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Abstract

Authentication and non-repudiation are essential security requirements for electronic
commerce applications and other types of binding telecooperation. Symmetric and
asymmetric encryption techniques and different types of digital signatures can be used
to provide these security services. However, cryptographic algorithms can only provide
isolated functionality that has to be integrated into more or less complex cryptographic
protocols. It is not always clear which security services the resulting protocol pro-
vides, making it hard to use the protocol appropriately. In this paper we present a
formal method for the specification of e-commerce protocols and transactions on differ-
ent levels of abstraction. Based on the notions of formal language theory we introduce
formalisations of the security services of authenticity and proof of authenticity that are
independent of the abstraction level. Language homomorphisms satisfying particular
properties preserve the respective security properties from a higher to a lower level of
abstraction.

Keywords: authenticity, provability, e-commerce, binding cooperations, formal lan-
guages, asynchronous product automata

Zusammenfassung

Authentizität und Nichtabstreitbarkeit sind essentielle Sicherheitsanforderungen von
e-commerce und anderen verbindlichen Telekooperationsanwendungen. Symmetrische
und asymmetrische Verschlüsselungstechniken und verschiedene Typen digitaler Sig-
naturen können zur Realisierung dieser Sicherheitsanforderungen verwendet werden.
Allerdings muss die durch kryptographische Algorithmen gelieferte isolierte Funktion-
alität in mehr oder weniger komplexe kryptographische Protokolle integriert werden.
Es ist nicht immer klar ersichtlich, welche Sicherheitsanforderungen durch ein Protokoll
erfüllt werden. Daher ist es oft schwierig, kryptographische Protokolle sicher einzuset-
zen. In diesem Bericht stellen wir eine formale Methode vor, mit der e-commerce
Protokolle auf verschiedenen Abstraktionsstufen spezifiziert werden können. Basierend
auf der Theorie formaler Sprachen werden die Sicherheitsdienste Authentizität und
Nachweisbarkeit von Authentizität unabhängig vom jeweiligen Abstraktionsniveau for-
malisiert. Sprachhomomorphismen, die bestimmte Bedingungen erfüllen, erhalten die
Eigenschaften beim Übergang von abstrakten zu konkreteren Modellen.

Schlagworte: Authentizität, Nachweisbarkeit, e-commerce, verbindliche Kooperatio-
nen, Formale Sprachen, Asynchrone Produktautomaten

Part of this work is based on results of a project funded by Siemens AG.
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1 Introduction

Authentication and non-repudiation are essential security requirements for electronic com-
merce applications and other types of binding telecooperation. Symmetric and asymmetric
encryption techniques and different types of digital signatures can be used to provide these
security services. However, cryptographic algorithms can only provide isolated function-
ality that has to be integrated into more or less complex cryptographic protocols. Subtle
differences between these protocols and the assumptions used make it hard to decide what
is the security service and the related security property a protocol actually provides. This
may result in a security flaw of the application, not because of a weakness of the protocol
but because of a misinterpretation of the protocol’s security properties.

Our approach for the systematic design of an e-commerce application is to specify the
security services required for the application on a high level of abstraction independently
of any implementations such as cryptographic protocols, and then to verify that a certain
protocol provides the related security properties. This approach, formulated in terms of
formal language theory, is based on a model for key establishment protocols [10] and is
related to a formal framework for binding cooperations [5]. In that paper those states of a
binding cooperation are determined in which proofs of authenticity are necessary to reach
the goal of the cooperation.

In this paper, we present formal methods for the specification of e-commerce proto-
cols, transactions and properties on different levels of abstraction. On a higher level of
abstraction, the behaviour of a system is specified by identifying all possible actions and
specifying the set of possible state transition sequences. On a lower abstraction level we
use Asynchronous Product Automata (APA), the behaviour of which uniquely defines the
set of possible state transition sequences [9]. Suitable language homomorphisms map from
the lower to the higher level of abstraction. Independent of the abstraction levels, we intro-
duce formal specifications of the security services authentication and proof of authentication
in terms of state transition sequences, viewed from the agents’ perspective. On the high
level of abstraction, the respective security properties result in requirements on the system.
These requirements correspond to security mechanisms on the lower abstraction level that
are realized by using abstract communication channels that provide certain security prop-
erties. We finally define properties of language homomorphisms that preserve authenticity
and proof of authenticity from a higher to a lower level of abstraction.

Most of the work in the field of cryptographic protocols has concentrated on the analy-
sis of authentication and key establishment protocols. Therefore, formalisation of security
properties is usually based on special representations of protocols on a fixed level of ab-
straction and restricted to authentication, freshness and confidentiality of keys. Our work
is related to a range of work concerning general specification of security properties. Mead-
ows and Syverson [13] define a formal language for the specification of requirements on
cryptographic protocols. Authenticity is defined as the property that a message is only ac-
cepted if at some point in the past it was sent by a specific agent and before that requested
from that agent. Schneider [11, 12] uses a more general approach to define authenticity
of events or sets of events on globally viewed traces. Both approaches do not cover prov-
ability or non-repudiation of authenticated events towards other agents. In the context of
anlysing electronic commerce protocols with respect to accountability, Kailar [6] introduces
the notion of strong and weak proofs that can be transferable or nontransferable. He then
uses inference rules to reason about accountability. Another framework to reason about
properties of electronic commerce protocols was proposed by Clarke, Jha and Marrero [3].
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However, both approaches do not provide the formalization of a proof itself. All these
papers are exclusively concerned with the analysis of security protocols. To the best of
our knowledge, there is no approach to a formalisation of security properties of electronic
commerce protocols that supports a design methodology.

To illustrate our approach, we give the abstract specification of a simple e-commerce
transaction and show that it provides authentication and proof of authentication. We
then present a concrete protocol on the lower abstraction level where appropriate abstract
channels are used. We finally define a homomorphism that maps the protocol specification
to the abstract specification and show that it provides the necessary properties, thus proving
that the protocol itself provides authenticity and proof of authenticity.

The rest of the paper is organized as follows. In the next section we present the formal
definitions of the security services authentication and proof of authentication and we define
homomorphism properties that preserve these security properties from a higher to a lower
level of abstraction. In Section 3 we specify a simple price request and offer transaction on
a high abstraction level and show that it provides authenticity and proof of authenticity.
In Section 4 we introduce Asynchronous Product Automata and show how they are used
to model protocols. In Section 5 we present a concrete protocol specification for the price
request and offer transaction. We then specify a concrete homomorphism that maps the
protocol onto the high level specification and show that it provides the desired properties.
As we present an example on two specific levels of abstraction, we will refer to the higher
level as to “the high level” and to the lower level as to “the low level” of abstraction.

2 Formal specification of security properties

2.1 System behaviour and abstraction by language homomorphisms

The behaviour S of a discrete system can be formally described by the set of its possible
sequences of actions. Therefore S ⊆ Σ∗ holds where Σ is the set of all actions of the system
and Σ∗ the set of all finite sequences of elements of Σ, including the empty sequence denoted
by ε. This terminology originates from the theory of formal languages [4], where Σ is called
the alphabet, the elements of Σ are called letters, the elements of Σ∗ are referred to as words
and the subsets of Σ∗ as formal languages. Words can be composed: if u and v are words,
then uv is also a word. This operation is called the concatenation; especially εu = uε = u.
A word u is called a prefix of a word v if there is a word x such that v = ux. The set of
all prefixes of a word u is denoted by pre(u); ε ∈ pre(u) holds for every word u. We denote
the set of letters in a word u by alph(u).

Formal languages which describe system behaviour have the characteristic that pre(u) ⊆
S holds for every word u ∈ S. Such languages are called prefix closed. System behaviour is
thus described by prefix closed formal languages.

The set of all possible continuations of a word u ∈ S is formally expressed by the left
quotient u−1(S) = {y ∈ Σ∗ | uy ∈ S}.

Different formal models of the same application/system are partially ordered with re-
spect to different levels of abstraction. Formally, abstractions are described by so called
alphabetic language homomorphisms. These are mappings h∗ : Σ∗ −→ Σ′∗ with h∗(xy) =
h∗(x)h∗(y) , h∗(ε) = ε and h∗(Σ) ⊆ Σ′∪{ε}. So they are uniquely defined by corresponding
mappings h : Σ −→ Σ′ ∪ {ε}. In the following we denote both the mapping h and the ho-
momorphism h∗ by h. These homomorphisms map action sequences of a finer abstraction
level to action sequences of a more abstract level.
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Consider for example an application consisting of four actions: a price for a certain
service is requested, the request is received, and then an offer for this service is sent and
received. On a high level of abstraction this may be formalized by only specifying the
names of the actions (e.g. PRICEREQ-S, PRICEREQ-R, OFFER-S, OFFER-R) and system
assumptions such as an offer can only be received if at some point before it was sent. On
a lower level of abstraction more information about the system may be specified: The
agents’ actions may be split into internal and external ones, their internal memory may
be specified, etc. A homomorphism can be defined that maps the internal actions of the
agents onto ε, all send actions of price requests onto PRICEREQ-S, all price request receive
actions onto PRICEREQ-R, etc. This homomorphism serves as an abstraction of the finer
system specification.

2.2 Malicious behaviour

Usually, the specification of a cryptographic protocol does not include possible malicious
behaviour of external attackers or of malicious protocol agents. In order to be able to
express security properties, malicious behaviour has to be considered. For the security
analysis of protocols malicious behaviour is often explicitly specified and included in the
system behaviour. However, in general malicious behaviour is not previously known and one
may not be able to adequately specify all possible actions of dishonest agents. Therefore,
in this paper we use a different approach. Malicious behaviour is not explicitly specified
but restricted by system assumptions and by assumptions about the underlying security
mechanisms (for example the application of cryptography).

Let Σ be any set of actions (that may contain malicious actions) and SC ⊆ Σ∗ a correct
system behaviour without malicious actions. A behaviour containing malicious action is
denoted by S. We assume that SC ⊆ S ⊆ Σ∗. Let � be a set of agents. For each P ∈ �
we denote by WP ⊆ Σ∗ the set of those sequences agent P considers to be possible. WP

formalizes P’s knowledge about a system SC . The set Σ∗ as well as the sets WP may contain
malicious behaviour. Both sets are not completely specified and are in general infinite, but
all sets WP are restricted by the following assumptions:

• WP satisfies properties of underlying security mechanisms (see Section 4.4 for formal
definitions of security mechanisms of a system S).

• System assumptions cannot be violated in WP . (For example the assumption that
access to an agent’s internal memory is protected as provided by the structure of the
model used in Section 5).

We assume SC ⊆ WP , i.e. every agent considers the correct system behaviour to be
possible. Security properties can now be defined relative to WP . A system S may satisfy
a security property with respect to WP , but may fail to satisfy the same property with
respect to a different W̃P , if P considers more actions to be possible on account of weaker
system assumptions and security mechanisms.

After a sequence of actions ω ∈ S has happened, every agent can only use his local view
of ω to determine the sequences of actions he considers to be possible. In order to determine
what is the local view of an agent, we first observe that the actions Σ can be seperated
into those that are relevant for a security property and those that are not, the latter set
of actions being denoted by Σ/#. In the above introduced price request/offer example, we
may want the offer to provide certain security properties, while the sending and receiving of
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a price-request are not relevant for any security property and therefore belong to Σ/#. All
actions relevant for a security property (sending and receiving of the offer) are performed by
and can be assigned to exactly one agent. Thus Σ =

⋃̇
P∈P∪{#}Σ/P (where Σ/P denotes all

actions performed by agent P ). The homomorphism πP : Σ∗ → Σ∗
/P defined by πP (x) = x

if x ∈ Σ/P and πP (x) = ε if x ∈ Σ \Σ/P formalizes the assignment of actions to agents and
is called the projection on P.

On a high level of abstraction where the system behaviour is described by sequences of
actions containing essentially the action name and the agent performing the action (if any),
all information about an action x ∈ Σ/P is available for agent P . Thus πP defines P’s local
view of the system on this level of abstraction. But on a lower level of abstraction, where
additional information such as the agents’ memory may be available, the elements of Σ may
contain information about the global system state (e.g. all agents’ memory) and may be
represented by a triple (global state, transition lable, global successor state). However, an
agent P generally cannot “see” the complete global state (he cannot see, for example, other
agents’ memory). Therefore, the projection πP may be too fine to define the local view of an
agent P ∈ �. Thus, we generally denote the local view of an agent P on Σ by λP : Σ∗ → Σ∗

P .
The local views of all agents together with the behaviour not assigned to any agent contain
all information about the system behaviour S. For every abstraction level, the local views
of the agents have to be defined separately and will in general be different.

For a sequence of actions ω ∈ S and agent P ∈ �, λ−1
P (λP (ω)) ⊆ Σ∗ is the set of

all sequences that look exactly the same from P’s local view after ω has happened. But
depending on his knowledge about the system S and underlying security mechanisms and
system assumptions, P does not consider all sequences in this set possible. Thus he can
use his knowledge to reduce this set: λ−1

P (λP (ω))∩WP describes all sequences of actions P
considers to be possible when ω has happened.

2.3 Authenticity and proof of authenticity

Authenticity and proof of authenticity are important security properties for e-commerce
applications and may also be relevant for the price-request/offer example. The agent re-
ceiving an offer may want to know who sent it, and may also want to be able to proof that
the offer was sent by a certain other agent.

In this section we formally define the security properties authenticity and proof of au-
thenticity and then give sufficient conditions on language homomorphism to preserve these
properties from higher to lower levels of abstraction.

We define authenticity from the agents’ perspective. A set of actions Γ is authentic
for agent P if in all sequences that P consideres possible after a sequence of actions has
happened, some time in the past an action in Γ must have happened. One (or more) of
the actions of ω performed by P is responsible for Γ being authentic for P. This can be,
for example, that P receives an offer. If then all sequences of actions he considers possible
contain a send offer action performed by Q, then the set of actions where Q sends an offer
is authentic for P.

In the following let S ⊆ Σ∗ be a prefix closed language describing the behaviour of a
system and � a set of agents.

Definition 1 (Authenticity) A set of actions Γ ⊆ Σ is authentic for P ∈ � after a
sequence of actions ω ∈ S with respect to WP if alph(x)∩Γ �= ∅ for all x ∈ λ−1

P (λP (ω))∩WP .
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Some actions do not only require authenticity but also need to provide a proof of au-
thenticity. If agent P owns a proof of authenticity for a set Γ of actions, he can send this
proof to other agents, which in turn can receive the proof. In the following definition the
set ΓP denotes actions that provide agents with proofs about the authenticity of Γ. If agent
P has executed an action from ΓP then Γ is authentic for P and P can forward the proof
to any other agent using actions in ΓS.

Definition 2 (Proof of authenticity) A pair (ΓS, ΓP) with ΓS ⊆ Σ and ΓP ⊆ Σ is a
pair of sets of proof actions of authenticity for a set Γ ⊆ Σ on S with respect to (WP )

P∈�
if for all ω ∈ S and for all P ∈ � with alph(πP (ω)) ∩ ΓP �= ∅ the following holds:

1. For P the set Γ is authentic after ω and

2. for each R ∈ � there exists actions a ∈ Σ/P ∩ ΓS and b ∈ Σ/R ∩ ΓP with ωab ∈ S.

Agent P ∈ � can give proof of authenticity of Γ ⊆ Σ after a sequence of actions ω ∈ S if 1
and 2 hold.

In the following, we shortly call (ΓS, ΓP) a proof action pair for Γ.
This definition represents one specific type of proofs. Kailar has classified proofs as

strong or weak and transferable or non-transferable [6]. In terms of this classification
our definition provides strong transferable proofs with the additional property that the
possibility of the proof transfer is reliable. These proofs require the assumption that no agent
disposes of his proofs. From a technical point of view the formal definition of this property
is the most simple. However, other types of proofs can be formalized in a similar way.
For example by introducing an additional class of actions representing the loss of proofs,
Definition 2 can be modified: Agent P can give proof of authenticity only as long as no
corresponding loss action has occured. The appendix contains corresponding modifications
of Definition 2, Definition 4, and Theorem 2.

As already explained, we describe an application on different levels of abstraction. On
a lower level we may describe the system behaviour by using tupels (global state, action,
global successor state) that contain information about agents’ memory etc. These tupels
can easily be mapped to the respective actions of the higher abstraction level by use of an
appropriate homomorphism. However, properties that hold on the high abstraction level
need not necessarily hold on the low level and vice versa. The following two definitions
give sufficient conditions of homomorphisms such that these “transport” certain security
properties from a high to a low abstraction level.

Definition 3 Let h : Σ∗ → Σ′∗ be an alphabetic homomorphism and for P ∈ � let λP :
Σ∗ → Σ∗

P and λ′
P : Σ′∗ → Σ′∗

P be the homomorphisms describing the local views of P on Σ
and Σ′, respectively. The language homomorphism h preserves authenticity on S if for each
P ∈ � exists a mapping h′

P : λP (S)→ λ′
P (S′) with λ′

P ◦ h = h′
P ◦ λP on S.

f ◦g denotes the composition of functions f and g. The above property captures the fact
that the homomorphism h has to be consistent with the local views of P on both abstraction
levels in order to preserve authenticity. This means that the actions relevant for Γ′ being
authentic for P and their inverse images under h must be equally visible by P. In particular,
the inverse image of the action being responsible for the authenticity of Γ′ must not be
mapped to ε by P’s local view λP on the lower abstraction level.
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Theorem 1 If Γ′ ⊆ Σ′ is authentic for P ∈ � after ω′ ∈ h(S) with respect to W ′
P , and

if h preserves authenticity on S, then Γ = h−1(Γ′) ∩ Σ is authentic for P ∈ � after each
ω ∈ h−1(ω′) ∩ S with respect to each WP with WP ⊆ h−1(W ′

P ).

Proof: Let x ∈ λ−1
P (λP (ω)) ∩ WP . Then λP (x) = λP (ω) and x ∈ WP . Hence

h′
P (λP (x)) = h′

P (λP (ω)), which implies λ′
P (h(x)) = λ′

P (h(ω)) by Definition 3. Hence
h(x) ∈ λ′−1

P (λ′
P (h(ω))). Since by assumption WP ⊆ h−1(W ′

P ) and x ∈ WP , h(x) ∈ W ′
P

and therefore h(x) ∈ λ′−1
P (λ′

P (h(ω))) ∩W ′
P . Now, by the definition of authenticity of Γ′,

alph(h(x)) ∩ Γ′ �= ∅, which implies alph(x) ∩ Γ �= ∅. �

We now define properties for a homomorphism in order to preserve proofs. The first
condition essentially states that whenever the homomorphic image of a sequence of actions
u ∈ S can in the abstract system be continued with a proof send action in ΓS′ and a proof
receive action in ΓP′, there must be appropriate proof send and receive actions in the inverse
image of ΓS′ and ΓP′, respectively, to continue the sequence of actions u in S.

The second condition states that h must not map actions performed by and assigned to
agent P on the low abstraction level onto actions assigned to a different agent on the high
abstraction level.

Note that ((ΓS′ ∩ Σ′
/P )(ΓP′ ∩ Σ′

/R)) is the set of all words of length 2 with the first
letter in (ΓS′ ∩ Σ′

/P ) and the second letter in (ΓP′ ∩ Σ′
/R).

Definition 4 Let ΓS′ ⊆ Σ′ and ΓP′ ⊆ Σ′. h : Σ∗ → Σ′∗ preserves (ΓS′, ΓP′)-proofs on S if
h preserves authenticity on S and if the following holds:

1. h(u)−1(h(S))∩((ΓS′∩Σ′
/P )(ΓP′∩Σ′

/R)) �= ∅ implies u−1(S)∩((h−1(ΓS′)∩Σ/P )(h−1(ΓP′\
Σ′

/#) ∩ Σ/R)) �= ∅ for each P, R ∈ � and u ∈ S.

2. h(Σ/P ) ∩ (Σ′ \ Σ′
/#) ⊆ Σ′

/P for each P ∈ � and h(Σ/#) ⊆ Σ′
/#.

Theorem 2 Let (ΓS′, ΓP′) be a proof action pair for Γ′ ⊆ Σ′ on h(S) with respect to
(W ′

P )
P∈�. Let h : Σ∗ −→ (Σ′)∗ be a homomorphism that preserves (ΓS′, ΓP′)-proofs on S,

and let ΓS = h−1(ΓS′) ∩ Σ, ΓP = h−1(ΓP′ \ Σ′
/#) ∩ Σ and Γ = h−1(Γ′) ∩ Σ. Then:

1. (ΓS,ΓP) is a proof action pair for Γ ⊆ Σ on S ,

2. if agent P ∈ � can give proof of authenticity of Γ′ after ω′ ∈ h(S) then P can give
proof of authenticity of Γ after each ω ∈ h−1(ω′) ∩ S

with respect to each family (WP )
P∈� satisfying WP ⊆ h−1(W ′

P ) for all P ∈ � .

Proof: If ω ∈ S and alph(πP (ω))∩ΓP �= ∅ then h(ω) ∈ h(S) and alph(π′
P (h(ω)))∩ΓP′ �=

∅ by the second condition of Definition 4. Now authenticity of Γ for P after ω follows
from authenticity of Γ′ for P after h(ω) by Theorem 1. By assumption, for each R ∈ �

exist actions a′ ∈ Σ′
/P ∩ ΓS′ and b′ ∈ Σ′

/R ∩ ΓP′ with h(ω)a′b′ ∈ h(S). This implies
h(ω)−1(h(S)) ∩ ((ΓS′ ∩ Σ′

/P )(ΓP′ ∩ Σ′
/R)) �= ∅. Hence by Definition 4 there exist actions

a ∈ ΓS ∩ Σ/P and b ∈ ΓP ∩ Σ/R with ωab ∈ S. This completes the proof of 1. Proposition
2 is shown similarily. �

It is easy to show that the property of preserving authenticity and proof of authenticity
is closed under composition, i.e. if homomorphisms h : Σ∗ −→ (Σ′)∗ and h′ : (Σ′)∗ −→ (Σ′′)∗

preserve authenticity and proof of authenticity, so does h′ ◦ h : Σ∗ −→ (Σ′′)∗.
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In some cases it may be more convenient to prove security properties on the low abstrac-
tion level and to use a suitable homomorphism to “transport” them to the higher level. We
have defined sufficient conditions for both preserving authenticity and proof of authenticity
with respect to abstraction. We omit these conditions in this paper because for the example
to be introduced in the next section we can easily proof that both security properties hold
on the abstract level.

3 An example

3.1 Abstract specification of a price offer

In this section the security properties defined above are demonstrated in the first step of
a typical e-commerce situation, namely the price offer/request protocol already introduced
in Section 2.1. As sending and receiving of the price request may not be relevant for the
security of the transaction, we only consider the situation in which service providers make
offers to clients. We assume that every agent P ∈ � can act as client and receive offers,
while service providers are in the set �� ⊆ �. For simplicity we do not explicitly specify
prices and services. We write PRO to denote the price offer example. Since we specify the
system on a high abstraction level, alphabet, system, etc., will be denoted by Σ′, S′

PRO,
etc., in contrast to alphabet Σ, system SPRO etc. on the low level abstraction level.

To formalize on a most abstract level the security property that each client can prove
the authenticity of an offer received, we have to consider the following actions:

(1) service provider SP makes an offer: OFFER-SSP,

(2) client P receives a proof of (1): PROOF-RP(SP ),

(3) client P sends a proof of (1): PROOF-SP(SP ).

On this abstract level we make no distinction between receiving an offer from SP and
receiving a proof that SP made an offer. These three types of actions exactly fit to the sets
Γ,ΓP,ΓS defined in the previous chapter.
So the action set of our abstract system is given by

Σ′ =
⋃

SP∈SP,P∈P

{OFFER-SSP, PROOF-RP(SP ), PROOF-SP(SP )}.

Now, in our framework we have to consider each agent’s knowledge W ′
P about the

possible sequences of actions. To formalize proof of authenticity of offers, each agent has to
know that a proof can only be received if a corresponding offer has been sent before, and
that a proof can only be sent if it has been received before.

So for P ∈ � let
W ′

P = Σ′∗ \
(⋃

SP∈SP,Q∈P (Σ′ \ {OFFER-SSP})∗{PROOF-RQ(SP )}Σ′∗∪
(Σ′ \ {PROOF-RQ})∗{PROOF-SQ(SP )}Σ′∗

)
By this definiton all W ′

P are equal and we consider the abstract system behaviour
S′

PRO = W ′
P for each P ∈ �.

As mentioned in Section 2.2, at this level of abstraction we can define an agent’s local
view by λ′

P = π′
P using the following definition:
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For P ∈ � let

Σ/P =

{ ⋃
SP∈S {OFFER-SP, PROOF-R P(SP ), PROOF-SP(SP )} if P ∈ ��⋃
SP∈S {PROOF-RP(SP ), PROOF-SP (SP )} if P ∈ � \ ��

The system S′
PRO shall satisfy the following properties:

1. An offer has to be authentic for an agent P receiving a corresponding proof and

2. the offer has to be obligatory, i.e. the agent has to be able to give proof of authenticity
of the offer.

In accordance with Definition 2 the properties of authenticity and proof of authenticity
of the offer can be specified as follows:

Property 1 For each SP ∈ ��, ({PROOF-SP(SP )|P ∈ �}, {PROOF-RP(SP )|P ∈ �}) is
a proof action pair of authenticity for {OFFER-SSP} with respect to (W ′

P )
P∈�.

Proof:

Condition 1 Let ω ∈ S′
PRO with alph(π′

P (ω)) ∩ {PROOF-RP(SP )|P ∈ �} �= ∅. Hence
we have PROOF-RP(SP ) ∈ alph(ω) which implies PROOF-RP(SP ) ∈ alph(x) for each
x ∈ λ′−1

P (λ′
P (ω)). By the definition of W ′

P this implies OFFER-SP(SP ) ∈ alph(x) for each
x ∈ λ′−1

P (λ′
P (ω)) ∩W ′

P .

Condition 2 In particular, for x = ω, PROOF-RP(SP ) ∈ alph(ω) and OFFER-SP(SP ) ∈
alph(ω). Hence ωPROOF-SP(SP )PROOF-RR(SP ) ∈ S′

PRO for each R ∈ � because none
of these action sequences violates the restrictions defining S′

PRO. �

4 Asynchronous product automata

4.1 The formal definition

On the lower abstraction level, we model a system of protocol agents using asynchronous
product automata (APA). APA are a universal and very flexible operational description
concept for cooperating systems [9]. It “naturally” emerges from formal language theory [8].
APA are supported by the SH-verification tool that provides components for the complete
cycle from formal specification to exhaustive validation [9].

An APA can be seen as a family of elementary automata. The set of all possible
states of the whole APA is structured as a product set; each state is divided into state
components. In the following the set of all possible states is called state set. The state
sets of elementary automata consist of components of the state set of the APA. Different
elementary automata are “glued” by shared components of their state sets. Elementary
automata can “communicate” by changing shared state components.

Figure 1 shows a graphical representation of a small asynchronous product automaton
consisting of two elementary automata e1 and e2 and state components C1 and C2, with
state sets ZC1 and ZC2. The state set of the APA as well as the state set of e1 is the
product of ZC1 and ZC2. The state set of e2 is ZC2. The figure shows the structure of the
automaton. The circles represent state components and a box corresponds to one elementary
automaton. The full specification of the automaton includes the transition relations of the
elementary automata and the initial state. The neighbourhood relation N indicates which
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state components are included in the state of an elementary automaton and may be changed
by a state transition of the elementary automaton. A state transition of automaton e1 may
change the content of C1 and C2 while e2 may only change C2.

C1 C2 e2e1

State Components

Elementary AutomataArc indicates: S1 in N(e1)

Figure 1: Graphical representation of an APA with two elementary automata e1 and e2
and state components C1 and C2

An Asynchronous Product Automaton consists of a family of State Sets ZS , S ∈ �, a
family of Elementary Automata (Φe,∆e), e ∈ � and a Neighbourhood Relation N : � → P(�);
P(X) is the power set of X and � and � are index sets with the names of state components
and elementary automata. For each Elementary Automaton (Φe, ∆e)

• Φe is its Alphabet and

• ∆e ⊆��S∈N(e)(ZS)× Φe ×��S∈N(e)(ZS) is its State Transition Relation

For each element of Φe the state transition relation ∆e defines state transitions that change
only the state components in N(e).

Remark: The alphabets Φe of the elementary automata can be used in protocol speci-
fications to assign a label to any set of state transitions representing a particular protocol
step (see below).

An APA’s States are elements of ��
S∈�(ZS). To avoid pathological cases it is generally

assumed that �=
⋃

e∈� (N(e)) and N(e) �= ∅ for all e ∈ � . Each APA has one Initial State
s0 = (q0S)

S∈� ∈��S∈�(ZS).
In total, an APA � is defined by � = ((ZS)

S∈�, (Φe, ∆e)e∈� , N, s0).
The behaviour of an APA is represented by all possible sequences of state transitions

starting with initial state s0. The sequence (s0, (e1, a1), s1)(s1, (e2, a2), s2)(s2, (e2, a3), s3) . . .
with ai ∈ Φei represents one possible sequence of actions of the APA in Figure 1. In the
following, in a sequence of state transitions ω, the successor state of state s is denoted by
s̄, state si occurring before state sj is denoted by si < sj . A state transition sequence ω
ending in state s is denoted by ωs.

4.2 APA specifications

For the formal specification of an APA, we have to specify all its components.

Elementary automata, state components and neighbourhood relationship � , �
and N can be defined using a graphical representation of the APA as shown in Figure 1.

State sets For each state component C ∈ � its state set ZC has to be defined. The state
of a state component is a multiset. Therefore, state sets are sets of multisets. A multiset
of a set M is formally defined as a function f ∈ INM , where for x ∈ M , f(x) indicates the
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multiplicity of x in the multiset of M . If f(x) > 0 for x ∈ M , we say that x is element of
the multiset f of M (denoted by x ∈ f). INM is the set of all multisets of M . For each
state component C ∈ � a set MC has to be specified such that the state set ZC is defined
as ZC = INMC .

State transition pattern notation for APAs For the definition of the state transition
relation of an elementary automaton e ∈ � , we need to specify the properties of all states of
components C ∈ N(e) where e is active, i.e. can perform a state transition, and the changes
of the states caused by the state transition. State transitions are defined by so-called state
transition patterns in the following way:

a (x1, . . . , xn)

term1 ∈ C1(s) ∧ . . . ∧ termk ∈ Ck(s)
allocations
predicates
e→
termh ←↩ Ch(s) ∧ . . . ∧ termj ↪→ Cj(s)

where a is the name of the transition pattern and (x1, . . . , xn) are the variables that occur
in the pattern. Cr ∈ N(e) are state components that can be accessed by e, Cr(s) denotes
one element of ZCr describing the state of Cr in the global state s, and term1, . . . , termk

are terms in which the variables (x1, . . . , xn). e→ indicates that the state transitions a are
performed by automaton e. The lines above the arrow e→ describe conditions that have
to be satisfied by state s for the state transition to occur. Seperate lines are combined
with ∧. The expression termh ←↩ Ch(s) denotes that Ch(s)(termh) = Ch(s)(termh) − 1
(i.e. the multiplicity of termh in Ch(s) is decremented by one). termh ←↩ Ch(s) is only
defined if termh ∈ Ch(s). The expression termj ↪→ Cj(s) denotes that Cj(s)(termj) =
Cj(s)(termj) + 1 (i.e. the multiplicity of termj in Cj(s) is incremented by one). termj ↪→
Cj(s) is only defined if termj ∈MCj .

Formally, (e, a, (x1 = i1, . . . , xn = in)) is an element of the alphabet of e. It de-
scribes possible state transitions, i.e. tripels ((C1(s), . . . , Ck(s)), (e, a, (x1 = i1, . . . , xn =
in), (C1(s), . . . , Ck(s))) ∈ ∆e, where x1 = i1, . . . , xn = in are the respective interpre-
tations of the variables of the state transition pattern. For (e, a, (x1 = i1, . . . , xn =
in)) ∈ Φ(e), let pre(a, termi, Cr(s)) be the number of expressions termi ←↩ Cr(s) and
let post(a, termi, Cr(s)) be the number of expressions termi ↪→ Cr(s). A state transition
can occur when an interpretation of the terms term1, . . . , termk exists such that

1. all conditions are satisfied and all expressions are defined, and

2. pre(a, termi, Cr(s)) ≤ Cr(s)(termi) for all terms termi

Thus (C1(s), . . . , Ck(s)) describe the successor state by
Cr(s)(termi) = Cr(s)(termi)− pre(a, termi, Cr(s)) + post(a, termi, Cr(s)).

Hence the statements before e→ constitute the prerequisites of e to perform a state transition
and the statements behind e→ describe the changes of the state. Elementary automaton e
does not perform any additional changes to any state component’s states during this state
transition.
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4.3 APA model for protocols

Each protocol participant P is modelled by four elementary automata SendP, RecP, AppP

and InternalP and four state components ChannelP, InternalP,StateP and ApplMemP.
There is a further state component Network that is used for the communication between
the agents. Figure 2 shows a graphical representation of the APA for a system of two
protocol agents A and B.

Network

ChannelsA

StateA StateB

ChannelsB

RecB

InternalB

ApplB

RecA

SendA

InternalA

SendB

ApplA

ApplMemA ApplMemB

Figure 2: APA model with two protocol agents A and B

No elementary automaton of an agent P has access to a different agent’s state com-
ponents. The only state component shared between all agents is the component Network,
which is used for communication. The general idea of how to use such an APA for modelling
a protocol is the following: The automaton ApplP serves as the interface between protocol
and application. It specifies how applications request security services and access the result,
i.e. it adds tupels to ApplMemP in order to direct the actions of the protocol and removes
tupels which represent the results of some protocol steps. The automata SendP and RecP

perform the communication between different agents (they insert into and remove tupels
from Network, respectively). Messages are marked with a tag indicating the particular
abstract channel they are sent on (see below). InternalP is used for P’s internal actions
(such as random number generation, although not needed for the example in this paper).
The state component StateP serves as the agent’s internal memory which can be used to
perform checks during the run of the protocol and ChannelP holds the channels P is able
to send on and to receive from, respectively.

4.4 Abstract secure channels

Security requirements on e-commerce protocols are usually realised using cryptographic al-
gorithms. In contrast to computational models for cryptography where properties of these
algorithms are usually expressed in terms of computational complexity and probabilities,
abstract formal models for cryptographic protocols require abstract representations of cryp-
tographic algorithms.

In the APA protocol model presented in this paper, we model requirements on under-
lying cryptographic algorithms in terms of abstract secure channels. The idea of modelling
communication with abstract channels was first introduced in [2, 7] and used to determine
which combination of secure channels is required to realise a specific security goal in a cryp-
tographic protocol and to compare various approaches to establish secure channels in open
networks. In [1] they are used in a framework for design of secure protocols.
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The use of abstract channels allows to distinguish between different properties of cryp-
tographic algorithms while at the same time abstracting from implicit assumptions on keys
and on possible implementation details. This in turn reduces the complexity of protocol
specification and relocates implementation issues to a lower level of abstraction.

Our model includes abstract channels with various different properties, such as provid-
ing authenticity and proof of authenticity, indistinguishability of data, time related prop-
erties etc. However, in this paper we restrict ourselves to introducing abstract channels
for authenticity and proof of authenticity and a broadcast channel (to model unprotected
communication). For the formal definitions of other abstract secure channels see [10].

In the following, the S denotes the prefix closed language representing a behaviour of
a system of the structure as described above. We first define send and receive events on
channels. The data structure of state component Network defines that each message is
tagged with the name of the channel it is sent on. So every element of the state of Network
has the form (message,channelname).

Definition 5 (si, ei, s̄i) is a send event with message mi on channel ChannelName iff ∃P ∈
� : ei = SendP and (mi, ChannelName) ↪→ Network(si).

Definition 6 (si, ei, s̄i) is a receive event with message mi on channel ChannelName iff
∃P ∈ � : ei = RecP and (mi, ChannelName)←↩ Network(si).

Authentication channel An authentication channel has the property that only one
agent can send and all agents can receive messages on this channel. If agent P receives a
message on Q’s authentication channel, a matching send event must have happened before
in all sequences that P considers to be possible.

Definition 7 For a system S, a channel (channel, Q) is called an Authentication Channel
of agent Q if for all P ∈ � holds that for all ω ∈ S with the property that (si, RecP, s̄i) ∈
alph(ω) is a receive event on (channel,Q) with message mi, for all x ∈ λ−1

P (λP (ω)) ∩WP

exists a send event (sj , ej , s̄j) ∈ alph(x) on (channel,Q) with sj < si, ej = SendQ and
message mj = mi. We denote the authentication channel of agent Q with (Auth, Q).

Proof channel A proof channel is an authentication channel which additionally provides
a proof of authenticity on receipt of a message on the channel. The proof is considered
to be a message as well and can therefore be forwarded to other agents. A proof channel
provides strong, transferable proofs as defined by Kailar [6].

Definition 8 For a system S, a channel (channel,Q) is called a Proof Channel of agent
Q if

1. (channel,Q) is an authentication channel of Q,

2. for all P ∈ �, N ⊆Messages holds:
(proof,Q,N ) ∈ StateP(s̄i) implies that for all ω ∈ S with (si, ei, s̄i) ∈ alph(ω) send
events on (channel,Q) with message m ∈ N are authentic for P after ω and there
exists a receive event (sk, RecP, sk) ∈ alph(ω) with sk < si and (proof,Q,N ) ↪→
StateP(sk).

3. for all P ∈ � and m ∈Messages holds:
(proof,Q, m) ∈ StateP(si) for all send events (si, SendP, s̄i) with message m = (proof,Q, m).
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We denote the proof channel of agent Q with (Proof,Q).

Furthermore, we use a channel broadcast with no security properties.

5 A concrete price request protocol

In this section we present a concrete protocol implementing the price request/offer example
introduced above and show that it satisfies adequate concrete representations of Property 1.
To implement these properties, we use a proof channel of SP . The messages that do not
require any security property are sent on a broadcast channel.

5.1 Specification

Initial state For agents P, SP ∈ � the initial state of the system is defined by
ChannelsP(s0) = {(broadcast, send), ((Proof, SP ), rec)} and
ChannelsSP(s0) = {(broadcast, rec), ((Proof, SP ), send)}. If P = SP , then we have only
one Channels component including the four channels given above. The state component
Network and all other state components StateP and ApplMemP of agents P ∈ � are empty.

Protocol steps We use the state transition patterns introduced in Section 4.2 to specify
the protocol steps.

Step 1 ()

ApplP→
(send, price req) ↪→ ApplMemP

Step 2 ()

(send, price req) ∈ ApplMemP

(broadcast, send) ∈ ChannelsP
SendP→
(send, price req) ←↩ ApplMemP

(sent, price req) ↪→ StateP

((price req), broadcast) ↪→ Network

We assume that the user does not request the price from a particular service provider,
so that the message does not include any address. The user then waits for any answer
some service provider may send.

Step 3 (P,m)

(broadcast, rec) ∈ ChannelsSP

(m, broadcast) ∈ Network
m = (price req)
RecSP→
(rec, P, price req) ↪→ ApplMemSP
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Step 4 (P )

(rec, P, price req) ∈ ApplMemSP
ApplSP→
(rec, P, price req) ←↩ ApplMemSP

(price, offer) ↪→ ApplMemSP

Step 5 (price)

(price, offer) ∈ ApplMemSP

((Proof, SP ), send) ∈ ChannelsSP
SendSP→
(price, offer) ←↩ ApplMemSP

((price, offer), (Proof, SP )) ↪→ Network

Step 6 (SP,m)

(sent, price req) ∈ StateP

((Proof, SP ), rec) ∈ ChannelsP
(m, (Proof, SP )) ∈ Network
elem(2,m) = offer
RecP→
(sent, price req) ←↩ StateP

(rec, SP,m) ↪→ ApplMemP

(proof, SP,m) ↪→ StateP

Step 7 (SP,m)

(rec, SP,m) ∈ ApplMemP
ApplP→
(rec, SP,m) ←↩ ApplMemP
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Proof Send (m, SP )

(proof, SP,m) ∈ StateP
SendP→
((proof, SP, m), Broadcast) ↪→ Network

Proof Rec (m,SP )

(m, broadcast) ∈ Network
elem(1, m) = proof
SP := elem(2,m)
RecP→
(proof, SP, elem(3,m)) ↪→ StateP

The transition patterns Step 1, Step2 ,. . . , Step 7, Proof Send and Proof Rec define a
set of state transitions �PRO and a system SPRO ⊆ Σ∗ without any malicious behaviour.
Here Σ∗ is the set of all defined state transitions in the APA protocol model described
in Section 4.3. We now consider sets S ⊆ Σ∗ including not explicitly specified malicious
behaviour. It is assumed that SPRO ⊆ S. The structure of the APA model implies im-
plicit assumptions on what agents cannot do. Most important is the following assumption.
The neighborhood relationship between elementary automata and state components im-
plies that no agent can read or change the state of other agents internal state components
ChannelsP, StateP and ApplMemP.

5.2 Relation between different levels of abstraction

As the next step we want to establish a relation between the abstract system S′
PRO specified

in Section 3 and all systems S with SPRO ⊆ S ⊆ Σ∗. Therefore we specify a homomorphism
from Σ∗ to Σ′∗ and show that it preserves authenticity and proofs in accordance with
Definition 3 and Definition 4, respectively. S includes malicious behaviour and is restricted
by the knowledge of agents about the security mechanisms used in the system. For each
agent P , this knowledge is described by the set WP . Therefore we assume S ⊆ WP for all
P ∈ �.

The first assumption about the knowledge of P ∈ � concernes the proof channel of
SP ∈ ��.

Assumption 1 For each SP ∈ �� the channel (Proof, SP ) is a proof channel in accordance
with Definition 8, i.e. for P ∈ � each u ∈WP satisfies the properties of a proof channel.

The property that every agent P ∈ � can give proof of authenticity requires that all
agents keep the proofs in their respective State component. If an agent deletes proofs he
cannot give proof anymore. Notice that no other agent but P itself can change StateP.

Assumption 2 For all P ∈ �, SP ∈ �� and messages m there is no state transition in S
with (proof, SP,m)←↩ StateP.

We now define a homomorphism h that maps S ⊆ SPRO onto the abstract system S′
PRO.

We then show that this homomorphism preserves proof pairs.
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Definition 9 Let S ⊆ Σ∗ be the protocol system defined by the state transition patterns in
Section 5 enriched by malicious behaviour and let S′

PRO ⊆ Σ′∗ be the abstract system defined
in Section 3. We define a homomorphism h : Σ∗ −→ Σ′∗ for P ∈ � and SP ∈ �� by

h(s, (e, a, var), s̄) =




OFFER-SSP if e = SendSP and
(m, (Proof, SP )) ↪→ Network

with elem(2, m) = offer
PROOF-RP(SP ) if e = RecP and (proof, SP,m) ↪→ StateP

with elem(2, m) = offer
PROOF-SP(SP ) if e = SendP and

((proof, SP, m), broadcast) ↪→ Network
with elem(2, m) = offer

ε else

(s, (e, a, var), s̄) denotes a state transition of elementary automaton e with a ∈ φe and
the list of interpretations of variables var.

Homomorphism h is now used to show that the concrete protocol including malicious
behaviour satisfies an adequate representation of Property 1 of the abstract specification
S′

PRO in Section 3. First, it is shown that the homomorphic image of S under homomor-
phism h is the abstract specification S′

PRO assuming the use of secure proof channels. Then,
h is proven to preserve authenticity and proofs. This section concludes with a proof that the
system SPRO enriched with malicious behaviour satisfies a property analogous to Property
1, as it provides the respective proof pairs.

Lemma 1 If Assumption 1 holds then h(WP ) ⊆W ′
P for P ∈ �.

Proof: We show that for every sequence u ∈ (Σ′)∗ that is not in W ′
P all sequences in the

inverse images h−1(u) violate the properties of the proof channel and consequently are not
in WP . u �∈W ′

P implies
u ∈

(⋃
SP∈SP,Q∈P (Σ′ \ {OFFER-SSP})∗{PROOF-RQ(SP )}Σ′∗

∪(Σ′ \ {PROOF-RQ})∗{PROOF-SQ(SP )}Σ′∗
)

By definition of h and Definition 8 follows that each state transition sequence in h−1(u)
violates the properties of (Proof,SP), thus is not element of WP . This is a contradiction to
Assumption 1 and it follows that h(WP ) ⊆W ′

P . �

By induction over the sequences of state transitions in SPRO it can be shown that

Lemma 2 For SPRO ⊆ Σ∗ defined by the transition patterns Step 1, Step2 ,. . . , Step 7,
Proof Send and Proof Rec holds: h(SPRO) = S′

PRO.

Lemma 3 h(S) = S′
PRO if SPRO ⊆ S ⊆WP for all P ∈ �.

Proof: By S ⊆WP and Lemma 1 holds h(S) ⊆ h(WP ) ⊆W ′
P = S′

PRO. With h(SPRO) =
S′

PRO and S ⊇ SPRO follows h(S) = S′
PRO. �

In order to show that h preserves authenticity and proofs we need to specify the local
view of the agents on both levels of abstraction. As already explained in Section 2.2, the
agents’ local view of the abstract system is given by π′

P : Σ′∗ → Σ′∗
/P with π′

P (x) = x if
x ∈ Σ′

/P and π′
P (x) = ε if x ∈ Σ′ \ Σ′

/P , i.e λ′
P = π′

P .
The following gives a general definition of the agents’ local view in a system modelled

by APA.
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Definition 10 Let P ∈ � be an agent, EP the set of elementary automata of P and s be a
global system state of a state transition system S ⊆ Σ∗. Then sP =��C∈N(EP )(C(s)) defines
P ’s view of the state s. The agent’s view of the system S is given by the homomorphism
λP : Σ∗ −→ Σ∗

P with

λP ((s, e, s̄)) =

{
(sP , e, s̄P ) if e ∈ EP

ε else

Lemma 4 h preserves authenticity on S.

Proof: According to Definition 3, for each P ∈ � we need to find a homomorphism
h′

P : λP (S) −→ λ′
P (S′

PRO) such that λ′
P ◦ h = h′

P ◦ λP . This homomorphism is defined by

h′
P (sP , (e, a, var), s̄P ) =




PROOF-RP(SP ) if e = RecP

and (proof, SP, m) ↪→ StateP

with elem(2,m) = offer
PROOF-SP(SP ) if e = SendP and

((proof, SP, m), broadcast) ↪→ Network
with elem(2,m) = offer

ε else

Obviously, this homomorphism provides the desired property. �

Lemma 5
For SP ∈ �� let ΓS′

SP = {PROOF-SP(SP )|P ∈ �} and ΓP′
SP = {PROOF-RP(SP )|P ∈

�}. Then for each SP ∈ �� the homomorphism h : Σ∗ −→ Σ′∗ defined in Definition 9
preserves (ΓS′

SP , ΓP′
SP ) Proofs on S.

Proof: By Lemma 4 homomorphism h preserves authenticity on S. Thus it remains to
show conditions 1 and 2 of Definition 4.

Condition 1 We show the implication in two steps.

(i)
We first show h(u)−1(h(S))∩ (ΓS′

SP ∩Σ′
/P ) �= ∅ implies u−1(S)∩ (h−1(ΓS′

SP )∩Σ/P ) �= ∅:
In SPRO, an action PROOF-SP(SP ) cannot occur without a previous PROOF-RP(SP ).
By Lemma 3 holds h(S) = S′

PRO. Therefore, h(u)−1(h(S)) ∩ (ΓS′
SP ∩ Σ′

/P ) �= ∅ implies
alph(h(u)) ∩ (ΓP′

SP ∩ Σ′
/P ) �= ∅. By the definition of h follows alph(u) ∩ (h−1(ΓP′

SP ∩
Σ′

/P )) �= ∅. Hence, in u there exists a receive action by P with (proof, SP,m) ↪→ StateP.
Now, with Assumption 2 follows that this proof is not removed, i.e. (proof, SP,m) ∈
StateP after u has happened. Therefore, a state transition a ∈ Σ as defined with transition
pattern Proof Send is possible, hence u−1(S) ∩ (h−1(ΓS′

SP ) ∩ Σ/P ) �= ∅.
(ii)
a ∈ ΓS′

SP ) ∩ Σ/P implies that ((proof, SP,m), broadcast) ∈ Network after ua has hap-
pened. Therefore, a state transition b ∈ Σ in accordance with transition pattern Proof
Rec is possible, hence u−1(S) ∩ (h−1(ΓP′

SP ) ∩ Σ/R) �= ∅.
This shows that u can be continued in S with appropriate Proof Send and Proof Receive
actions.

Condition 2 Holds by definition of h. �
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Property 2 For SP ∈ �� let ΓSSP = h−1(ΓS′
SP ) ∩ Σ , ΓPSP = h−1(ΓP′

SP ) ∩ Σ and
ΓSP = (h−1(OFFER-SSP) ∩ Σ. Then for each SP ∈ ��, (ΓSSP , ΓPSP ) is a proof action
pair of authenticity for ΓSP with respect to (WP )

P∈�.

Proof: By Theorem 2, the assertion holds if the following conditions hold:

(1) (ΓS′
SP , ΓP′

SP ) is a proof action pair of authenticity for {OFFER-SSP}.
This holds by Property 1 in Section 3.

(2) Homomorphism h preserves (ΓS′
SP ,ΓP′

SP )-Proofs on S.
This condition holds by Lemma 5. �

6 Conclusion

In this paper we have presented a methodology for the specification of e-commerce trans-
actions on different levels of abstraction, providing certain security properties. Based on a
formal framework for binding cooperations we have defined the concepts of authenticity and
proof of authenticity, using the notions of formal languages and language homomorphisms.
The universality of the definitions allows to apply them to any specification language with
a semantics based on label transition systems. We have formulated conditions on homo-
morphisms under which they preserve these properties from a higher to a lower abstraction
level, thus serving as a means of refinement. This is in line with our general approach
for verification of communicating systems where arbitrary safety and liveness properties of
abstract specifications are transfered to more concrete ones by means of so-called simple
language homomorphisms [9, 8]. For the specification on a lower abstraction level, we have
used Asynchronous Product Automata (APA), a general class of communicating automata.
Suitable homomorphisms map an APA specification onto a more abstract specification and
transfer authenticity and proofs from the higher to the lower abstraction level.

