forecasting - a part of the CrossGrid project - is presented. This paper also focuses on the parallel numerical solution of hydraulic simulation module that is one the most computational-intensive parts of the whole system.

This work is supported by EU 5FP CROSSGRID IST-2001-32243, ANFAS IST-1999-11676 RTD projects and the Slovak Scientific Grant Agency within Research Project No. 2/7186/20.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gallopoulos, S., Houstis, E., Rice, J.: Computer as Thinker/Doer: Problem-Solving Environments for Computational Science. IEEE Computational Science and Engineering Magazine, 1994, Vol. 2, pp. 11–23.

    Article  Google Scholar 

  2. Fine, S. S., Ambrosiano, J.: The Environmental Decision Support System: Overview and air quality application. American Meteorological Society: Symposium on Environmental Applications, pp. 152–157. 1996, Atlanta, USA.

    Google Scholar 

  3. SMS: 2D surface water modeling package http://www.bossintl.com/html/sms_overview.html

  4. I.S. Duff, H.A. van der Vorst: Developments and Trends in the Parallel Solution of Linear Systems, Parallel Computing, Vol 25(13–14), pp. 1931–1970, 1999.

    Article  MathSciNet  Google Scholar 

  5. Y. Saad, M. H. Schultz: GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Scientific and Statistical computing, Vol. 7, pp. 856–869, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  6. R.S. Dembo, S.C. Eisenstat, T. Steihaug: Inexact Newton methods. SIAM J. Numerical Analysis, Vol. 19, pp. 400–408, 1982.

    Article  MATH  MathSciNet  Google Scholar 

  7. W.D. Gropp, D.E. Keyes, L.C. McInnes, M.D. Tidriri: Globalized Newton-Krylov-Schwarz Algorithms and Software for Parallel Implicit CFD. Int. J. High Performance Computing Applications, Vol. 14, pp. 102–136, 2000.

    Article  Google Scholar 

  8. MPICH-A Portable Implementation of MPI http://www-unix.mcs.anl.gov/mpi/mpich/

  9. PETSc The Portable, Extensible Toolkit for Scientific Computation. http://www-fp.mcs.anl.gov/petsc/

  10. H. Vorst: Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM J. Scientific and Statistical Computing, Vol. 13, pp. 631–644, 1992.

    Article  MATH  Google Scholar 

  11. P. Sonneveld: CGS, a fast Lanczos-type solver for nonsymmetric linear systems. SIAM J. Scientific and Statistical Computing, no. 10, pp. 36–52, 1989.

    Google Scholar 

  12. FESWMS-Finite Element Surface Water Modeling. http://www.bossintl.com/html/feswms.html

  13. Ziébelin, D., Parmentier, T.: Distributed Problem Solving Environment Dedicated to DNA Sequence Annotation. Knowledge Acquisition, Modelling and Management, pp. 243–258, 1999.

    Google Scholar 

  14. X.C. Cai, M. Sarkis: A restricted additive Schwarz preconditioner for general sparse linear systems. SIAM J. Scientific ComputingVol. 21, pp. 792–797, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  15. D. Froehlich: Finite element surface-water modeling system: Two-dimensional flow in a horizontal plane. User manual.

    Google Scholar 

  16. Y. Saad, H. Vorst: Iterative Solution of Linear Systems in the 20-th Century. J. Comp. Appl. Math, Vol. 123, pp. 1–33, 2000.

    Article  MATH  Google Scholar 

  17. K. Ajmani, W.F. Ng, M.S. Liou: Preconditioned conjugate gradient methods for the Navier-Stokes equations. J. Computaional Physics, Vol. 110, pp. 68–81, 1994.

    Article  MATH  Google Scholar 

  18. Fox, G., Furmanski, W.: Problem Solving Environments from Simulation, Medicine and Defense using the Web. CRPS Annual Meeting, May 1996. http://www.npac.sur.edu/users/gcf/crpcsemay96/fullhtml.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hluchy, L., Tran, V.D., Habala, O., Astalos, J., Simo, B., Froehlich, D. (2002). Concept of a Problem Solving Environment for Flood Forecasting. In: KranzlmĂĽller, D., Volkert, J., Kacsuk, P., Dongarra, J. (eds) Recent Advances in Parallel Virtual Machine and Message Passing Interface. EuroPVM/MPI 2002. Lecture Notes in Computer Science, vol 2474. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45825-5_24

Download citation

  • DOI: https://doi.org/10.1007/3-540-45825-5_24

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44296-7

  • Online ISBN: 978-3-540-45825-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics