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Abstract. Since the World Wide Web has become widespread, more and more
applications exist that are suitable for the application of social information
filtering techniques. In collaborative filtering, preferences of a user are
estimated through mining data available about the whole user population,
implicitly exploiting analogies between users that show similar characteristics.
These preferences are then normally used to filter content or functionality of an
application. Two important factors for the quality of the filtering process are the
number of users and the amount of information (such as observed behaviors)
available about each user. Another factor is the number of objects in the pool of
the application that can be considered during the filtering process. Today in
most cases memory based approaches to collaborative filtering are used.
Unfortunately with O(#users * #items) those do not scale well. Therefore we
implemented a model based approach using two different types of neural
networks and benchmarked them against a widely used memory based
approach. Especially with ART2 networks we obtained some encouraging
results.

1 Introduction

The World Wide Web has been established as a major platform for information and
application delivery. The amount of content and functionality available often exceeds
the cognitive capacity of users. This problem has also been characterized as
information overload [15].
Various approaches exist that address this issue, such as search engines [7], web
catalogs or filtering techniques based on user profiles, such as collaborative filtering
[21].
In collaborative filtering, user profiles are generated that describe user preferences in
relation to items within a specific domain. Depending on the application, items can
e.g. be Web resources, components [14], services [12], or products [1]. Initial
knowledge about user preferences can be obtained either explicitly such as from
ratings by users [21] or implicitly through behaviour analysis [19] [13]. For each user
a vector is generated with one entry for each known item. The profile vectors are then
used as input for either a memory based or a model based method to compute item
recommendations by exploiting information stored in profiles that show similarities to
a given profile. An often used memory based method is the Mean Squared



Differences Algorithm [21]. As illustrated in figure 1, a given profile D is compared to
profiles of other users to find the n nearest neighbours i.e. the n most similar profiles
that are not equal to D. For this purpose a vector distance metric is employed. In the
example, n=2 and thus profile A and C are selected. A target vector is then computed
as the average of the neighbour vectors. Depending on the type of the application, the
target vector is used to recommend items or to find estimates for blank parts of the
original user profile.
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Fig. 1. Memory based collaborative filtering

In model based approaches such as [10] [6], all available profile vectors are first
learned by a model. Later single profile vectors can be applied to the model to either
obtain a target vector or directly receive recommendations. Figure 2 illustrates this.
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*** *
Fig. 2. Model based collaborative filtering

A model usually is smaller in size than the whole set of profile data and no any-to-any
matching of profiles is necessary which often leads to performance problems in
memory based approaches. On the other hand, an abstraction is performed that
usually leads to an information loss and the adaptability of the model to changes to a
profile is an issue.
Some applications of collaborative filtering can be found in [21], [17], [22] and [14].
In the first part of this contribution we describe two memory based approaches to
collaborative filtering using self-organizing maps (SOMs) [16], and Adaptive
Resonance Theory (ART) networks [9]. In the second part of the paper we perform an
evaluation with two sets of test data from real world applications and compare the two
approaches with a widely used memory based approach.



2 Using Neural Networks for Collaborative Filtering

A large variety of neural networks have been described [20]. Neurons are modeled
after nerve-cells in animals. Quite popular is the McCulloch-Pitts Neuron [8] shown
in figure 3 (left). The activation of a neuron j is computed by comparing a threshold
value θj to the weighed input wijsi. In effect, the neuron performes pattern recognition
with the angle between input and weight vector being a measure of conformity. To
obtain an adaptive filter this angle is also used during learning, instead of the output
value that is used in supervised learning. The weight vector of the neuron is then
adjusted towards the input vector as shown in figure 3 (right). This is called
unsupervised learning. An important parameter is the learning rate δ that determines
how quickly the weight vector is adjusted. Usually a high learning rate is used at the
beginning which is then decreased when more input vectors are learned.
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shown in figure 4 (left) for an example of three neurons, each neuron of the map is
fully connected to the input layer. The weight vectors are thus of the same
dimensionality as the input vectors. The neurons at the border of the map have less
neighbours than those in the center. This leads to an undesired preferential treatment
of some neurons. To avoid this, the map is projected to the surface of a sphere [3]. In
figure 4 (left) the neighbourhood of a neuron is shown in the case of a spherical
mapping.
During the learning phase competitive learning is used to determine a winner neuron
for each pattern in the training set. But now not merely the winner neuron is adjusted
according to the training pattern but also all neighbour neurons. The learning process
of a neuron is not independent from other neurons which is why a global learning
method must be used [5].
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the learning rate is reduced in order that later changes only slightly modify the weight
vector. This way a convergence is forced.
To create a clustering for a set, representative samples must be presented to the map
several times during the learning phase. If the net shall be able to learn new patterns
even after the learning phase, the learning rate can't be reduced too much and the
influence on the neighbourhood during the learning process must stay rather strong.
Thus, the ability of the net to be shaped after the learning phase can only be
maintained if stable weights are abandoned. A stable net can't be adjusted. This
problem is called stability-plasticity problem and has been addressed in [9] with the
Adaptive-Resonance-Theorie.

2.3  Adaptive Resonance Theorie

On the SOM the number of neurons is fixed and can't be changed. If during the
learning phase a pattern is applied to which no neuron strongly responds, a neuron is
selected pretty much by random and adjusted to that pattern. In the worst cases that
neuron had already been adjusted optimally to a class of patterns from the training set.
By adjusting the weights to the new pattern the weight vector representing that class
is changed which results in the classification being unlearned. In that case weights
won't stabilize.
The Adaptive-Resoncance-Theorie solves this problem by making the neuron layer
adaptive. This means new neurons can be added step by step if a pattern does not
match any existing neuron closely enough. Furthermore, a winner neuron can reject
the pattern if the similarity is too low. The winner neuron therefore sends its weight
vector back to the input layer and only learns the new pattern if it lies within a cone
around the weight vector [20]. The size of the cone is determined by the vigilance
parameter ρ. Figure 5 (right) shows the attentiveness cone.

Fig. 5. Set-up of an ART network (left) and attentiveness cone of a weight vector (right)

The net contains two layers F1 and F2. F2 is the competitive layer and consists of a
set of ordered neurons that do not consitute any neighbourhood relations. For each
input pattern a winner neuron is determined in that layer. The F1 layer controls the
classification. If a pattern is not within the attentiveness cone the F1 layer blocks the
winner neuron for that pattern. Between the layers weighted connections exist in both
directions. Figure 5 (left) shows the set-up.
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During the learning process a pattern is applied to the F1 layer. Through the weights
that are directed upwards the neuron with the strongest activation is determined by
computing the scalar. By applying the weight vector that is directed downwards, the
F1 layer checks if the pattern lies within the attentiveness cone. If that is the case,
both weight vectors are adjusted to the pattern. Otherwise the F1 layer blocks the
winner neuron during the further processing of the pattern and tries to locate another
winner neuron. If none of the existing neurons fits, then a new neuron that matches
the pattern is added. A detailed description of the F1 layer and the learning process
can be found in [11].
The descriped approach makes sure that the net always converges to a stable state and
still maintains plasticity. A potential disadvantage is that under certain circumstances
the optimal number of classes can be greatly surpassed [5]. Thus the extension of the
competitive layer F2 is limited to a maximum number of neurons. After the limit has
been reached, no new neurons will be added and rejected patterns must be discarded.
The Adaptive Resonance Theorie exists in two versions. One version is restricted to
binary input patterns while the ART2 networks that we selected for our research have
been designed to process analog input patterns.

3   Applied Model

In the previous sections two neural networks have been introduced that are able to
cluster a training set without supervision and to classify patterns applied after a
learning phase. The nets can therefore be used to assign a profile to a class of similar
profiles. Information is stored in the weight vectors of the neurons. Besides
classification this allows for another application of the nets, as described in the
following section.
The weight vectors of the neurons in the competitive layer are also called reference
vectors. During each step of the learning phase, the weight vectors are adjusted
towards an applied pattern. In the case of competitive learning a weight adjustment is
only performed if a similar enough pattern is used. Then the weight vector converges
towards the average of all learned patterns. It more or less describes each learned
pattern. The weight vector is thus a "codebook" for the represented class.
In an ART2 network, the weight vectors that are directed downwards are the
reference vectors. For the learning process in an ART2 net two different learning
methods can be applied. But only the slower one of the two methods produces a
reference vector. In contrast to a SOM the weight vectors are not normed. Still, they
converge i.e. the vector norm converges towards a constant value 1/(1-d) whereas d is
the constant output of a winner neuron. To reach that limit a large number of learning
steps is required which is why usually convergence is forgone.
In the SOM the normed weight vector also describes the "learning history" of a
neuron. However, in that case during the learning phase the reference vector is also
influenced via neighbourhood relations. But since the neighbourhood contains similar
neurons this does not necessarily have a negative effect. It is rather assumed that this
modification of the reference vector is desirable since it prevents neurons to specialize
too strongly on a small number of similar patterns.
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Fig. 6. A neural network as a model for generating predictions. Asterixes mark user interest.

The ability to classify and the formation of  reference vectors form the basis for using
neural networks as a model in collaborative filtering. Figure 6 shows the set-up.
The first step is to determine the network parameters. The learning rate and the
number of learning steps are empirical values and can be chosen similar for every
application. In contrast the network size must be estimated individually for different
data sets. If the network is too large, neurons specialize too much on a few patterns. Is
the network too small the neurons generalize too much and the reference vector
becomes useless. As an indicator for estimating the network sizes the number of
profiles is used. It is assumed that with a large number of profiles more different
behavioral patterns i.e. more independent profiles exist than with a smaller number.
In an ART2 net the similarity parameter must be specified. It can be set automatically
during the learning process. A maximum value is used for initialization. If during the
learning process a pattern of no neuron can be accepted the parameter is decreased
until the pattern can be assigned to a neuron.
After the determination of the profile and the initialization of the weights, the network
learns the existing profiles. After the learning process has been completed the network
is able to classify profiles and to assign them to a reference vector that can be used as
a basis for compiling recommendations.

Learning
From the database a number of representative and expressive profiles are compiled to
a training set that is then learned by a neural network. Less expressive profiles are
those that are only sparsely populated.
The higher the dimensionality of the input vectors the more difficult it becomes for a
neural network to a achieve a useful clustering because the number of independent
patterns that do not show similarities increases. For each of those patterns an
individual neuron must be learned.
If in addition to this, the training set contains sparsely populated profile vectors, the
network must use a large part of its resources or neurons for the classification of
vectors with low expressive value. The result is a network that does badly represents
the training set. Thus only profiles that contain a minimum number of entries should
be selected for training.
Both SOMs and ART networks possess the ability to learn after completion of the
initial learning phase. If the profile of  a user changes it can be learned again.
However, this leads to an advantage for profiles that change frequently over profiles



that seldom change because it is learned more often. In the worst case, other profiles
might be unlearned as the weight vector shifts towards the re-learned profile.
The re-learning of changed profiles can be handled best by the SOM because in that
case the global structure of the map needn't be modified. A changed profile usually is
still similar enough to the original profile to be represented by the same neuron or at
least one of its neighbours. Thus it is unlikely that existing patterns are un-learned.
Changes can be performed localy. On the other hand the ART2 network has problems
if the changed profile lays no longer within the similarity cone of the neuron that it
had been assigned to before. In that case the profile will be assigned to a new neuron
and over time the optimal clustering of the training set will be destroyed.
If a new profile is added that has no similarities to existing profiles, it can easily be
added to the ART2 network while the SOM would have to adjust its global structure,
which would have to be done by re-learning the whole training set. Thus a SOM tends
to forget patterns when new patterns are learned.
It is also possible to add new items after a network has been trained. For this purpose
the number of input neurons must be increased because a new dimension is added to
the profile vectors. In both cases the extension is easily performed by adding a new
initial weight to each neuron. To avoid violating the requirement of equal weight
sums it only needs to be ensured that the initial weight values stay within a small
interval.

Requests
After the training phase the network is ready to classify profiles. To generate
recommendations for a user his or her user profile is applied to the network. Each
neuron of the competitive layer computes its activation and a winner neuron is
determined. This neuron represents the class of the profile. Instead of generating a
target profile from all profiles of this class, the reference vector of the neuron is used
i.e. the target profile has already been generated when computing the reference vector
during the learning phase. As in the case of the Mean Squared Differences Algorithm,
the target vector is compared to the applied profile and recommendations are made for
items that appear to have been underused by the user.
When determining the winner neurons, a scalar product must be computed for each
neuron of the competitive layer. The complexity of a request for recommendations
thus depends on the number of items and the number of neurons: O(#neurons *
#items). The number of neurons in the network does not depend on the number of
users but on the number of relevant user clusters. This factor tends to be smaller by
orders of magnitude and can be treated as a quality of service parameter.

Limitations
A winner neuron is determined by choosing the neuron with the highest activation.
This means, only the similarity between input vector and weight vector is recognized.
But if two vectors are opposite to each other this can also carry potentially useful
information.



4  Evaluation

Three requirements for neural networks can be identified: Requests for
recommendations must be processed quickly, the recommendations should be of high
quality and the network should be able to adapt to changes to profile data during run-
time. The first experiments presented here have been performed to test if those
requirements were met when using two test data sets. The performance of the neural
networks has been compared to memory-based Collaborative Filtering based on the
Mean Squared Differences Algorithm. After presenting our first experiments, the
learning duration, selection of parameters and the dependance of the quality of
recommendations on the training set will be discussed. Based on those criteria SOMs
and ART2 networks will be compared.

4.1 Test Data

We used two test data sets. Most results presented here have been obtained by using
the publicly available EachMovie dataset [18].  It contains 2.811.983 ratings on a
scale from 1 to 5 for 1628 movies by 72.916 users. As in [4] we randomly selected a
subset of 2000 users that had a minimum of 80 entries in their profiles. In each profile
30 entries are then randomly selected as control set while the others are used as input
for the filtering algorithms. To test the performance of the different methods with
sparse profile data from a different domain, we used data that we obtained in a large
intranet E-Commerce application, Eurovictor II [14]. The data describes the intensity
with which employees have accessed different services of the application.

4.2 Response Time and Quality of Predictions

For our experiments we used a 10x10 SOM and an ART2 network for a maximum of
50 neurons. We also used Mean Squared Differences Algorithm with a neighbourhood
size of 20. We used the EachMovie-dataset. To simulate a growing database, we did
three experiments using 20%, 60% and 100% of available profile entries, with 30
control set entries in each case that we used to evaluate the computed
recommendations.
The three different subsets have been used as training sets for the neural networks and
as input for the memory based method. Afterwards one, three, five and 30
ommendations have been computed and compared to the control set of 30 hidden
profile entries. The results of those experiments can be found in figure 7 (left). As can
be seen, the ART2 network performed significantly better than the memory based
method while the SOM produced results of the lowest quality.
Each time recommendations were computed the response time has been measured. As
expected and shown in figure 7 (right), the performance of the neural network based
methods mostly scales with the number of items, while the number of users has a
much less significant influence. The three test sets contain profile entries for 400,
1200 and 2000 of users. While the memory based approach has to calculate scalars for
all users, the neural networks only need to compute 50 and 100 scalars respectively
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Fig. 7. Quality of results (left) and response time with growing number of users (right)

4.3 Adaptivity

A third important requirement besides quality of recommendations and performance
is the ability of the neural networks to adapt during run-time. The networks can't
relearn all profiles whenever a single profile changes since the complete learning
process takes a considerable amount of time, in the case of our test sets several
minutes. Therefore new or changed profiles must be (re-)learned by the network
without repeating the initial learning phase.
We performed an experiment to test the ability of our networks to adapt to changes or
additions of profiles. The same test data as in the previous experiments was used. This
time we started with 400 profiles that we randomly selected from the complete set of
2000 user profiles and used them as training data on the networks. Then we randomly
selected 800 profiles that were learned by the networks, then 1200, 1600 and finally
all 2000. Please note that those data sets were not disjunct and some profiles were
learned more often than others. Then, recommendations were generated and
compared to the control set of 30 profile entries that were not used for training.
Figure 8 (left) shows the results of the experiment using a SOM. To un-learn as few
patterns as possible when updating the network, the map's learning rate is reduced
from 0.8 to 0.5. There is only a slight difference in the quality of the obtained results.
The SOM shows a high degree of adaptivity.