Our approach is related to a range of work concerning authentication and proof (see,
for example, [12], [13] and [6]). However, these papers are concerned with the analysis
of security protocols. To the best of our knowledge, there is no approach that formally
defines a proof of authenticity and provides a design methodology. Moreover, our approach
is equally useful for the continuation of the design process where the protocol specification
is transfered to the next level of refinement by introducing cryptographic mechanisms. This
is subject of future work.

In a forthcoming paper it will be shown that our approach is adequate to formalize the
concept of confidentiality.
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[9] P. Ochsenschläger, J. Repp, R. Rieke, and U. Nitsche. The SH-Verification Tool
Abstraction-Based Verification of Co-operating Systems. Formal Aspects of Comput-
ing, The International Journal of Formal Method, 11:1–24, 1999.

[10] C. Rudolph. A Model for Secure Protocols and its Application to Systematic Design of
Cryptographic Protocols. PhD thesis, Queensland University of Technology, 2001.

[11] S. Schneider. Modelling Security Properties with SCP. Technical Report CSD-TR-96-
14, Royal Holloway, 1996.

[12] S. Schneider. Security Properties and CSP. In Symposion on Security and Privacy.
IEEE, 1996.

[13] P. Syverson and C. Meadows. A Logical Language for Specifying Cryptographic Pro-
tocol Requirements. In Proceedings of the 1993 IEEE Computer Society Symposium on
Security and Privacy, pages 165–177. IEEE Computer Society Press, New York, 1993.

A Appendix

An additional class of actions ΓL ⊆ Σ describes loss of proofs: If agent P has executed
an action from ΓL then he has lost his proofs of authenticity for Γ ⊆ Σ. This implies the
following modifications of Definition 2, Definition 4, and Theorem 2:

Definition A.2 (Proof of authenticity) A tripel (ΓS, ΓP, ΓL) with ΓS ⊆ Σ , ΓP ⊆ Σ ,
and ΓL ⊆ Σ is a triple of sets of proof actions of authenticity for a set Γ ⊆ Σ on S with
respect to (WP )

P∈� if for all ω ∈ S and for all P ∈ � the following holds:

1. For P the set Γ is authentic after ω if alph(πP (ω)) ∩ ΓP �= ∅ .

2. For each R ∈ � there exists actions a ∈ Σ/P ∩ ΓS and b ∈ Σ/R ∩ ΓP with ωab ∈ S if
and only if ω ∈ Σ∗(ΓP ∩ Σ/P )(Σ \ (ΓL ∩ Σ/P ))∗.

Agent P ∈ � can give proof of authenticity of Γ ⊆ Σ after a sequence of actions ω ∈ S if
for each R ∈ � there exists actions a ∈ Σ/P ∩ ΓS and b ∈ Σ/R ∩ ΓP with ωab ∈ S .
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In the following, we shortly call (ΓS, ΓP, ΓL) a proof action triple for Γ.

Definition A.4 Let ΓS′ ⊆ Σ′ , ΓP′ ⊆ Σ′ , and ΓL′ ⊆ Σ′. h : Σ∗ → Σ′∗ preserves
(ΓS′, ΓP′, ΓL′)-proofs on S if h preserves authenticity on S and if the following holds:

1. h(u)−1(h(S)) ∩ ((ΓS′ ∩ Σ′
/P )(ΓP′ ∩ Σ′

/R)) �= ∅ implies u−1(S) ∩ ((h−1(ΓS′ \ Σ′
/#) ∩

Σ/P )(h−1(ΓP′ \ Σ′
/#) ∩ Σ/R)) �= ∅ for each P,R ∈ � and u ∈ S.

2. h(Σ/P ) ∩ (Σ′ \ Σ′
/#) ⊆ Σ′

/P for each P ∈ � and h(Σ/#) ⊆ Σ′
/#.

Theorem A.2 Let (ΓS′, ΓP′, ΓL′) be a proof action triple for Γ′ ⊆ Σ′ on h(S) with respect
to (W ′

P )
P∈�. Let h : Σ∗ −→ (Σ′)∗ be a homomorphism that preserves (ΓS′, ΓP′, ΓL′)-proofs

on S, and let ΓS = h−1(ΓS′\Σ′
/#)∩Σ, ΓP = h−1(ΓP′\Σ′

/#)∩Σ, ΓL = h−1(ΓL′\Σ′
/#)∩Σ,

and Γ = h−1(Γ′) ∩ Σ. Then:

1. (ΓS,ΓP, ΓL) is a proof action triple for Γ ⊆ Σ on S ,

2. if agent P ∈ � can give proof of authenticity of Γ′ after ω′ ∈ h(S) then P can give
proof of authenticity of Γ after each ω ∈ h−1(ω′) ∩ S

with respect to each family (WP )
P∈� satisfying WP ⊆ h−1(W ′

P ) for all P ∈ � .

Proof:
To prove proposition 1, we first show authenticity of Γ for P after ω. If ω ∈ S and

alph(πP (ω)) ∩ ΓP �= ∅ then h(ω) ∈ h(S) and alph(π′
P (h(ω))) ∩ ΓP′ �= ∅ by the second

condition of Definition A.4. Now authenticity of Γ for P after ω follows from authenticity
of Γ′ for P after h(ω) by Theorem 1.

Now we prove the second condition of Definition A.2. We first show that in S a sequence
ω contains no loss action after a proof receive action if and only if this holds in the abstract
system h(s). This follows from the second condition of Definition A.4 that states in principle
that actions of agent P that are not mapped to Σ/# have to be mapped onto actions of
agent P in the abstract level. Thus it follows ω ∈ S ∩Σ∗(ΓP∩Σ/P )(Σ \ (ΓL∩Σ/P ))∗ if and
only if h(ω) ∈ h(S) ∩ Σ′∗(ΓP′ ∩ Σ′

/P )(Σ′ \ (ΓL′ ∩ Σ′
/P ))∗.

We now show that ω can be continued with send and receive actions in S if and only
if the respective statement holds for the image in h(S). The first part of the equivalence,
namely h(ω)−1(h(S))∩ ((ΓS′ ∩Σ′

/P )(ΓP′ ∩Σ′
/R)) �= ∅ implies ω−1(S)∩ ((h−1(ΓS′ \Σ′

/#)∩
Σ/P )(h−1(ΓP′ \ Σ′

/#) ∩ Σ/R)) �= ∅ , follows from the first condition of Definition A.4. The
other direction of the equivalence, ω−1(S) ∩ ((h−1(ΓS′ \ Σ′

/#) ∩ Σ/P )(h−1(ΓP′ \ Σ′
/#) ∩

Σ/R)) �= ∅ implies h(ω)−1(h(S)) ∩ ((ΓS′ ∩ Σ′
/P )(ΓP′ ∩ Σ′

/R)) �= ∅ , follows again from the
second condition of Definition A.4.

Now with the equivalence of ω−1(S)∩((h−1(ΓS′\Σ′
/#)∩Σ/P )(h−1(ΓP′\Σ′

/#)∩Σ/R)) �= ∅
and h(ω)−1(h(S)) ∩ ((ΓS′ ∩ Σ′

/P )(ΓP′ ∩ Σ′
/R)) �= ∅, the assumption that (ΓS, ΓP,ΓL) is

a proof action triple implies the second condition of Definition A.2 , which completes the
proof of 1. Proposition 2 is shown similarily. �


