
User Hints for Directed Graph Drawing

Hugo A.D. do Nascimento� and Peter Eades��

Basser Department of Computer Science,
The University of Sydney, Australia

{hadn,peter}@cs.usyd.edu.au

Abstract. This paper investigates an interactive approach where users
can help a system to produce nice drawings of directed graphs by giving
hints to graph drawing algorithms. Hints can be three kinds of operations:
focus on a specific part of the drawing that needs improvement, insertion
of layout constraints, and manual changes of the drawing. These hints
help the system to escape from local minima, reduce the size of the
solution space to be explored, and input domain knowledge. The overall
aim is to produce high quality drawings. We present a system based on
this approach and a pilot study involving human tests.

1 Introduction

Many graph drawing methods have been developed to produce drawings of
graphs to satisfy aesthetic criteria, such as showing few edge crossings and mono-
tone edge direction (eg. upward or downward). The optimization problems in-
herent in graph drawing are mostly NP-hard. The aesthetics may also conflict,
that is, there is no optimum solution for two criteria simultaneously. As a con-
sequence, graph drawing methods are mainly heuristics that work reasonably
fast, but may result in poor quality drawings. Even amongst papers in Graph
Drawing [1,2,3,4], one can find drawings that are produced in a few seconds, but
present many edge crossings, edge bends, no symmetry, etc. In application areas
such as Software Engineering, the drawings are often worse; see [5]. For instance,
drawings of the Unix System Family tree that appear in many papers about di-
rected graph drawings show at least one edge crossing [2]. It is interesting to
note that this graph is upward planar.

There are several approaches for dealing with the weakness of automatic
graph drawing methods. The most popular one is to apply the method for gen-
erating an initial drawing, and then improve the drawing manually. This is per-
haps the most common way of creating a winning drawing for the Graph Drawing
Contest [6]. The automatic method solves a great part of the problem by find-
ing approximate positions for the vertices, and then the user produces the final
layout by attending to other problems (including problems driven by domain
knowledge) that the heuristics do not solve. In many cases, the user can easily
� Lecturer of the Inst. of Informatics, UFG-Brazil. PhD scholarship of CAPES-Brazil.

�� Supported by the Australian Research Council.

P. Mutzel, M. Jünger, and S. Leipert (Eds.): GD 2001, LNCS 2265, pp. 205–219, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



206 H.A.D. do Nascimento and P. Eades

recognize part of the drawing that needs to be improved and a way of improving
it, as long as a good initial drawing is provided.

An alternative approach is to develop better (and more complex) algorithms
that consider several rules about how to draw edges and vertices, or to use meta-
heuristics that explore the space of possible layout solutions. It is not clear,
however, that better algorithms and methods can ever eliminate the possibility
of having the user doing some post-processing. This is because there are always
some instances for which sufficiently fast algorithms do not produce the best
solution, or the space of solutions is too large to be adequately searched in a
reasonable amount of time. Moreover, it is common to have a large number of
good equivalent layouts for the same graph, where the decision of which one to be
taken is subjective, or domain dependent. Even when some subjective aspects
can be modeled as objective functions and constraints in flexible algorithms
[7,8,9], it is difficult to ensure that all user preferences are considered, and that
they imply no ambiguity by leading to a single “optimum” solution. It may also
be difficult to assure that the algorithm will find this solution. Thus, in the most
extreme situation, the user is still important for validating the result produced
by automatic methods or for selecting between a number of good drawings.

In this paper we investigate an approach for drawing directed graphs that
considers the user as a fundamental element of the graph drawing process. The
user plays a very important role by cooperating with an optimization method
to produce good quality drawings. Basically, the user provides hints to an op-
timization method, helping it to escape from local minima, to converge much
faster to better results, or to clarify subjective and domain dependent aspects.

We apply our user-hints based approach to the problem of drawing directed
graphs resulting in an interactive system. Directed graphs were chosen since
they appear in several real applications and involve many difficult graph draw-
ing problems. We use the popular method of Sugiyama et al. [2] as our main
optimization method. A human pilot study of our system is done in order to an-
alyze the contribution of user hints to the quality of graph drawings. This paper
is organized as follows. Section 2 describes some related research regarding the
contribution of users to optimization processes. Section 3 presents our approach
based on user hints, and Section 4 describes how hints can be incorporated to
the Sugiyama method. An interactive system that supports hints is presented
in Section 5. Section 6 discusses our experiments with the system and the re-
sults obtained. Finally, Section 7 draws our conclusions about interactive graph
drawing based on user hints and offers future research directions.

2 Related Work

Due to the high complexity of optimization problems and the constant demand
for solutions close to the optimum, some new research has been done in the
direction of allowing users to cooperate with automated optimization methods.

A good example of such studies is the work presented by Anderson et al in
[10], where the authors introduce a cooperative paradigm called Human-Guided



User Hints for Directed Graph Drawing 207

Simple Search (or HuGSS for short). HuGSS divides an optimization process into
two main subtasks carried out by different entities: the computer is responsible
only for finding local minima using a simple hill-climb search; the user is respon-
sible for escaping from the minima leading the search to better solutions. Some
visualization techniques help to identify parts of a solution that are promising
for improvement. Then the user can either manually change the solution or fo-
cus the search on the identified parts. The focus consists of setting a high search
priority for a part of the solution and/or defining how deep the search will be
executed. The HuGSS paradigm was applied to the problem of capacitated vehi-
cle routing with time windows, and it showed that a simple hill-climb algorithm
could be significantly enhanced by user interaction. The same idea was used for
the graph clustering problem [11].

Another interesting work on user interaction appears in [12]. It consists of
an interactive constraint-based system for graph drawing using force-directed
placement [13]. The system works as follows: a graph is modeled as an energy
system with springs linking all pairs of vertices, and a method for quadratic
optimization is set to continuously compute a layout that correspond to a state
of minimal energy. While the optimization method is running, the user can
incrementally add constraints to the model, in order to confirm the drawing to
his or her desires. Constraints are called VOFs (Visual Organization Features)
and include a variety of layout aspects such as: showing two vertices close to each
other, showing an edge as an orthogonal line, etc. VOFs are implemented as extra
springs and added to the original energy model. The system solves constraints
searching for a new state that minimizes the energy of the entire set of springs
(composed by the original springs of the graph plus the constraint springs). The
user may manually move some vertices to help the optimization method to escape
from local minima. This characterizes a very general and flexible approach for
solving layout constraints that are added during run time.

User guidance can also occur in a much softer way, not by setting algorithms
to do specific tasks, but indicating whether or not they are on the right path. This
approach was adopted by Branke et al [14,15] using Genetic Algorithm (GA) for
drawing general graphs. In their system a genetic algorithm tries to minimize
a weighted function of seven aesthetic criteria (minimum number of crossings,
high angular resolutions, many symmetries, etc.) as it is commonly done by
other meta-heuristics for Graph Drawing [7,8]. However, instead of executing
the meta-heuristic for a long period of time until the drawing has converged,
the system stops every few iterations and gets feedback from the user. Basically,
it shows the best eight drawings currently produced (one drawing for each one
of the seven aesthetic criteria, and the best drawing according to the weighted
function), and asks the user for scores between 0 to 9 for each drawing. Then the
system uses those scores to adjust the weight of each aesthetic criterion in the
weighted function. For instance, giving high scores to drawings with few edges
crossings contributes to an increasing of the relative weight assigned to the edge
crossing criterion in the system. At the end, the system “knows” the relative



208 H.A.D. do Nascimento and P. Eades

importance of each criterion that describes the user’s aesthetics for a specific
drawing.

All these pieces of research show, in different ways, an emerging trend for
having users guiding optimization processes. Our approach is close to the HuGSS
paradigm in the sense that users are more active and provide pieces of informa-
tion directly to the optimization method. However, we also consider the possibil-
ity of adding constraints to the problem in runtime and use other optimization
methods than just hill-climbing ones. The next sections describe our approach
in details.

3 Hints for Directed Graph Drawing

We use user hints, or just hints, to refer to the information provided by users
to optimization methods. A hint should help the system to escape from local
minima, to accelerate the optimization process, or to solve ambiguity in cases
where there is more than one feasible solution. In the context of this paper,
hints help graph drawing algorithms to search for high quality graph drawings
according to a set of aesthetic criteria.

3.1 Types of User Hints

We consider three kinds of hints for directed graph drawing:

– Focus. The aim of focus is to reduce the space of solutions to be explored
by a search method. In general, after running a graph drawing algorithm on
the whole graph we get a reasonably good drawing, with some areas that do
not satisfy the aesthetic criteria. By identifying this, the user can focus the
drawing algorithms again on the areas with poor quality in order to improve
them. This means that the algorithms will redraw only the focused areas of
the graph. The layout of vertices in the non-focused areas is not changed.

– Layout Constraints. Layout constraints are useful for helping the sys-
tem to fix bad quality aspects of a drawing, or for removing ambiguity
about where to draw some vertices. We have adopted two kinds of layout
constraints, Top-Down and Left-Right. The Top-Down constraint defines an
above-relation between two vertices u and v, such that u has to appear some-
where above v in the drawing. Similarly, the Left-Right constraint defines an
on-the-left-relation between two vertices u and v.

– Manual Changes. Other drawing aspects that are not easily controlled by
focus and layout constraints can be fixed by manual changes. The user does
manual changes only on vertices by moving them to a different position of the
drawing. Changes on edges can be done by moving their related vertices. The
mechanism of manual changes is already commonly used in graph drawing
activities as a part of a post-processing and fine-tuning step. However, here
we have a much more powerful tool, since changes in a drawing may drive
the system out of a local minimum to a better solution.



User Hints for Directed Graph Drawing 209

3.2 A Framework for Giving User Hints

An interactive framework for giving hints is shown in Figure 1. Arrows with a
capital label represent the action of giving a hint. Note that all kinds of hints are
direct or indirect input to the optimization method. The drawing activity occurs
as iterative steps with the user providing hints to the optimization method. Then
the method produces a new drawing of the graph by taking into consideration
information about the current drawing and the hints. These steps repeat until
the user is happy with the drawing.

Fig. 1. Interactive framework user hints.

3.3 Implementing Focus and Constraints in the Sugiyama Method

For the purpose of drawing directed graphs, we use an optimization method
based on the Sugiyama method [2]. The Sugiyama method draws a graph on
a hierarchical set of horizontal lines called layers. The method consists of four
steps that in general involve NP-hard problems [1,2]:

1. Cycle Removal: it reverses some edges of the graph in order to make it acyclic.
2. Layer Assignment: vertices are assigned to layers such that edges show

a uniform orientation as much as possible. When an edge intersects one
or more layers, it is replaced by a set of small edges (u, n1),(n1, n2), . . .
(ni, ni+1),(nk, v), where ni, i = 1, 2 . . . k are dummy vertices inserted on
each intersection point, and u and v are real vertices.

3. Crossing Reduction : vertices are sorted in each layer in order to reduce the
number of crossings.

4. Horizontal Coordinate Assignment: the X- coordinate of each vertex is com-
puted making edges as straight as possible, and reducing bends and the
width of the drawing. All edges changed in step 1 are also reversed to their
original orientation.

We preserve the general structure of the Sugiyama method and adjust each
step to support focus and layout constraints. Focus has two effects: it limits the
action of the graph drawing algorithms to the focused vertices and it defines



210 H.A.D. do Nascimento and P. Eades

special constraints that “freeze” the non-focused vertices. Thus, given a graph
G = (V, E), we focus on a selected set A ⊆ V , by running the Sugiyama method
only on A. The X,Y coordinates of the vertices in V − A are kept fixed. On
the other hand, layout constraints are modeled either as extra edges added to
the graph or as normal constraints that impose an ordering to vertices. Layout
constraints can be defined only for real vertices. Some similar kinds of constraints
for the Sugiyama method are investigated in [16] and [17].

For simplicity, in the rest of this paper we use the term selected vertex mean-
ing a vertex in the selected set A, and fixed vertex for a vertex in V − A. The
drawing is constructed on a grid of integer coordinates. The rows of the grid
represent layers. A set of K layers is labeled L1, L2, . . . Lk, starting from bot-
tom to up. We use the notation lv to indicate the layer assigned to a vertex v,
with lv ∈ {L1, L2, . . . Lk}. The way that we implement focus and constraints is
slightly different for each step of the Sugiyama Method. We explain now this
implementation in details.

3.4 Cycle Removal

In the Cycle Removal step, the focus mechanism has no effect. Cycles involving
selected vertices and fixed vertices are treated equally (Left-Right constraints
also do not affect the drawing). Top-Down layout constraints, however, cause a
great impact on the final result of this step.

