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Abstract. PVM (the current version 3.4) as well as many current MPI
implementations force application programmers to use active polling
(also known as busy waiting) in larger parallel programs. This serious
problem is related to thread-unsafety of these communication libraries.
While the MPI specification is very careful in this respect, the implemen-
tations are not. We present a new mechanism of interruptable blocking
receive which makes PVM and MPI quasi-thread-safe. This mechanism
does not require any modifications to the existing semantics of PVM
or MPI (we only extend the interfaces with two new functions) and al-
lows writing multi-threaded programs without active polling. Then we
sketch how the interrupt mechanism can be hidden in the implementa-
tions of PVM and MPI, making both PVM and MPI completely thread-
safe without active polling. Results of our experiments promise a signifi-
cant speedup for all larger communication-intensive parallel applications.
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1 Introduction

We define a non-trivial parallel application as an application consisting of parallel
processes which all perform two independent tasks shown in Fig. 1. Distributed
databases, media servers, shared memory simulation libraries and parallel sci-
entific computations using application-independent load balancing libraries are
a few examples of important non-trivial parallel applications.

T1 CPU intensive computation, communicating with other processes
T> Fast servicing of requests coming from other processes (in order to provide the
other processes with data, or to balance the load, or to handle fatal errors, ...)

Fig. 1. Two independent activities of one process of a non-trivial parallel appli-
cation
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Non-trivial parallel applications based on the current implementations of
PVM [1] (PVM 3.4.4) or MPI [3] (e.g. MPICH 1.2.3, ScaMPI 1.13.7) are forced
to use active polling. Active polling means that the heavy computation in T
gets interrupted “now and then” to check for incoming requests in T5. If there is
no incoming request, then the computation in 73 is resumed; if there are some
requests, they are serviced, and then T} is resumed. Here is why it is bad: if
“now and then” means often (say, every 1 microsecond) then CPU cycles are
unnecessarily wasted every 1 microsecond when there are no incoming requests
to service; if “now and then” means seldom (say, every 1 minute) then incoming
requests do not get serviced for a minute in the worst case. An obvious compro-
mise is to use a “more reasonable” time period than 1 microsecond or 1 minute
(in order to achieve a balance between the wasted CPU time and the message-
passing latency). However, the “reasonable” constant must be tuned for every
application and for every system on which the application is supposed to run.
(Moreover, even a tuned application can exhibit a nondeterministic behaviour.)

Our goal is to avoid active polling in non-trivial applications, not only in-
side communication libraries. We propose an interrupt-driven mechanism which
allows writing non-trivial applications without active polling. This mechanism
can either be implemented as an extension to the PVM and MPI interfaces (we
refer to leaving the thread synchronisation to the user as to quasi-thread-safety)
or it can be completely hidden in the PVM and MPI implementations, yielding
the highest level of thread-safety defined by the MPI standard (complete thread-
safety, see MPI_THREAD MULTIPLE in [3])—multiple threads may call PVM/MPI
functions, with no restrictions.

We focus on PVM with socket-based communication in this paper. We are
aware of different implementations of PVM and MPI and also of different imple-
mentations of the MPI specification itself—however, where a reasoning applies
to both PVM and MPI (meaning the implementations of the standards), we
write “PVM/MPT” throughout the text. We are convinced that the techniques
explained in Section 4 can be applied to any implementation of PVM and any
implementation of MPI (no matter whether sockets or shared memory are used
for inter-process communication).

Section 2 compares our work to previous efforts. Section 3 discusses options of
implementing non-trivial applications using PVM. In Section 4 we explain why
non-trivial parallel applications cannot be written without active polling using
the current PVM/MPI implementations. We present a new interrupt mechanism
which makes PVM/MPI quasi-thread-safe and allows avoiding active polling in
non-trivial applications. This mechanism is an extension to the PVM/MPT inter-
faces (two new functions are added to the existing interfaces). The original func-
tionality and performance of PVM/MPI are fully preserved. In the same section
we also sketch how the interrupt mechanism can be hidden inside PVM/MPI,
making the libraries completely thread-safe, without active polling. Our theo-
retical considerations are supported by experiments in Section 5.
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2 Related Work

Thread-safety of PVM and MPI has been studied for many years. We mention
only a few research papers here, the complete list would be too extensive.

LPVM (Lightweight-process PVM) system was introduced in [7]. LPVM is
designed for shared-memory machines. PVM tasks are implemented as threads
in LPVM. A definition of thread-safety is given in the paper: “A program is
thread-safe when multiple threads in a process can be running that program
successfully without data corruption. A library is thread-safe when multiple
threads can be running a routine in that library without data corruption.” The
authors recognize two main issues that have to be dealt with to make PVM
multi-thread-safe: global state and reentrancy. LPVM removes global states from
the PVM library by assigning receive and send buffers (and other resources) to
each task. The user interface of PVM (3.3) is only slightly modified but a major
redesign of 1ibpvm is needed. Our implementation is simple and does not require
a removal of global states.

TPVM [2] is a different approach which assumes a thread to be the basic
unit of parallelism in a distributed system. There is a thread server registering
all threads running in the system. This fine-grained model is mapped onto the
coarse-grained process model of PVM for the purpose of message passing. Rather
than going into technical details, we shall explain the problem of TPVM from
the point of view of a non-trivial application (see Section 4.1 in [2] for more
details). There is a global message queue accessible to all threads in each process.
A thread wanting to receive a message follows the following protocol. First it
looks for the message in the global message queue. If the message is there, the
thread continues; if not, the thread attempts to receive a message from another
TPVM task using a nonblocking receive. If a message is there, but it is addressed
to another thread, the thread stores the message in the global message queue
and retries the nonblocking receive (and later wakes up threads waiting for those
messages); otherwise it falls asleep. Here is the weakness of the protocol: When
a thread falls asleep, then another thread must attempt to receive a message
in order to wake up the sleeping thread. If there is no such thread, the sleeping
thread will sleep forever—even though there might be a message addressed to
the sleeping thread sent by some other TPVM process. This situation can be
resolved by running a special thread that regularly polls for incoming messages
and wakes other threads up. Our mechanism does not require running a polling
thread.

A PVM library supporting the concept of active messages is described in [0].
The library uses a signal handling mechanism in order to detect a change on the
set of receiving socket file descriptors. This idea is close to what the MPICH’s
ch_p4 driver does. However, it does not solve the problem of non-trivial appli-
cations.

MiMPI [1], IBM’s MPT and ScaMPI claim to be fully thread-safe. It is difficult
to judge without further information how the problem of thread-safety is solved
in the implementations. Active polling is used inside ScaMPI.
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3 Programming Non-trivial Applications with PVM

This section discusses different programming techniques for implementing non-
trivial applications using PVM 3.4 and explains why active polling cannot be
avoided.

3.1 PVM and Thread-Safety

Threads are a natural way of implementing the tasks 77 and T5 from Fig. 1 to
run simultaneously (concurrently) in the scope of a single PVM task (a single
process). Fig. 2 a shows a pseudo-code of a generic non-trivial parallel applica-
tion. We restrict the communication of thread 737 to sending messages but this
restriction is not important. We implemented the pseudo-code of Fig. 2 a. It does
not work. The messages sent by pvm_send of the thread T} get never delivered.
PVM does not allow a thread to send a message while another thread is blocked
in pvm_recv. This is a consequence of “PVM is not thread-safe”.

Fig. 2 b shows how this problem can be overcome. Thread T» uses active
polling to check for incoming messages. Thread T; is allowed to call pvm_send
only during inactive periods of Ty (when T is blocked in the sleep call). This
code works; however, it is very poor for the reasons explained in Section 1.
Unfortunately, as we show in the following, the pseudo-code of Fig. 2 b is the
only way to implement the desired functionality.

3.2 Handlers which Do Not Get Fired Unless They Are Told
to Do so

Message handlers have been introduced in PVM 3.4 (see also [5]). They seem
to provide an alternative way of implementing the scenario of Fig. 2. We briefly
explain what message handlers are and what is wrong with them.

mutex comm;
Thread 75
while (not_done)
Thread T lock(comm);
M M while (not_done)  arrived=probe();
while (not_done) while (not_done) compute(); while (arrived)
compute(); recv(); lock(comm); recv();
send(); handle-message(); send(); handle_message();
unlock(comm); arrived=probe () ;
unlock(comm);
sleep(time);

a) Natural implementation, not working b) Active polling, working but poor

Fig. 2. Threaded implementation of one process of a generic non-trivial appli-
cation
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PVM 3.4 users are encouraged to create own message handlers using the
function

pvm_addmhf (int src, int tag, int ctx, int (*func) (int mid))

which registers a user’s message handler func. The handler func is fired when
a matching message arrives (the message header must match the parameters
src, tag and ctx).

An elegant implementation of the task 75 from Fig. 1 would be registering
a set of message handlers for Ts, getting even rid of threads (the only running
thread would be T}). However, the manual to pvm_addmhf says (note the marked
text): “...pvm_addmhf specifies a function that will be called whenever libpvm
copies in a message whose header fields of src, tag, and ctx match those provided
to pvm_addmhf ()”. In other words, the message handlers are called only when
the application asks for it (by calling pvm_recv or pvm_probe, or pvm_send, ... )
If the task T5 is implemented using message handlers registered by pvm_addmhf,
then T5 will not receive any message until 77 wants to communicate!

Using message handlers for implementing non-trivial applications therefore
requires running a thread that calls pvm_probe (or some other PVM function)
at regular time intervals. This equals to active polling.

3.3 Lazy Signaling

PVM allows delivering signals between tasks. Signals, in combination with mes-
sage handlers, can be used to get rid of the polling thread mentioned in Sec-
tion 3.2. The scenario of Fig. 1 would work as follows (we present a simplified
version here, the actual implementation can be very complex):

. Process A sends a message to process B

. Meanwhile, process B runs 77, not noticing the message

. Process A sends a signal to process B, saying “Get up, you got a message!”

. Process B gets the signal and fires a signal handler. The signal handler
calls pvm_probe which fires a message handler that receives the message and
performs an appropriate T5’s action.

=W N

Note that there is no active polling in the above scenario. However, technical
issues make this approach inefficient and non-portable and restrict the use of
PVM to homogeneous parallel machines.

4 (Quasi-) Thread Safe PVM/MPI without Active
Polling

The reasons why the scenario from Fig. 1 cannot be efficiently implemented
using the current standards are:

1. Tasks T7 and Ty must be implemented as threads.
2. Ty must run a blocking receive.
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3. Ty cannot send any messages while 75 is blocked in the blocking receive if
the communication library (PVM or MPI) is not thread-safe.

4. Tt seems to be difficult from the software engineering point of view to imple-
ment the PVM and MPT libraries in a reentrant way without active polling.

In the following section we first describe an interrupt mechanism which is
missing in PVM and in MPI and which allows to avoid active polling in non-
trivial multi-threaded parallel applications—this is what we call quasi-thread-
safety. Quasi-thread-safety leaves the correct synchronisation of threads to the
user (or to a library built on top of quasi-thread-safe PVM/MPI). Then we sketch
how to make PVM/MPI completely thread-safe, hiding the interrupt mechanism
in the implementations of the standards.

4.1 Interruptable Blocking Receive and Quasi-Thread-Safety

Let us return to one of the reasons of PVM/MPI being thread-unsafe unless
active polling is used (point 3): “Ty cannot send any messages while T5 is blocked
in the blocking recv if the communication library (PVM or MPI) is not thread-
safe.” In terms of concurrent programming, 75 is waiting inside a critical section
of a blocking recv which does not allow T3 to enter its critical section of a send.
Our idea is to let T3 interrupt Ts for the time necessary for completing the send
call. T5 must be blocked outside of its critical section during the interrupt. Care
must be taken to not let T enter its critical section before T5 has left its critical
section. At the end of the interrupt (after the send call has returned), after T}
has left its critical section, 75 must return to exactly the same state in which it
was before the interrupt.

To implement the above mechanism, we extended the PVM (3.4) and MPI
(MPICH 1.2.3, ch_p4) libraries with two new functions. The extensions require
only a few changes in the implementation of PVM/MPI (literally, a few lines of
code), while the original functionality does not change at all (in case of PVM
only the implementation of the library is slightly modified, the PVM daemon is
not changed). This is the C interface and semantics of the new functions:

void interrupt_recv(void)
Blocks the calling thread until the thread that is blocked in a recv has
blocked outside of its critical section and then returns the control to the
calling thread. (If there is no thread blocked in a recv, the control never
returns to the calling thread.)

void resume_recv(void)
Makes the thread blocked outside of the critical recv’s section reenter its
critical recv’s section and then returns the control to the calling thread.

The extended PVM/MPI remain generally thread-unsafe. A random se-
quence of concurrent calls to PVM/MPI functions results in an undefined be-
haviour. We do not intend to call the functions randomly. We restrict ourselves
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to calling PVM/MPI functions in a well defined order that avoids both thread-
safety problems and active polling when writing non-trivial parallel applications.
This is possible to achieve with the extended PVM/MPT and this is why we call
the extended libraries quasi-thread-safe. To simplify writing of programs that
use only the well defined order of PVM/MPT calls, we developed a programming
paradigm implemented as a library (TPL, Thread Parallel Library) that uses
the strategy described at the end of this section.

Fig. 3 depicts a modified scenario of Fig. 2 a, revealing the integration of
interrupt recv and resume recv in PVM/MPI in more detail. This scenario
avoids active polling as well as thread-safety problems in PVM/MPI. The trick is
based on sending a fake “message” from a process to itself. We assume a socket
inter-process communication here (but the same interrupt mechanism can be
implemented for shared memory communication as well). The implementation of
recv in PVM/MPI causes T5 to block in a select call on a set of file descriptors
connected to sockets (leading to other processes in the network). We extend this
set of file descriptors with the read-end of a synchronous POSIX pipe intr_fd.
The function interrupt_recv called by T} simply writes to the write-end of
intr_fd. This write causes T3 to block until the read-end of the (synchronous)
pipe has been read. The read-end of intr_fd becomes readable, the select in
recv unblocks and 75 bails out of its critical section. After that, recv reads
from intr_fd and 75 gets blocked in the following read. Now the thread T
gains control and can safely send a message. After the message has been sent, T}
calls resume_recv which is implemented in Fig. 3 in exactly the same way as
interrupt_recv. resume_recv writes to the write-end of intr_fd. This unblocks
the second read in recv and T, gets eventually blocked in the select of its
critical section again. (The implementation of “bailing out of the critical recv
section” is tricky. At the time of writing we have a solution for socket-based
PVM 3.4 and MPICH’s ch_p4 driver.)

Here is a sketch of how PVM/MPI can be made completely thread-safe,
without a loss of efficiency caused by active polling:

— Each PVM/MPI process runs a thread (let us call it main thread) that is
(almost always) blocked in a blocking recv, listening to all sockets from
where a message might arrive. When a message arrives, it is stored by main
thread in a global message queue (or message queues).

— The message queue is protected by a mutex.

— Each send is preceded by interrupt_recv and followed by resume _recv.

— All send calls are mutually excluded (using a mutex).

— The user’s code runs as a thread (or as several threads if the application itself
is multi-threaded). User’s recv calls are implemented as functions that access
the message queue, not file descriptors. A recv gets blocked on a semaphore
when it did not find the requested message.

— All PVM/MPI functions are divided into collision classes. Each class contains
functions that internally modify the same global memory structures (or cause
some other racing conditions when called simultaneously). Functions of one
class are mutually excluded (using a mutex).
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— Thread addressing should not be a part of PVM/MPI interface. It is up
to the user to develop a thread addressing scheme (if it is needed in the
application).

5 Experiments

We used two versions of the pingpong benchmark in our experiments. The ping-
pong application consists of two processes, P; and P,. In both versions the
process P, runs a loop in which it first receives a message and then answers it.
The two threaded versions of the process P; are depicted in Fig. 2 b (POLL, the
active polling version, based on thread-unsafe PVM/MPI) and Fig. 3 (QTS, the
event-driven version based on quasi-thread-safe PVM/MPI). In both versions
there is no compute () call in 77 and no handle message () call in T». We used
a nanosleep of 50 milliseconds in the active polling version (as we show later,
the choice of this constant is optimal—a finer setting has the same effect).
Table 1 shows the time measurements in which the process P; sent (and
received) 100,000 messages of the length 10,000 Bytes. Each measurement was
repeated 10 times. “Maximum deviation” is the absolute maximum deviation
from the average time (in seconds). We also observed the number of nanosleep ()
calls which explains the timing differences between the polling versions of the

Thread T, Thread T,
while (not_done) while (not_done)
compute(); recv();

interrupt_recv(D handle_message();

send();

resume_recv()
interrupt_recv()

write(intr_fd);

/* critical section */

PVM or MPI

resume_recv()
write(intr_fd);

select(..., intr_fd);

if (some fd besides intr_fd is fired)
do_original_recv_stuff();
interrupted = FALSE;

else

interrupted = TRUE;

read intr: d);
while (interrupted);

Fig. 3. Scenario of Fig. 2 a using the interrupt mechanism of quasi-thread-safe
PVM/MPI. The synchronisation points (where a thread can possibly block) are
typeset in slanted boldface. A synchronous pipe intr_fd is used here for the
thread synchronisation
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Table 1. Pingpong benchmark, 100,000 messages

Communication library|| PVM [PVM|MPICH|MPICH|ScaMPI|ScaMPI
Pingpong version||POLL| QTS| POLL | QTS | POLL TS

Average time (in seconds)|| 120 | 21 42 26 98 339
Maximum deviation (in seconds)|| £ 66 | £ 3 || £ 1 +1 +40 | £81
Number of sleep() calls|| 2,370 | O 583 0 1,533 | 0 (?)

benchmark (see below). The data were measured on a double-processor 850 MHz
Intel Pentium 3 running Linux Redhat. We compared PVM 3.4, MPICH 1.2.3
(ch_p4 driver) and ScaMPI 1.13.7. ScaMPI is thread-safe, therefore we could also
use the code from Fig. 2 a (T5) for a direct comparison with the quasi-thread-
safe MPICH’s version. All times are absolute execution times (the timing starts
right before the receiving loop in the process P; and stops right after the loop).

Note that the active polling versions of the pingpong benchmark are profiting
from not calling sleep (nanosleep) very often. A continuous stream of messages
sent by the process P» allows the process P; to pull the messages from the
network one after another without falling asleep after each recv. The deviations
in the measured times by the POLL versions are caused by the varying number of
sleep() calls in the individual runs of the benchmark. If the stream of messages
is not continuous, then the latency of each recv followed by a sleep depends
solely of the timer’s resolution and the process/thread switching overhead in the
operating system (not of the speed of the processors or the network connecting
them). Without a special tuning of the kernel the latency is 0.02 sec (the time
argument of the nanosleep(time) call is not important). This can be measured
by calling nanosleep (1l microsecond) many times in a loop.

6 Conclusions

We showed that the current PVM implementation and some of MPI implementa-
tions force a whole class of important parallel applications to use active polling.
We also showed the limitations of active polling in non-trivial communication-
intensive applications. We explained a new interrupt mechanism that makes
PVM as well as MPI quasi-thread-safe (quasi-thread-safety means a possibility
of writing non-trivial applications without active polling) or, with a little more
effort, completely thread-safe. No change in the interfaces of PVM or MPI is
needed in order to achieve complete thread-safety of both standards without
active polling. We demonstrated the potential of our interrupt mechanism on
a pingpong benchmark. The benchmark is an abstraction of all non-trivial par-
allel applications. Even in a comparison to a highly optimised active polling
we measured significant speedups when we used the new interrupt mechanism
of quasi-thread-safe PVM 3.4 and quasi-thread-safe MPICH 1.2.3. Moreover, we
measured a speedup of 13.5 in a direct comparison to the commercial thread-safe
MPT implementation by Scali.
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