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Abstract. This paper studies the problem of computing an orthogonal
drawing of a graph with labels along the edges. Labels are not allowed to
overlap with each other or with edges to which they are not assigned. The
optimization goal is area minimization. We provide a unified framework
that allows to easily design edge labeling heuristics. By using the frame-
work we implemented and experimentally compared several heuristics.
The best performing heuristics have been embedded in the topology-
shape-metrics approach.

1 Introduction

The labeling placement problem has a long tradition in the computational geom-
etry, computational cartography, and geographic information system communi-
ties. Several papers have been published in the literature presenting algorithms
that receive as input a drawing Γ of a graph together with a set of text or sym-
bol labels for the vertices and/or edges and produce as output a labeled drawing
with some “good readability” qualities. For example, if Γ is a city map, then the
streets must be easy to identify by their names.

Kakoulis and Tollis [12] define three basic requirements that a good labeling
of a drawing should have: (i) For any label it must be easy to identify the edge
or vertex to which the label is assigned. (ii) A label assigned to a vertex or edge
cannot overlap other labels, vertices or edges. (iii) A label must be placed in the
best possible position among all acceptable positions.

Depending on the application domain, the above three requirements are ex-
pressed in terms of different geometric constraints and optimization goals. Un-
fortunately, most labeling problems have been proved to be NP-hard in general
even in their simplest forms where the given drawing consists of just a set of dis-
tinct points or a set of distinct straight-lines; efficient heuristics and polynomial
solutions for restricted versions of these problems have been designed. These
results have in common that the problem constraints do not allow to change the
geometry of the drawing that must be labeled. The interested reader is referred
to the on-line bibliography by Wolff and Strijk [17] for references on the subject.

In recent years the labeling problem has been receiving increasing attention
also in the graph drawing community (see e.g. [2,6,13,10,11,15,14]). As several
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authors remark (see e.g. [2,12,13]), the problem allows more flexibility in the
graph drawing context where one can change the geometry of a drawing so to
free up space for label insertions. In this area a challenging research direction
is that of designing algorithms whose input is a graph G with a set of labels
for its vertices or edges and whose output is a labeled drawing of G. Namely,
most graph drawing algorithms have very poor support for computing labeled
drawings and there is a clear need of integrating effective labeling strategies
within graph drawing techniques in order to enlarge their range of applications.

For example, the well-known and widely used topology-shape-metrics ap-
proach for computing orthogonal drawings of planar graphs is not equipped with
effective technology for inserting labels along the edges. One possible solution is
to model the labels as dummy vertices and to apply the topology-shape-metrics
approach that computes an orthogonal drawing where the dummy vertices are
constrained to have fixed size [3]. However, it is not clear how to guarantee in
this framework that the resulting labeled drawing has good readability qualities.
Namely, the described strategy does not allow any control on choosing the best
position for a label along an edge; if for example the graph to be drawn is large
and optimizing the area of the drawing is a critical issue, choosing a segment
or another for placing a label on an edge may deeply affect the readability of
the output. The drawing on the right-hand side of Figure 1 is computed with a
random segment selection strategy.

A pioneering work aiming at integrating labeling techniques with the
topology-shape-metrics approach is due to Klau and Mutzel [13]. They study
the problem of computing a grid drawing of an orthogonal representation with
labeled vertices and minimum total edge length. Klau and Mutzel show an ele-
gant ILP formulation of the problem and present the first branch-and-cut based
algorithm that combines compaction and labeling techniques.

The present paper makes a further step in the direction defined by Klau and
Mutzel by investigating one of the questions that they leave as open. Namely we
focus on integrating the topology-shape-metrics approach with algorithms for
edge labeling. A precise description of the problem we deal with is as follows:
Let G be a planar graph, let H be an orthogonal representation of G, and let L
be a set of labels for the edges of G, where each edge is associated with at most
one label. We want to compute an orthogonal grid drawing Γ of G such that the
edges of Γ are labeled and have the shape defined in H. A label is modeled as
an axis parallel rectangle of given integer width and height.

Our geometric constraints and optimization goals are as follows: (i) A label is
drawn with one of its sides as a proper subset of a segment of the corresponding
edge (the label is “glued” to the edge, so the assignment is unambiguous); (ii)
Each label λ associated with a segment s cannot overlap any other label, vertex,
or segment except s; (iii) A good placement for our labels is a placement that
minimizes the area of the drawing.

We observe that finding an optimal solution for our problem can be too ex-
pensive in practice, since the instance where every edge has no associated label
coincides with the well known NP-hard compaction problem [16] for orthogo-
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Fig. 1. Two different labeled drawings of the same labeled orthogonal representation.
The one the right is computed by choosing randomly the segment and the direction of
each label.The one on the left is computed by choosing the segment and the direction
of each label with one of our heuristics.

nal representations. We investigate the edge labeling problem with an approach
different from that followed by Klau and Mutzel for vertex labeling: Instead of
looking for an ILP formulation, we implement simple and robust heuristics and
experimentally compare their performances. A more detailed description of our
results is given below:

– We define a general framework for constructing heuristics to solve the edge
labeling problem for orthogonal representations. The proposed framework is
based on a greedy strategy that computes a drawing by inserting a label at
a time. The optimization goal is area minimization.

– By using the above framework we designed different algorithms for the edge
labeling problem and experimentally compared their performances. We used
techniques such as local search and greedy randomized adaptive search pro-
cedures (GRASP) [7] to investigate the effectiveness of our heuristics in
practice.

– We embedded the best performing heuristics within the topology-shape-
metrics approach. Namely, the implementation of these heuristics has en-
riched the topology-shape-metric technology of the GDToolkit library [9] for
computing orthogonal drawings. We designed and implemented two new al-
gorithms, called Fast Labeler and Slow Labeler that receive as input an
edge labeled graph (with vertices of unbounded degree) and produce a com-
pact orthogonal drawing of G. The drawing on the left-hand-side of Figure
1 is computed with the Slow Labeler and is the same graph as the one on
the right-hand side.

2 Preliminaries

We assume familiarity with basic definitions on graph connectivity, graph pla-
narity, and graph drawing [4]. An orthogonal (grid) drawing of a graph is a
drawing such that the vertices are represented as points of an integer grid and
the edges are represented as chains of horizontal and vertical segments on the



142 C. Binucci et al.

integer grid lines. A row (column) of an integer grid is a strip of the plane be-
tween two horizontal (vertical) consecutive lines of the grid. A row (column)
of an orthogonal drawing Γ is a row (column) of the integer grid that inter-
sects Γ . An orthogonal representation of an embedded (planar) graph G is an
equivalence class of planar orthogonal drawings such that the following holds: (i)
For each edge (u, v) of G, all the drawings of the class have the same sequence
of left and right turns (bends) along (u, v), while moving from u to v. (ii) For
each vertex v of G, and for each pair {e1, e2} of clockwise consecutive edges
incident on v, all the drawings of the class determine the same angle between e1
and e2. Roughly speaking, an orthogonal representation defines a class of planar
orthogonal drawings that may differ only for the length of the segments of the
edges.

One of the most popular techniques for computing an orthogonal drawing of
a graph G is the so called topology-shape-metrics approach [18,19,4]. It consists
of three consecutive steps: (i) Planarization: An embedding of G is computed,
possibly adding dummy vertices to replace crossings. (ii) Orthogonalization:
An orthogonal representation H of G is computed within the previously com-
puted embedding. (iii) Compaction: A final geometry for H is determined.
Namely, coordinates are assigned to vertices and bends of H. The distinct phases
of the topology-shape-metrics approach have been extensively studied in the lit-
erature [4].

Since each vertex of a planar orthogonal drawing is a grid point and since
planarity does not allow distinct edges to overlap, each vertex can have at most
degree equal to four. Of course, this is a severe limitation for most applica-
tions. In order to orthogonally draw graphs of arbitrary vertex degree, different
drawing conventions have been introduced in the literature. Here we refer to as
the podevsnef (planar orthogonal drawing with equal vertex size and not empty
faces) drawing convention, defined by Fößmeier and Kaufmann [8]. A podevsnef
drawing (see Figures 2 (a) and 2 (b)) is an orthogonal drawing such that: (i)
Segments representing edges cannot cross, with the exception that two segments
that are incident on the same vertex may partially overlap. Observe that the
angle between such segments has zero degree. Roughly speaking, a podevsnef
drawing is “almost” planar: it is planar everywhere but in the possible overlap
of segments incident on the same vertex. Observe in Figure 2 (b) the overlap of
segments incident on vertices 1, 2, and 3. (ii) All the polygons representing the
faces have area strictly greater than zero.
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Fig. 2. (a) A planar graph and (b) one of its podevsnef drawings; (c) A more effective
visualization of the podevsnef drawing in (b).
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Podevsnef drawings are usually visualized representing vertices as boxes with
equal size and representing two overlapping segments as two very near segments.
See Figure 2 (c). Podevsnef drawings generalize the concept of orthogonal rep-
resentation, allowing angles between two edges incident to the same vertex to
have a zero degree value. The consequence of the assumption that the polygons
representing the faces have area strictly greater than zero is that the angles have
specific constraints. Namely, each zero degrees angle is in correspondence with
exactly one bend [8]. An orthogonal representation corresponding to the above
definition is a podevsnef orthogonal representation. In a podevsnef orthogonal
representation we allow label assigment only to segments that do not overlap
(note that each edge has a non-overlapping portion of segment). From now on
we shall use the term orthogonal drawing and orthogonal representation for
denoting podevsnef orthogonal drawings and podevsnef orthogonal representa-
tions, respectively. Also, when we talk about a segment we always refer to a
segment (or portion of a segment) of an orthogonal representation that does not
overlap with any other segment.

We conclude this section with some geometric definitions that will be used
from here on to describe the different label insertion strategies. Let Γ be an
orthogonal drawing, and let s be a horizontal (vertical) segment of Γ with end-
points a and b. Assume that a is to the left of b if s is horizontal and that a is
below b if s is vertical. Let R be an axis aligned rectangle such that one of the
sides of R is a subset of s. We call position of R with respect to s the distance
between R and a. If such a distance is an integer number the position of R with
respect to s is an integer position. If R lies on the left-hand side of s while moving
from a, we say that R has the left direction with respect to s; otherwise R has
the right direction with respect to s. R is an empty rectangle if the interior of R
does not contain any point of Γ .

3 A Unified Framework for Greedy Labelers

In this section we describe a general greedy strategy for the edge labeling problem
for orthogonal drawings.

3.1 The Greedy Labeler

LetH be an orthogonal representation and let L be a set of labels for the edges of
H. We call our general strategy Algorithm Greedy Labeler. The algorithm is
based on a greedy approach. It first computes a drawing of H with no labels, and
then it performs |L| steps. At each step a new label is selected and inserted in the
current drawing. The insertion is performed by possibly stretching some of the
edges in order to avoid intersections between any two labels or between a label
and an edge. Let λ ∈ L be the label of and edge e of H such that λ has not been
inserted in the drawing yet. We associate λ with a pair < place(λ), cost(λ) >
such that: (i) place(λ) is the drawing placement of λ. It is a triplet < s, d, p >,
where s is the segment of e on which λ will be drawn, d specifies the direction
(left or right) of λ with respect to s, and p defines the integer position of λ
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with respect to s. (ii) cost(λ) is the drawing cost of λ. It measures the “price”
that must be paid when inserting λ in the current drawing with the constraints
defined by its drawing placement. Different definitions of this price give rise to
different greedy heuristics. For example, cost(λ) can measure how much the area
of the current drawing is increased in order to accommodate λ, or it can also
look ahead and estimate whether inserting λ can lower the cost of some next
insertions.

The insertion of λ in the current drawing is performed by invoking a suit-
able Insert Label Procedure that receives as input λ and the current labeled
drawing Γ and computes a new labeled drawing containing all labels in Γ plus
λ. The basic idea is to enlarge Γ by inserting a minimal number of columns
and/or rows that are needed to draw λ without overlaps. Since the insertion of a
new label can change the geometry of the current drawing, it may be needed to
update the values of the drawing placement and cost for some of the remaining
labels that have not been inserted yet. Namely, there are two main implications
of the insertion of λ in the drawing: (i) Inserting rows or columns in the drawing
causes additional free area in some faces. This can imply the reduction of the
cost of some labels to be drawn yet. (ii) Drawing λ in a face f reduces the free
area in f and this can lead to an increase of the drawing cost of some other
labels, for example those that are going to be drawn inside f . In both cases the
drawing cost of some of the remaining labels must be updated after the insertion
of λ. Let λ′ be one of those labels whose drawing cost and placement is affected
by the insertion of λ; Algorithm Greedy Labeler invokes a Cost Assignment
Procedure that receives as input λ′ and the current drawing and computes as
output the values < place(λ′), cost(λ′) >. A detailed description of Algorithm
Greedy Labeler is given below.

Algorithm Greedy Labeler

input: An orthogonal representation H and a set L of labels for the edges of H.
output: A labeled drawing Γ of H.

Step 1: Preprocessing Phase.
– Compute a grid drawing Γ0 of H with no labels
– Copy all labels in a set Q
– for each label λ ∈ Q execute Cost Assignment Procedure(λ,Γ0)

Step 2: Labeling Phase.

– for i := 1 to |L| perform the following three steps
Step 2.1: Label Selection.

• let λ ∈ Q be the label such that cost(λ) is minimum
• Remove λ from Q

Step 2.2: Label Insertion. Compute a new drawing Γi by executing
Insert Label Procedure (λ,Γi−1)

Step 2.3: Cost Update.
• for each label λ′ ∈ Q that may be drawn in some of the faces
whose free area is changed after the insertion of λ, execute Cost
Assignment Procedure(λ,Γi)

– set Γ = Γ|L|
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Step 1 (the Preprocessing Phase) can be accomplished by means of a
standard technique for compacting (podevsnef) orthogonal representations [8,
1]. Step 2 strongly relies on the Cost Assignment Procedure(λ,Γi) and on
the Insert Label Procedure (λ,Γi−1) which are the subject of the next two
subsections.

3.2 The Cost Assignment Procedure

The Cost Assignment Procedure receives as input the label λ of an edge e
and a drawing Γ where e is not labeled yet. For each segment s of e, the pro-
cedure moves λ along s and computes a pair < places(λ), costs(λ) >. places(λ)
is a triplet < s, d, p > where p and d are the integer position and direction
of λ with respect to s that have minimum cost; this minimum cost is stored
in costs(λ). Pair < places(λ), costs(λ) > is computed by means of a suitable
drawing cost function that we denote as CF (λ, s, Γ ) and that is the kernel of
the Cost Assignment Procedure. Finally, the output of the Cost Assignment
Procedure is the pair < place(λ), cost(λ) > corresponding to the minimum value
of costs(λ) over all segments s of e.

Cost Assignment Procedure(λ,Γ)

– let e be the edge of Γ where λ must be drawn
– set place(λ) =< nil, nil, nil >
– set cost(λ) = +∞
– for all segments s of e

• set < places(λ), costs(λ) >= CF (λ, s, Γ )
• if (costs(λ) < cost(λ)) then

set < place(λ), cost(λ) >=< places(λ), costs(λ) >
– return < place(λ), cost(λ) >

We are now ready to provide more details about CF (λ, s, Γ ). For concrete-
ness, we assume that s is vertical (the case where s is horizontal is handled
analogously). Let hλ denote the height of λ and let hs denote the height of s.
We distinguish between two cases.
Case 1: hλ + 2 ≤ hs (this implies that λ can be inserted in Γ on s without
stretching s). In this case CF (λ, s, Γ ) analyzes each integer position of λ with
respect to s and for each such position it considers the two possible directions
(left and right) of λ with respect to s. For a pair < p, d >, where p is a given
integer position and d is a given direction of λ with respect to s, CF (λ, s, Γ )
executes the following two tasks:

Task 1: It evaluates a minimal number of rows and columns that must be added
in order to properly draw λ in Γ . Let r and c be the computed number of
rows and columns, respectively.

Task 2: It computes a cost C that depends on r, c, Γ and the dimensions
of λ. If C is lower than costs(λ), we set costs(λ) = C and places(λ) =<
s, d, p + 1 >. Different heuristics for the labeling problem can be designed
within our greedy framework and by changing the definition of C (see also
Section 4).
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Task 1 applies the following rule (refer to Figure 3). Let hλ and wλ be the
height and the width of λ, respectively. We compute the largest empty rectangle
R such that the position of R with respect to s is p, the direction of R with
respect to s is d, and the width of R is equal to wλ + 1. Let hR be the height of
R. There are two cases to consider:

– hR ≥ hλ + 2. In this case λ can be drawn inside R, in position p + 1 with
respect to s, and without inserting any rows or columns to the drawing.
Hence, r and c are both set to be 0. See for example in Figure 3 (a), where
d is the right direction.

– hR < hλ+2. In this case we insert only rows or only columns in the drawing
in order to place λ in position p + 1 with respect to s (see for example
Figure 3 (b)). The number c of columns is defined as follows. Assume that
d is the right direction (the reasoning is symmetric for the case that d is the
left direction) and let f be the face of Γ on the right-hand side of s. Let sd be
the closest segment (not touching s) on the boundary of f on the right-hand
side of s that has one point in common with the boundary of R; let δ be the
distance between s and sd. See for example Figure 3 (b). Then c is set to
c = wλ + 1 − δ. As for the value of r, we distinguish between the case that
R has 0 height and the case that R has positive height. In the first case, r
is set to be r = +∞. In the second case, r is set to be r = hλ + 2 − hR. If
min(c, r) = r then we set c = 0, else we set r = 0.
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Fig. 3. (a) Label λ can be placed in position p+ 1 without inserting rows or columns
(b) Label λ can be placed in position p + 1 adding two rows or three columns. It is
inserted by adding two rows. (c) The height of the label plus two is larger than the
length of the segment. To place the label we insert two rows and two columns.

Case 2: hλ + 2 > hs (this implies that s must be stretched in order to support
λ). CF (λ, s, Γ ) executes the following operations (see Figure 3 (c)):
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– It sets p = 0.
– It sets r = hλ + 2 − hs. Also, let fl be the face of Γ on the left-hand side
of s, and let fr be the face of Γ on the right-hand side of s. Let cl =
max{0, wλ + 1 − δl}, where δl is the minimum distance between s and a
segment (not touching s) on the boundary of fl that is on the left-hand
side of s. Let cr = max{0, wλ + 1 − δr}, where δr is the minimum distance
between s and a segment (do not touching s) on the boundary of fr that is
on the right-hand side of s. Let c = min(cl, cr). If c = cl it is set d = dl, else
it is set d = dr.

– It computes a cost C that depends on r, c, Γ and the dimensions of λ. It
sets costs(λ) = C and places(λ) =< s, d, p+ 1 >.

3.3 The Insert Label Procedure

The Insert Label Procedure(λ,Γ) draws label λ in drawing Γ . Label λ is
placed in Γ according to place(λ) =< s, d, p >. The number of rows and columns
to be added to Γ so to avoid overlaps is computed as described for CF (λ, s, Γ ).
Actually, in order to save computation time one can store the number of rows
and columns computed by CF (λ, s, Γ ) into two variables r(λ) and c(λ) and pass
these information to the Insert Label Procedure(λ,Γ).

We provide some details about the insertion strategy assuming that s is
vertical and that d is the right direction (see Figure 3 (b) and Figure 3 (c)).
The other cases are handled similarly. The value of position p with respect to s
defines a unique point along segment s; let lh and lv be the horizontal line and
the vertical line through this point, respectively. Let Hu be the closed half-space
above lh and let Hr be the open half-space to the right of lv. The following tasks
are executed: (i) r(λ) rows are inserted in Γ by translating of r(λ) units to the
North direction all points of Γ that lie in Hu (ii) c(λ) columns are inserted in Γ
by translating of c(λ) units to the right direction all points of Γ that lie in Hr.
(iii) λ is drawn in position p and direction d with respect to s. Once inserted, λ
will be treated by the greedy algorithm as a new face whose segments cannot be
stretched.

The following theorem summarizes the complexity of Algorithm Greedy
Labeler in the worst case. Such a complexity is obtained by considering the
case in which all the costs of the remaining labels have to be updated at each
new greedy step and by considering the complexity of function CF (). We omit
the proof due to space limitations, but we observe that our experiments show
better time performance in practice than the one theoretically estimated. This
can be justified by a more careful analysis of the practical situations. In Section 4
we give some intuitions that are behind such a behavior.

Theorem 1. Let H be an orthogonal representation of a planar graph with n
vertices, and let L be a set of labels for the edges. There exists a general greedy
algorithm that computes a labeled drawing Γ of H in O(|L|nTL) time, where TL

is the total length of the labeled edges of Γ .
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4 Experimental Comparison of Different Labeling
Heuristics

We designed three basic heuristics for edge labeling within the framework of
Algorithm Greedy Labeler. Such heuristics differ for the definition of cost
adopted by the Assignment Procedure where selecting the label with high-
est insertion priority. We use the notation of the previous sections and denote
with hλ and wλ the height and the width of λ, respectively. Also, r and c denote
the number of rows and columns computed by CF (λ, s, Γ ). We denote with ∆A

the area increase (measured in terms of grid points in the bounding box of the
drawing) of Γ implied by inserting r rows and c columns in Γ with the Insert
Label Procedure. The three heuristics are as follows.

Delta-area: The label with highest insertion priority is the one that causes the
minimum increase of area. Therefore, C = ∆A.

Max-size-delta-area: The label with highest insertion priority is the one with
maximum area. If two labels have the same area, the label that implies the
minimum increase of the area is chosen. Therefore C = ∆A−K(hλ+1)(wλ+
1) where K is a constant such that K >> ∆A.

Max-ratio-delta-area: The label with highest insertion priority is the one
with maximum aspect ratio. If two labels have the same aspect ratio, it
is chosen the one that causes the minimum increase of the area. Therefore
C = ∆A−Kmax{(hλ+1)/(wλ+1), (wλ+1)/(hλ+1)}, whereK is a constant
such that K >> ∆A.

We implemented and experimentally compared the performances of the above
three heuristics. The implementation uses a PC-Pentium III (800 MHz and 256
MB RAM), Linux RedHat 6.2 O.S., gnu g++ compiler, and the GDToolkit
library [9]. The experimental analysis measured the following quantities:CPU
time, area, total edge length, and screen ratio of the labeled drawings.

The test suite for the experiments is a variant of the real-world graphs ex-
tensively used in the graph drawing community for experimental analysis (the
so-called ”Rome-graphs”) [5]. Namely, for each graph of this set we computed
an orthogonal representation H with a variation of the technique in [8] and ran-
domly generated labels to be assigned to the edges. The assignment of a label
to an edge is done by a coin flip (i.e. one edge gets a label with probability 0.5).
For each label λ, hλ and wλ are in the range of integer values 0 − 5 and are
defined at random with uniform probability distribution (a label whose height
and width are both 0 is a grid point). The resulting test suite consists of about
eleven thousand labeled graphs that are grouped into families according to their
number of vertices. The number of vertices ranges from 10 to 100.

Concerning the screen ratio the three heuristics have very similar behaviour.
The charts of the total edge length have the same behaviour as those of the
area, although the differences between the three heuristics are less remarkable
for total edge length. For reasons of space, we omit the charts on screen ratio and
total edge length and show only a subset of those about area and CPU time. All
our experimental results have the property that the curves relative to different
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heuristics almost never overlap and are always monotonically increasing. Since
differences of 5 − 10% may appear not very readable in small figures, we shall
often display only charts relative to a subset of the test suite while talking about
the performance of the heuristics over the whole test set.

Figure 4 (c) shows the CPU time performance (average values) of the three
heuristics. We observe that they look fast in practice since they never require
more than two seconds even for the largest graph instances of the test suite. In
the implementation of Algorithm Greedy Labeler we used the Fibonacci heap
data structure to implement Q, that supports selections and updates in constant
and logarithmic amortized time. The complexity of updating the cost of a label
λ depends on the computation of function CF (λ, s, Γ ). Although in the worst
case this computation can require evaluating a number of positions for λ that
is equal to the length of s, in many cases it evaluates only a small number of
positions. In fact, if λ is so “big” that s must be stretched to accommodate it,
just one integer position for λ is taken into account (see Case 2 of Section 3.2).
Conversely, if λ is “small” CF (λ, s, Γ ) usually finds in a few steps a position for
λ that do not require to insert rows or columns and then stops its computation.
Further, consider that portions of segments that overlap are discarded.

Figure 4 (a) compares the (average) areas of the drawings computed by the
three heuristics for graphs with number of vertices in the range 80−100. Heuris-
tics max-ratio-delta-area is the best performing and improves the solutions
of heuristic delta-area by at least an 4−5% factor; there are also cases in which
such an improvement is much greater. In our opinion this result is a consequence
of the fact that max-ratio-delta-area gives higher priority to “skinny” labels,
i.e. those that have high aspect ratio. Inserting a skinny label often implies in-
serting extra rows and/or columns and enlarging the size of several faces in the
current drawing. As a consequence, other labels can be inserted without any
further insertions of rows and columns. Also, a skinny label λ occupies only a
small portion of the face f in which it is drawn; hence inserting λ does not
increase too much the cost of other labels that have to be placed in f . On the
other extreme, delta-area does not take into account in any way the impact
that inserting a label in a face can have on further label insertions. The behav-
ior of max-ratio-delta-area is in-between these two extremes: it draws first
those labels that have large area but this is somehow not properly reflecting our
rows/columns insertion strategy that, when possible, stretches the drawing only
in one direction for each label insertion. In order to test the robustness of our
techniques and further verify the above results we repeated the experiments on
the same graphs but where label dimensions vary in the range 5−10. Figure 4 (b)
shows the same trend of performance as the one of Figure 4 (a) and it even
emphasizes the difference between delta-area and max-ratio-delta-area for
some graph instances.

Motivated by the above experiments we ran several new experiments to fur-
ther investigate the effectiveness of the max-ratio-delta-area heuristic. Be-
cause of the NP-hardness of the problem, estimating how much the feasible
solutions of the max-ratio-delta-area heuristic are far from optimum is not
an easy task. Nevertheless, we executed four experiments that provide evidence
of the good behavior of the heuristic. Let Γ be the labeled drawing computed by
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max-ratio-delta-area for a labeled graph G and let S be the solution space,
i.e. the set of all possible labeled orthogonal drawings of G. Our experiments
pick other feasible solutions in S and compare them with Γ .

We first compared the areas of drawings computed by
max-ratio-delta-area with the area of the drawings computed by a
trivial greedy heuristic, called random, that chooses randomly both the ordering
in which labels will be inserted and the segment and the drawing placement
of each label. Figure 4 (d) shows that max-ratio-delta-area outperforms
random by about 20% for most graphs instances.

A second experiment iteratively executes random until a labeled drawing
with area less than or equal to the area of the output of max-ratio-delta-area
is found. Figure 4 (e) shows the CPU time (in seconds and logarithmic scale)
spent by random to find a solution less than or equal to the one computed
by max-ratio-delta-area for the same graph. In order to execute such an
experimentation in a reasonable time, we performed it over a subset of graphs
of the test suite, with maximum running time of 30 minutes for each graph.

A third experiment uses local search to explore the neighborhood of Γ in S.
We visit the neighborhood of Γ searching for better solutions. Clearly, setting
the neighborhood to be searched involves a tradeoff between solution quality
(the larger the neighborhood the better the solution that can be found) and
running time (larger neighborhoods require longer time to be searched). Our
experiment is as follows: For each label λ assigned to a segment s, we tried to
flip λ around s while preserving the directions of the other labels and ran again
max-ratio-delta-area with the constraint that the labels are inserted in the
same ordering as the one used for constructing Γ . If a better solution is found
(i.e. for the flipping of some of the labels) we move on with a new solution
and iterate the search, otherwise it is stopped. Figures 4 (f) and (g) show our
experimental results about the area and CPU time.

In order to overcome the inner limit of local search strategies that get trapped
in a local optimum, we ran a fourth experiment that includes our local search
within a greedy randomized adaptive search procedure (GRASP)[7]. A GRASP
repeatedly starts the search from different solution points in the feasible region.
Such points are not selected at random as in classical multi-start methods, but
are computed by perturbing the criterion of the max-ratio-delta-area heuris-
tic when selecting the best current label. Our GRASP is based on choosing at
random the label whose cost lies in the range [χm, χm + (χM − χm)α] where α
is a real in the interval [0, 1] and χm and χM are the minimum and the maxi-
mum costs of the labels considered in the selection step. We then apply a local
search approach to each one of the different solutions and keep the best solution
among the computed ones. On each graph we performed 50 GRASP iterations.
Figures 4 (h) and (i) show the area and the CPU time experimental results for
α = 0.1 and α = 0.3.

Both the local search approach and the GRASP show that solutions with
smaller area than those computed by the max-ratio-delta-area heuristic can
be obtained by paying a relatively high price in terms of computation time. The
experimental data show that the obtained area improvement is for most case not
larger than 7− 11%.
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We integrated the max-ratio-delta-area heuristic in the topology-shape-
metrics approach that computes an orthogonal drawing of a graph. The main
reason that led us to design an integrated algorithm is the following experiment.
We first designed an algorithm that we call Blind Labeler based on the pode-
vsnef model. Blind Labeler receives as input a labeled graph G, it discards
the labels form G and computes an orthogonal representation H of G by using
minimum cost flow techniques. Each edge e ∈ H with a label λ is split into
two edges, by inserting a dummy vertex representing λ. The segment of e where
the dummy vertex is inserted is chosen at random. Finally, Blind Labeler runs
a compaction step that computes a drawing of H where the dummy vertices
are constrained to have fixed size [3]. We then designed a second algorithm
that we call Fast Labeler that computes an orthogonal drawing of G by using
the max-ratio-delta-area heuristic. Namely, Fast Labeler differs from Blind
Labeler since it uses the max-ratio-delta-area heuristic to insert the labels in
H and to compute the drawing of G. We observed that the areas are comparable
(see Figure 4 (l)) while the CPU time of Fast Labeler is much less than that of
Blind Labeler. The difference in CPU time performance is due to the fact that
the compaction step of Blind Labeler relies on several iterations of minimum
cost flow computations. We also note that Blind-Labeler chooses the drawing
placement of a label at random and the result of Figure 4 (d) shows that a ran-
dom choice for the labels placement in general leads to solutions that are much
worse than those achievable with the max-ratio-delta-area heuristic. Hence,
the reason why the two algorithms have comparable performances in terms of
area strongly depends on the effectiveness of the compaction step used by Blind
Labeler. To foster our intuition we designed a third integrated algorithm, that
we call Slow Labeler. The Slow Labeler first computes H in the same way
as Fast Labeler does, then it uses the strategy of the max-ratio-delta-area
heuristic to define the segment and the direction of each label, and finally it
applies the compaction step of Blind Labeler to H taking into account the
constraints for the segments and the directions of the labels. Figure 4 (l) also
shows the performances of Slow Labeler.

The areas of the drawings computed by Slow Labeler are considerably below
those computed by the other two algorithms. The CPU time spent by Slow
Labeler is similar to that spent by Blind Labeler.

5 Open Problems

In the near future we plan to investigate other heuristics within the proposed
greedy framework and to devise effective polyhedral techniques in order to ex-
actly evaluate the solution quality of our heuristics.
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