Abstraction and Control
for Shapely Nested Graph Transformation

Berthold Hoffmann

Technologiezentrum Informatik, Universitiat Bremen
Postfach 330 440, D-28334 Bremen
hof@tzi.de

Abstract. Shapely nested graph transformation is the computational
model for DIAPLAN, a language for programming with graphs that repre-
sent diagrams. It supports nested structuring of graphs, structural graph
types (shapes), and graph variables. In this paper, we extend the model
by two concepts that are essential for programming: abstraction allows
compound transformations to be named and parameterized, and control
allows the order of rule application to be specified. These concepts com-
bine neatly with the underlying computational model, and preserve its
rule-based and graph-ical nature.

1 Introduction

Graph transformation defines a computational model (G, =) for a class G of
graphs, by a transformation relation = C G X G that is induced by some fi-
nite set T' of graph transformation rules. Various computational models of that
kind are studied in [20]. If graph transformation shall be used for specification
and programming, the scale of practical systems requires that the computational
model (G, =-7) is extended by concepts for structuring and typing: its data G
should be structured in a nested way; its programs T should be encapsulated in
modules; and, abstraction mechanisms should allow to structure the computa-
tions =. Furthermore, control mechanisms should allow to eliminate unwanted
nondeterminism in the rule-based definition of =7, and a type discipline should
detect inconsistencies in its data and programs.

Shapely nested graph transformation [3[12] supports nested structuring of
graphs, and comes with a structural type discipline (shapes). Analoguously to
term rewrite rules, its rules may contain wvariables so that transformation steps
may move, delete or duplicate subgraphs of arbitrary size. Shapely nested graph
transformation is the computational model of DIAPLAN, a language for program-
ming with graphs that is currently being designed by Frank Drewes (Umea),
Mark Minas (Erlangen), and the author [IT/T3]. DIAPLAN shall complement
DIAGEN [I7], a tool for generating editors that handle the syntaz of diagram
languages, by a language and tool for programming the semantics of diagram
languages.

In this paper, we extend shapely nested graph transformation by concepts
that are essential for the design of DIAPLAN: We propose an abstraction con-

A. Corradini et al. (Eds.): ICGT 2002, LNCS 2505, pp. 177-[191} 2002.
© Springer-Verlag Berlin Heidelberg 2002

178 Berthold Hoffmann

cept that allows to name and parameterize compound transformations in predi-
cate definitions, and provide control of the evaluation order by an overall strat-
egy (depth-first innermost evaluation), as well as by user-definable completion
clauses and applicability conditions. The extension shall be seamless so as to
preserve the rule-based and graphical nature of graph transformation.

The rest of the paper is structured as follows. Sections B to [4 recall ingre-
dients of shapely nested graph transformation: (nested) graphs, shapes (types),
and transformation. This is done as far as it is essential for defining the major
programming concepts proposed in the paper: abstraction (in Section [)), and
control (in Section [G)). In Section [7, we compare our concepts to those in related
languages, and outline some further research.

Acknowlegdements. I wish to thank Frank Drewes and Mark Minas for clar-
ifying discussions about the design of DIAPLAN, and the reviewers for their
advice to remove technical details from sections 2H4]

2 Graphs

Our notion of graphs is tailored to programming: edges may connect an arbi-
trary number of nodes to model relations of any arity; nodes and edges may
contain graphs in a nested fashion so that recursively structured values can be
represented. We also distinguish a sequence of interface nodes at which graphs
may be glued together. This extends the nested graphs of [B8J4I12] where only
edges can contain graphs.

Let C be a typed alphabet of constant names with an arity function arity:
¢ — ¢*[1 The set G of graphs consists of sixtuples G = (O, E, lab, ass, N, p)
over a finte set O of top-level objects with a subset E C O of edges and a
complementary set V = O \ E of nodes; the function lab: O — C labels top-
level objects by constant names; the function ass: E — V* associates top-level
edges to sequences of top-level nodes; N is a family of (possibly empty) graphs
G.o € G contained in the objects o € O (their direct components); the node
sequence p € V* designates the points of G

We require that the point sequence p, and the association sequences ass(e)
(for e € E) do not contain repetitions, and that edges respect arity, i.e. satisfy:

lab* (ass(e)) = arity(lab(e)) for all edges e € E

This corresponds to a well-known normal form of graphs that does not restrict
the expressiveness of the concepts defined below. (See [10] for details.)

We call an object o € O atomic if G. o is empty, or compound otherwise. An
edge e labelled by c is called a c-edge. The handle graph {(c) of a constant name ¢
consists of an atomic c-edge that is associated to atomic points. G is called plain

1 8* is the set of finite sequences over some set S, including the empty sequence e.
2 Precisely, G has to be defined by induction over the nesting depth of objects, see [H.

Abstraction and Control for Shapely Nested Graph Transformation 179

if it contains no compound objects, and we define arity(G) = lab®(p). Thus {c)
is plain and has the arity of the label c.

The sequences 2¢ = {e}U{ow |0 € O,w € ¢ ,} define positions of objects
in a nested graph. They are used to select the nested component G.w at some
position w € 2¢. The plain graph G(w) is the nested component G.w without
its direct components.

Two graphs G and H are isomorphic, written G = H, if there is a bijective
function m: Og — Op between their sets of top objects so that labels, asso-
ciations, and points are preserved, and all corresponding components G. o and
H.m(o) (0 € Og) are isomorphic, recursively.

Ezample 1 (Graphs). The figures of this paper contain graphs of some kind. We
use the following conventions when drawing graphs: nodes are depicted as circles
or ovals, and edges as boxes that are drawn around their label; the contents of
a node or edge (if not empty) is also drawn inside. The association of an edge e
to a sequence vy ... vy of nodes is depicted by a bundle of lines from e to the v;,
which are called tentacles. Atomic binary edges are drawn like directed edges,
as arrows from their first to their second associated node; their label is written
aside. The “invisible label” |, is omitted in figures (to model unlabelled nodes
and edges).

Note the difference to notions of hierarchical graphs that are used for sys-
tem modeling [T6], where the objects of an underlying graph (which is plain,
according to our definition) are grouped in packages that may form a hierarchy,
and may have interfaces (designating some objects of a package as “public”).
In hierarchical graphs, several packages may share an object (or a subpackage),
and the associations of an edge may cross package borders. Our nesting concept
forbids sharing and border-crossing edges, and is thus compositional: every com-
ponent of a nested graph can be replaced, independently of the other ones. This
is essential for programming.

3 Shapes

Usually, not every graph is a meaningful value, but only those that have a par-
ticular shape: chain graphs, for instance, must have a linear structure. The term
shape analysis has come into use for inferring properties of the pointer-based data
structures in imperative programs [21]. On the more abstract level of graphs, we
define the shape of graphs (by edge replacement) so that it can be checked
statically.

Edge Replacement. Let G be graph with an edge e € G(w). The replacement
of e in G.w at the position w € §2¢ by some graph U with atomic points
and arity(U) = arity(lab((e)) is defined as follows: Unite G.w and U disjointly,
redirect all tentacles at the points of U to the corresponding associated nodes of
e, remove e and U’s points, and insert the resulting graph for G. w.

This way of edge replacement is a straight-forward extension of hyperedge
replacement [I0] to nested graphs.

180 Berthold Hoffmann

Shape Rules. Let S be a typed alphabet of shape names disjoint with C.
(C U S)-labelled graphs are called syntax graphs if their S-edges are atomic.

Let X' be a finite set of shape rules of the form s ::= R, consisting of a shape
name s and a syntax graph R of the same arity. X directly derives a syntax
graph G to a syntax graph H, written G =5 H, by replacing an s-edge in G by
the graph R of some shape rule s ::= R € Y. The reflexive and transitive closure
of =y is denoted by =7,.

For the rest of this paper, we fix a finite set X' of shape rules over the shape
names S, and use it to specify the shape of graphs.

Ezample 2 (Shape Rules for Chain Graphs). The rules in Figure [I] define the
shape of chain graphs. (We use “|” to seperate alternative rules for the shape
name ~.) Two atomic points designate the begin and end of a chain, and every
node in between contains an item graph. In the examples of this paper, the
item graphs (with shape named ¢) are series-parallel graphs as defined in [2]
Section 2.2]. Figures M and [7 below contain chain and item graphs that are
shaped according to these rules.

wiiy Oy

Fig. 1. Shape rules for chain graphs

I

[7 fe

The rules for v are ambiguous: If we removed the rightmost shape rule,
would still generate the same set of chain graphs. However, with this rule, we
may define transformation rules in a more general way. (See Example ll below.)

X -graphs. For rules, we need special edges that denote variable parts in a
graph. For that purpose, we consider a typed alphabet X of variable names
disjoint with C and S. We assume that every variable name is associated with a
shape name shape(z) € S.

Let G be a (C U X)-labelled graph where all variables (the X-edges) are
atomic. G is called a X-graph if (s) =% shape(G) for some shape name s € S,
where shape(G) is the syntax graph obtained by relabelling every variable name
in G by its shape name. Then we write X' F G : s. (X-graphs may have several
shapes, because with a “chain” rule like s ::= (s'), X+ G : s’ implies X I G : s.)

Gx(X) denotes the set of X'-graphs, and Gx, denotes the set of constant X-
graphs, which contain no variables.

It is decidable whether a graph satisfies some shape rules X or not (see [3]):

Theorem 1. The question “X'+ G : s?” is decidable.

Data types of functional and logical languages are tree-like. They can be
defined by shape rules with unary shape names only. But also data structures

Abstraction and Control for Shapely Nested Graph Transformation 181

with sophisticated sharing, like cyclic lists, or leaf-connected trees, can be defined
in a way that is not possible in imperative languages. (See [§] for a similar
specification of such types in Structured Gamma.)

Edge replacement can only define graph shapes of bounded node degree.
However, this restriction can be overcome without sacrificing decidability if we
allow rules similar to the embedding rules used in the DIAGEN system [17]. Then
also shapes like that of all control flow graphs can be defined.

4 Transformation

Graphs are transformed by matching a pattern P, and rewriting this match with
a replacement R. In the case of nested graph transformation [12], rules consist
of Y-graphs P and R, and transformation is defined like term rewriting [14]:
P is embedded into some context C, after substituting its variables by appropri-
ate graphs; transformation yields a graph where R is embedded into the same
context C, after instantiating its variables with the same substitution. (The vari-
able concept is inspired by [19].) Here we just consider “shapely” nested graph
transformation. The “unshaped” case just forgets about typing. (See [12] for
details.)

Context Embedding. A Y-graph C containing a single variable e in some
plain component C'(w) (w € 2¢) is an s-context if e has the shape s € S and is
associated to atomic nodes. The embedding of a X-graph U with X+ U : s in C
is denoted as C[U] and defined as follows: Unite C.w and U disjointly, redirect all
tentacles at the associated nodes ass(e) to the corresponding points of U, remove
e with its associated nodes, and assign the result to P.w. (Context embedding
preserves the points of the inserted X-graph, and removes the associations of the
replaced variable, while edge replacement does it the other way round. Otherwise,
both operations are equal.)

Ezample 3 (Substitution and Context). Figure Plshows a y-context (if we assume
that the variable name H has shape v), and a substitution for two variables X
and C that are nullary and binary, respectively.

Variable Instantiation. A function o: X — Gx(X) is a substitution if X
o(x) : shape(z) for all z € X.

o ‘® U:{...ny @ Cs o}

Fig. 2. A context and two substitution pairs

182 Berthold Hoffmann

The instantiation of a X-graph P according to o is obtained by the simul-
taneous replacement of all z-variables in P by the X-graph o(z). The resulting
instance is denoted by Po. (The order of replacement is irrelevant as edge re-
placement is commutative and associative.)

Transformation Rules and Steps. The definition of rules and their appli-
cation is similar as in term rewriting [14]. Therefore, we also require the same
properties as for term rewrite rules: their patterns must not be variables, as such
rules apply to every graph so that transformation diverges, and their replace-
ments must not contain variables that do not occur in their pattern, since then
arbitrary subgraphs may be created “out of thin air”.

A (transformation) rule t = P/R consists of two X-graphs P and R so that
Y EP:s,R: s for some s € S, where the pattern P is not a variable handle,
and only variable names from P occur in the replacement R. Then t transforms
a graph G into another graph H, written G =; H, if the instances of P and R
according to a substitution o can be embedded into some s-context C' so that
G = C[Po] and H = C[Ro].

Graph transformation preserves shapes. (See [12] for the straightforward
proof.)

Theorem 2. If X' G : s for somes €S and G = H, then X+ H : s.

Hence, shapes set up a type discipline that can be statically checked: Theo-
rem [[allows to confirm whether a transformation rule ¢ consists of X-graphs or
not. If this is true, and a graph G has been checked to be shaped, Theorem
guarantees that every transformation step G =; H yields a shaped graph H.
After the step (“at runtime”) type checking is not necessary.

Ezample 4 (Chain Graph Transformation). Figure [§ shows a rule e that enters
an item graph at the end of a chain graph, and a rule r that removes the first
item graph from a chain graph. The variable names C and X have shape(C) =«
and shape(X) = ¢, respectively.

Note that the second recursive rule in Figure[dlis needed to derive the shape
of the chain graph in r’s pattern. Without that ambiguous shape rule, r had to
be defined by recursive traversal of the chain graph.

Figure [shows a transformation via r, using the context and substitution in
Figure[2

(G CEIEDNEED)

Fig. 3. Chain rules for entering and removing item graphs

Abstraction and Control for Shapely Nested Graph Transformation 183

0098 1©

Fig. 4. A removing transformation

Variables make graph transformation quite expressive: a single step may af-
fect subgraphs of arbitrary size: rule e duplicates a member node with its entire
contents, since the variable name X occurs twice in its replacement graph; rule
r deletes a member node, again with its contents, since X does not occur in
is replacement graph. Let e~! denote the inverse rule of e where pattern and
replacement are interchanged. Then e~! requires to compare arbitrarily large
subgraphs: it applies only to a host graph like G, where both X-variables in its
pattern match isomorphic subgraphs. This allows to express rather complex ap-
plicability conditions. Implementations of shapely nested graph transformation
may forbid such rules by requiring that their pattern is linear, i.e. that every
variable name occurs at most once.

Constructing Transformation Steps. In [3] we have discussed how trans-
formation steps can be constructed. Here we just note that for some X-graph
G, every transformation G = H and its result H is uniquely determined by a
redex p = (t,m,o), consisting of the rule t = P/R used, an occurrence mor-
phism m indicating the place where the skeleton of its pattern P (i.e. without
its variables) occurs in G, and the matching substitution o.

5 Abstraction

In programming languages, abstraction means to name and parameterize com-
pound computation tasks so that they can afterwards be called (with different
arguments) just like elementary computations. For graph transformation, we
thus need a concept for naming and parameterizing sequences of graph transfor-
mation steps. We extend the set C of constant names (denoting data) by names
that denote abstractions. Abstractions are called predicates (not functions) be-
cause their evaluation may fail, and may be nondeterministic, i.e. yield more
than one result. Every predicate is defined by a set of rules that may contain
predicates in their replacement graphs by which other abstractions are called.

Predicate Definition. We consider a typed alphabet @ of predicate names that
is disjoint to C, S, and X. Let G be a graph labelled by QUCUX. G denotes the
data of G, i.e. G without all predicate edges (the edges labelled by Q). G is an
expression if G is a X-graph, and if its predicate edges are atomic. An expression
G has the shape of G. Ex(X) denotes the set of expressions, and Ex the set of

184 Berthold Hoffmann

constant expressions (without variables). Thus £x(X) D Gx(X) and Ex D Fx.
We extend substitutions so that they map variable names to expressions of the
same shape, and extend contexts and instances to be expressions.

An expression G is a p-pattern if it contains exactly one predicate edge e,
which is labeled by the predicate name p, and occurs on its top-level G(g). The
definition of a predicate name p € @) consists of a finite, nonempty set T, of
rules t = P/R such that P is a p-pattern, and R is an expression. A program
consists of a set 7 = UpeQ T, of predicate definitions. (Examples of predicate
definitions are given in the next section, after introducing concepts for control.)

For constant expressions G and H, we write G =7 H if there is an evaluation
step via a transformation ¢ € T, and G =75 H if there is an evaluation sequence
of n > 0 consecutive steps. A constant expressions G is a normal form if no
rule in 7 applies to G, and terminal if G is a X-graph. A program 7T is called
terminating if every evaluation sequence leads to a normal form after finitely
many steps. T is uniquely normalizing if every graph G evaluates to at most one
normal form.

The nodes associated to a predicate edge designate its parameters. If such a
node is compound, its contents is a graph parameter (as in Example H below); if
the contents contains predicate edges, it is a predicate parameter (as in Example
below). Predicates may also match and modify the “local context” G.w where
a predicate edge e occurs if a part of one of their patterns is not contained in
their parameter nodes. (However, such rules do not occur in this paper.)

Predicate Evaluation. The evaluation of a program over a constant input
expression can be imagined as constructing an evaluation tree A that is defined
as follows: Its top level A(e) is a tree of evaluation states that contain constant
expressions, and are connected by atomic binary edges labelled with redices p.
A may be infinite unless the evaluation relation =7 is terminating. Its root vg
represents the initial state and contains the constant input expression. If A(e)
contains an atomic binary p-edge from a state v to a state v/, then A.v =; A.v’
via some redex p of t. A state v € A(e) is complete if there is a p-edge from v
to some state v’ for every redex p in the expression A.v. A is complete if all
its states are complete. Then, a leaf v in A contains an expression A.v that is
in normal form; if A.v is a X-graph, it is a result of A, otherwise v is called a
blind alley of the evaluation. (Practical implementations will not construct A,
but just update the input expression G; this simplistic assumption shall only
make discussion easier.)

As programs are nondeterministic in general, we define their semantics by an
evaluation function evaly: £x — G5, that enumerates a sequence of results one
after the other, in a nondeterministic way. This function initializes the evaluation
tree A by the initial state vy that contains the input expression G. Then edges
and successor states for evaluation steps A.v =; A.v" are added until every
state is complete. Whenever A. v’ is a X-graph, it is returned as a result.

Depth-First Innermost Evaluation. The evaluation function evalr is non-
deterministic in several repects:

Abstraction and Control for Shapely Nested Graph Transformation 185

—

. Which is the actual state 0 € A(e) where the evaluation shall be continued?

2. Which is the actual call, i.e. the predicate edge é in 24 ; where the next
occurrence shall be sought?

3. Which is the actual rule t € T that shall be applied at this edge?

4. Which actual redex p = (t,7n,5) of £ shall be used to transform A.v?

Such a degree of nondeterminism is not only inefficient, but also confusing for
programmers. Therefore we propose a general evaluation strategy that reduces
nondeterminism:

1. States in A(e) are totally ordered by age. The actual state v is the most re-
cently inserted state that is incomplete. This strategy is known as depth-first
search in logic programming. (Breadth-first search, the opposite strategy,
has the advantage to determine every normal form of the input expression,
but only after exploring all shorter evaluations, which is very inefficient.
So we accept the possibility that depth-first search may diverge due to a
non-terminating rule although the input expression has a normal form.)

2. We order the predicate edges in a state v by age in the first place, and by
nesting depth in the second place. This order is partial as a transformation
step may introduce several predicate edges on the same nesting level. The ac-
tual call € is an innermost of the newest predicate edges in A.v. This strategy
corresponds to innermost evaluation (or eager evaluation) in functional pro-
gramming. (Again, eager evaluation does not always find all normal forms,
unlike the complementary strategy of lazy evaluation. We prefer it because
it chooses an evaluation order that is more intuitive for programmers.)

3. Rules are ordered as they appear in the program. The actual rule # is the
first rule for which a redex p = (f,m, o) has an occurrence m containing the
actual call € so that no p-edge issues from 9.

4. The actual rule ¢ may have many redices containing é. These redexes may

have different occurrences m that overlap with each other, and/or matching
substitutions ¢ that compete with each other.
Neither occurrences nor substitutions can be ordered in a canonical way.
In [3] we consider conditions ensuring that the matching substitution & is
uniquely determined by t and m. Our running example satisfies these con-
ditions. (The rules e and r have no variable on top level, and at most one in
each of their nested components. See [3, Theorem 1] for details.)

In the following, we assume that substitutions are uniquely determined as
discussed in 4. The general evaluation strategy then leaves two sources of non-
determinism in the refined evaluation function evalr:

— Several predicate edges may be chosen as the actual call é.
— The actual rule ¢ may have several overlapping occurrences that contain the
actual call.

The second source can only be avoided by careful design of shape and transfor-
mation rules. The applicability conditions proposed below allow to control the
first source of nondeterminism.

186 Berthold Hoffmann

6 Control

In this section we propose concepts by which programmers may control evalua-
tion beyond the general strategy. Completion clauses allow to handle blind alleys
in the evaluation, and applicability conditions order the predicates inserted by
an evaluation step.

Completion Clauses. A program T is sufficiently complete [9] if every nor-
mal form of =7 is terminal, i.e. does not contain a @)-edge. Only if all predicate
definitions are sufficiently complete, every graph has a complete evaluation. (Suf-
ficient completeness does not suffice alone, however: evaluation must terminate
as well.)

Sufficient completeness is a desirable property of predicate definitions; it
is not so easy to achieve, however. For instance, we could define a predicate
remove based on the single rule r of Example @] by associating a remove-edge to
the compound chain node in its pattern. (See the two expressions in Figure [(l)
This predicate would not be complete, as its rule applies only if its parameter
is a non-empty chain graph; otherwise, evaluation gets stuck in a blind alley. In
programming languages, there are different ways to handle blind alleys:

— Logical languages consider them as failure. Then backtracking returns to the
evaluation step where p was called, and tries another evaluation step starting
from there.

— Functional languages consider such programs to be erroneous. Then evalua-
tion throws an exception that can be caught (by exception handlers) in the
context where the predicate has been called.

As evaluation can be nondeterministic, we cannot restrict ourselves to the func-
tional interpretation alone. For conceptual completeness, we even allow a third
way of completion: success is the complement of failure; it allows to continue
evaluation. (Figure Bl shows a predicate using this kind of completion.)

Technically, success, failure and exceptions are signaled by edges labelled with
built-in predicate names +, —, and L;... Ly (k > 0) respectively. Success and
failure edges are always nullary, but exceptions may have parameters (to be used
by the exception handlers). Completion clauses are patterns of these predefined
edges. They are added at the end of every predicate definition, following the
symbol “/”.

A predicate definition may furthermore contain exception handlers (to catch
exceptions thrown by the predicates called in its rules). They are specified by
exceptional rules for L;-patterns (1 < i < k). Exception rules start with “?7,
and occur just before the completion clause.

If there is no (more) actual rule £ with an occurrence m containing the actual
call é, the completion clause in the corresponding predicate definition is executed
as follows:

— For success (4), a fresh evaluation state v’ is added with a +-edge from ¥
to v’ so that A.v' contains A.v without €, and evaluation continues.

Abstraction and Control for Shapely Nested Graph Transformation 187

!

remove =

Fig. 5. The predicate remove

— For failure (—), backtracking determines the ancestor state v of v where é
has been introduced. Evaluation continues with the next redex for the actual
call of .

— For exceptions (L;), interrupt handling determines the closest ancestor state
v of U with an exceptional clause for ;. This clause is evaluated, and
recorded in A by an 1;-edge from ¥ to a new state v/ where evaluation
continues.

Ezample 5 (A Predicate with Completion Clause). In FigureBlwe define a remove
predicate based on the single rule r of Example[], with a completion clause that
specifies that the predicate fails if its ordinary rule cannot be applied.

A functional specification of remove could raise an exception L. (signalling
an empty chain) that could then be handled by predicates calling remove.

Applicability Conditions. So far, the predicates inserted by an evaluation
step may be evaluated in an arbitrary innermost order. However, it is often
reasonable to consider some predicates as applicability conditions that have to
be evaluated first, in order to make sure that this rule shall be applied, and
evaluate the remaining predicates only then.

We thus distinguish a subset A of the predicate edges in R as applicability
predicates, and give their evaluation priority over the rest. Applicability pred-
icates are drawn as predicate edges with a dashed outer border. This simple
concept suffices to make the local evaluation order in a replacement graph de-
terministic. (Rules can be split up so that A and 2z \ A contain at most one
predicate edge each.)

Predicate Variables. As a last extension of rules, we consider “higher-order”
variables that may be bound to computations instead of data. These variables
have to be distinguished only because their substitutions are different.

Let Y C X denote a subset of predicate variable names, which we draw
as boxes with double borders. In a substitution o, a predicate variable y € Y
may be mapped onto an expression o(y) that does not contain constant names,
and satisfies arity(o(y)) = arity(y). Predicate variables may be used to program
combinators in a functional style.

Lél”

Ezample 6 (A Control Combinator). Figure Bl shows a control combinator
that normalizes a chain graph denoted by C according to some unary predicate

188 Berthold Hoffmann

Fig. 6. The control combinator !

denoted by the predicate variable Q. It evaluates Q as an applicability predicate,
and calls itself recursively as long as this succeeds.

For the termination of !, it is crucial that Q is an applicability predicate:
otherwise, the evaluation of ! could loop in its recursive rule without ever eval-
uating Q.

Figure [1 shows an evaluation of ! with remove as a predicate parameter.
The evaluation is deterministic: it empties the chain graph given as the first
parameter. (The combinator ! is not deterministic in general because it might
be applied to a nondeterministic predicate Q.)

Other common control structures can be defined by similar combinators.
Note, however, that combinators cannot be defined as easily as in functional
languages, because shapes like v are not polymorphic, and graph variables have
a fixed arity. So the -combinator only applies to chain graphs and to unary chain
predicates.

7 Conclusions

We have extended shapely nested graph transformation, a powerful model for
computing with graphs that are recursively structured and shaped, by concepts
for abstraction and control that shall become part of the language DIAPLAN:
predicates name and parameterize compound transformations, a global eval-
uation strategy (depth-first innermost) restricts nondeterminism, completion
clauses cut off blind alleys of the evaluation, and applicability conditions control
the order of predicate evaluation. The concepts are inspired by the way how
term rewriting [14] is extended to functional programming languages.

Related Work. We concentrate our discussion of related concepts to PRO-
GRES [22], the (so far) most successful and comprehensive programming lan-
guage based on graph transformation. PROGRES productions are simlar to our
transformation rules. They specify basic operations that are named, and may be
parameterized by nodes, edges, and attribute values (also by types). PROGRES
procedures call these productions (and other procedures), using a rich language
of deterministic and nondeterministic control structures that is textual. Proce-
dures are named and may be parameterized as well. So there is a clear separation

Abstraction and Control for Shapely Nested Graph Transformation 189

o
o o
o o

Fig. 7. An evaluation of ! with remove

between the graphical, rule-based specification of basic operations, and the tex-
tual, procedural programming of procedures. In contrast to that, the predicates
proposed in this paper are just defined by slightly extended rules. This is more
regular, and we find it more intuitive.

Another weakness of PROGRES lies in its underlying computational model,
which does not support graph structuring. So productions and procedures always
operate on one large plain graph. This is not satisfactory as program structur-
ing has to be accompanied with data structuring in order to be effective. Our
predicates profit from the nesting concept: their parameters may be graphs, and
even by predicate expressions (contained in their associated nodes), not just
“pointers” in a global graph.

Two other pieces of related work shall briefly be mentioned. Acc [7] is a
prototyping rather than a programming system; it does not provide abstraction,
and only rudimentary control structures. GRACE [I5l16], a generic framework
for structuring given graph transformation models, also separates rules from
abstractions (called transformation units).

We are not aware of any other graph- and rule-based programming or speci-
fication language that supports recursive structuring and typing of graphs, and
integrates abstraction and control seamlessly in a rule-based fashion.

190 Berthold Hoffmann

Future Work. Some concepts of DIAPLAN are still open, e.g. encapsulation
and concurrency, and the concepts mentioned in this paper need further thought
as well.

We want to specify whether predicates may fail or not, whether they are
uniquely normalizing, or nondeterministic, and whether they have an effect on
the local context where they are applied, or not (or only if they succeed). We
want to distinguish parameter modes (in, out, and inout) in order to specify data
flow. Then we can characterize common programming paradigms, like functions
(non-failing effect-free predicates without inout-parameters) or methods (effect-
free predicates with one inout-parameter, the receiver object). This will make
programs more transparent, and enhance their implementation.

If a functional style of programming shall be supported, we need to check
programs for unique normalization. There is some hope that results concerning
confluence and termination of term rewriting [I4] and plain graph transforma-
tion [I8] can be combined for that purpose.

And, last but not least, DIAPLAN must be implemented.

References

1. G. Busatto. An Abstract Model of Hierarchical Graphs and Hierarchical Graph
Transformation. Dissertation, Universitat Paderborn, June 2002.

2. F. Drewes, A. Habel, and H.-J. Kreowski. Hyperedge replacement graph grammars.
In Rozenberg [20], chapter 2, pages 95-162.

3. F. Drewes, B. Hoffmann, and M. Minas. Constructing shapely nested graph trans-
formations. In H.-J. Kreowski and P. Knirsch, editors, Proc. Int’l Workshop on
Applied Graph Transformation (AGT’02), 2002. 107-118.

4. F. Drewes, B. Hoffmann, and D. Plump. Hierarchical graph transformation. Jour-
nal of Computer and System Sciences, 64(2):249-283, 2002.

5. G. Engels, H. Ehrig, H.-J. Kreowski, and G. Rozenberg, editors. Handbook of
Graph Grammars and Computing by Graph Transformation, Vol. II: Applications,
Languages, and Tools. World Scientific, Singapore, 1999.

6. G. Engels and R. Heckel. Graph transformation as a conceptual and formal frame-
work for system modelling and evolution. In U. Montanari, J. Rolim, and E. Welz,
editors, Automata, Languages, and Programming (ICALP 2000 Proc.), number
1853 in Lecture Notes in Computer Science, pages 127-150. Springer, 2000.

7. C. Ermel, M. Rudolf, and G. Taentzer. The AGG approach: Language and envi-
ronment. In Engels et al. [5], chapter 14, pages 551-603.

8. P. Fradet and D. Le Métayer. Structured Gamma. Science of Computer Program-
ming, 31(2/3):263-289, 1998.

9. J. V. Guttag and J. J. Horning. The algebraic specification of abstract data types.
Acta Informatica, 10:27-51, 1978.

10. A. Habel. Hyperedge Replacement: Grammars and Languages. Number 643 in
Lecture Notes in Computer Science. Springer, 1992.

11. B. Hoffmann. From graph transformation to rule-based programming with dia-
grams. In M. Nagl, A. Schiirr, and M. Miinch, editors, Int’l Workshop on Ap-
plications of Graph Transformations with Industrial Relevance (AGTIVE’99), Se-
lected Papers, number 1779 in Lecture Notes in Computer Science, pages 165—180.
Springer, 2000.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Abstraction and Control for Shapely Nested Graph Transformation 191

B. Hoffmann. Shapely hierarchical graph transformation. In Proc. IEEE Symposia
on Human-Centric Computing Languages and Environments, pages 30-37. IEEE
Computer Press, 2001.

B. Hoffmann and M. Minas. Towards rule-based visual programming of generic
visual systems. In N. Dershowitz and C. Kirchner, editors, Proc. Workshop on
Rule-Based Languages, Montréal, Quebeq, Canada, Sept. 2000.

J. W. Klop. Term rewriting systems. In S. Abramsky, D. M. Gabbay, and
T. Maibaum, editors, Handbook of Logic in Computer Science, volume 2, pages
1-116. Oxford University Press, 1992.

H.-J. Kreowski and S. Kuske. Graph transformation units and modules. In Ehrig
et al. [5], chapter 15, pages 607-638.

S. Kuske. Transformation Units — A Structuring Pronciple for Graph Transfor-
mation Systems. Dissertation, Universitat Bremen, Fachbereich Mathematik u.
Informatik, 2000.

M. Minas. Concepts and realization of a diagram editor generator based on hyper-
graph transformation. Science of Computer Programming, 44(2):157-180, 2002.
D. Plump. Computing by Graph Rewriting. Habilitationsschrift, Universitat Bre-
men, 1999.

D. Plump and A. Habel. Graph unification and matching. In J. E. Cuny, H. Ehrig,
G. Engels, and G. Rozenberg, editors, Proc. Graph Grammars and Their Appli-
cation to Computer Science, number 1073 in Lecture Notes in Computer Science,
pages 75-89. Springer, 1996.

G. Rozenberg, editor. Handbook of Graph Grammars and Computing by Graph
Transformation, Vol. I: Foundations. World Scientific, Singapore, 1997.

M. Sagiv, T. Reps, and R. Wilhelm. Solving shape-analysis problems in languages
with destructive updating. ACM Transactions on Programming Languages and
Systems, 20(1):1-50, 1998.

A. Schiirr, A. Winter, and A. Ziindorf. The PROGRES approach: Language and
environment. In Engels et al. [5], chapter 13, pages 487-550.

	1 Introduction
	2 Graphs
	3 Shapes
	4 Transformation
	5 Abstraction
	6 Control
	7 Conclusions
	References