Fig. 8. Quality of results when gradually updating the network compared to relearning all data

Figure 8 (right) shows the corresponding results for an ART2 network. To preserve
the knowledge of previously learned patterns the number of learning steps has been
reduced from 10 to 5. The quality of predictions decreased in our experiments and
after (re-)learning all profiles from the 5 training subsets the quality of the
recommendations fell to the level of what we obtained using our Mean Squared
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Differences Algorithm implementation. The neurons have not been adapted to profile
changes in a step by step manner. Modified profiles have been rejected as dissimilar
to existing neurons and have been assigned to new neurons. This prevented an
optimal clustering of the input data.

4.4 Learning Speed

The decrease of prediction quality that occure after updates of an ART2 network can
be countered by occasionally relearning the whole data set. Figure 9 shows that
compared to a SOM an ART2 network can be trained fairly quickly. The same test
data and networks as in the previous experiments were used. The comparatively slow

learning speed of the SOM results from
the complex computation of
neighbourhood relations using the Gauss
bell. The learning speed can be increased
by using a slightly less exact linear
function. The duration for (re-)learning a
single profile from our training set was
on average 0.06 seconds with an ART2
network and between 0.5 and 1 second
for a SOM.

Fig. 9. Learning duration for 400, 1200 and 2000 profiles

4.5 Choice of Parameters

For most parameters of the neural networks standard values can be used. Two
important parameters that have to be set are the number of learning steps (epoch) and
the size of the network  In the case of our ART2 networks ten learning steps have
been enough, often the network stabilized even faster.

Fig. 10. Quality of results in relation to network size

For the SOM we also used ten learning steps. The map needs a global learning
process and can then make more and more fine grained local weight adjustments
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while decreasing the learning rate. This fine grained learning phase needs much
longer and can't be completed after ten learning steps. We performed experiments
with up to 100 steps without being able to observe any measurable improvements.
The most important parameter is the network size which means the number of
neurons in the competitive layer. In order to decrease run-time during profile
evaluation the network size should be constant and as small as possible. But the
quality of recommendations also depends on the number of neurons. Thus, depending
on the number of relevant clusters in the profile set more or less neurons are
necessary.
When using SOMs, too few neurons lead to an instability while too many neurons
prevent a useful classification. The ART2 network only uses new neurons when a
pattern does not lie within a cone of attentiveness. Thus the number of neurons in an
ART2 network can never be too high. The number of neurons in an ART2 network is
only limited for performance reasons. If the set maximum number of neurons has
been reached and a new pattern does not lie within the attentiveness cone of a neuron
then the cone radius is increased automatically until the pattern can be assigned to a
neuron. Figure 10 (left) shows that in the case of a SOM in the range of 25 to 400
neurons only small differences in quality can be observed with our test data. Figure 10
(right) shows that there is also no significant difference when increasing the number
of neurons in an ART2 network from 25 to 100.

4.6 Influence of Training Set

To test the influence of the population of the training set on the quality of results
obtained with the three collaborative filtering methods, we performed two more
experiments using the Eurovictor II data set. Since that data set is smaller and very
sparsely populated we chose 16 neurons as the network size for both the ART2
network and the SOM and only computed 5 recommendations per profile. The
Eurovictor II data set contains 770 profiles, only 91 with 5 or more entries.

Fig. 11. Results with E-Victor data set: all profiles (left), only profiles with 5+ entries (right)

Figure 11 (left) shows results using all profiles as training set and figure 11 (right)
visualizes the results that were obtained only using profiles with 5 or more entries. In
both cases three different query sets have been created: These are sets that contain
profiles with two or more, four or more and six or more entries respectively and use
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one, three or five of those entries for the control set. The result shows that the neural
networks' performance is affected negatively by the sparsity of the training data. With
very sparse data our memory based implementation produced better quality results.

6 Conclusion

We have described two model based approaches to collaborative filtering based on
Self-Adaptive Maps and ART2 networks. When evaluating them with test data from
two real life applications we found out that ART2 networks produce even better
results than a widely used memory based approach if the profile vectors in the
training data are not sparsely populated. The model based algorithms needed by
several orders of magnitude less memory and less computations to produce
recommendations. The ART2 network proofed to be adaptive but the quality of
predictions still degraded slowly after more and more changed profile vectors were
(re-)learned suggesting that it is necessary to relearn the complete data set once in a
while.
In the near future we want to include other memory based algorithms into our
comparison, such as suggested in [10] or [6]. We also plan to explore wether it is
possible to improve results further by combining several methods, including the
neural network models explored in this contribution.
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