As an example of how important layout constraints are, consider a graph
composed of a ring with four vertices, a, b, c and d. There are four basic ways of
drawing this ring such that the number of downward edges is maximum (opti-
mal). These drawings are shown in the Figure 2(a) to (d). Without constraints,
the four drawings are equivalent according to the number of downward edges.
However, if the user prefers to have the vertex a drawn above the vertex c, and
inserts a Top-Down constraint on a and c, this operation reduces the number of
optimal solutions to only two, shown in Figures 2(a) and (b). If the user inserts
another Top- Down constraint, now on b and d, this lets us with a single optimal
solution, Figure 2(a). The user can go even further by inserting another Top-
Down constraint to have c drawn above b. In this case, the only valid solution is
to reverse the edge (b, c) and (d, a), Figure 2(e), since the constraints defines a
precise order: a above c, c above b, and b above d.

Fig. 2. Different ways of drawing a ring. Thick arrows represent constraints.



User Hints for Directed Graph Drawing 211

In summary, layout constraints can be used not only to reduce the number of
feasible solutions, but also to force the system to considerer a specific solution.
Note that all layout constraints, Top-Down and Left-Right, involve a pair of
vertices. Therefore, layout constraints are modeled as special directed edges,
that we call constraint edges. Constraint edges can be freely inserted into the
system, providing that they do not make a cycle.

Considering the effect of layout constraints, we developed a new approach
for the Cycle Removal step. Let G = (V, E) be the graph to be drawn and
L the set of Top-Down constraints. First, we construct a new graph G′′ by
merging L with G. Whenever an original edge and a constraint edge (excluding
orientation) connect the same pair of vertices, we remove the original edge and
leave the constraint. The merge procedure can be formalized as: G′′ = (V, E′′),
where E′′ = L ∪ {(u, v) ∈ E|(u, v)and(v, u)notinL}. If the resulting graph G′′

is acyclic then the problem was solved. Otherwise, a method for the Feedback
Arc Set problem is applied to this graph, but it is set to reverse only original
edges. For instance, by merging the ring from the previous example with the
set of constraints in Figure 2(e) causes the edge (b, c) to be removed. Then, the
next step is to reverse some edges in G′′ in order to break cycles. The algorithm
for this task can reverse any edge, except (a, c), (c, b) and (b, d), which represent
constraint. The optimal solution would be to reverse only (d, a).

We modify the Greedy-Cycle-Removal heuristic in [1] in order to solve the
Feedback Arc Set problem with constraint edges; see Figure 3. The modification,
highlighted in bold, is minor, however, it assures that only original edges are
reversed. The advantage of using this algorithm is that it is simple and runs
in linear time. The algorithm works by removing vertices from the graph and
adding them either to a list Sl or to a list Sr. Finally, Sl is concatenated with Sr

to form S. The list S provides a sequence of the vertices of G′′. Then, all edges
(u, v) ∈ E′ with v appearing before u in S are reversed, resulting in a acyclic
graph.

Fig. 3. Modified version of the Greedy-Cycle-Removal heuristic presented in [1].



212 H.A.D. do Nascimento and P. Eades

3.5 Layer Assignment

The Layer Assignment is executed for the graph G′′ = (V, E′′) produced by the
previous step. Focus is considered here, and it is implemented by modifying a
layering algorithm for not changing the coordinates of fixed vertices. Note that
edges with fixed vertices in both ends may not affect the layering algorithm, so
they can be removed for saving time. This approach is presented in Figure 4.

Fig. 4. Approach for Layer Assignment with constraints and focus.

We use the Longest Path Layering heuristic [18] to construct a layering of G′′.
This algorithm results in drawings that are in general too wide; however, it can
be easily modified to handle focus, and it runs in linear time. The original version
of this heuristic places all sinks in the bottom layer, L1. Then each remain vertex
u is placed in layer Lp+1 where the longest path from u to a sink has length p. In
our modified version we consider that all fixed vertices are sinks with predefined
layers assigned to them, even though they may have outgoing edges. This implies
that each non-sink vertex u will be placed in layer Lp+q, where p is the length
of the longest path from u to a sink, q is the label of the layer where the sink
is, and p + q is maximal. Note that our layering algorithm may violate Top-
Down constraints in a special case where they conflict with focus. Consider that
there is a chain of directed edges (v1, v2), (v2, v3), . . . , (vk−1, vk), where v1 is a
fixed vertex, v2 . . . vk−1 are selected vertices, vk is a sink (or a fixed vertex), and
lv1 − lvk

< (k − 1), with lv1 and lvk
the layers assigned to v1 and vk respectively.

If (v1, v2) is a constraint edge, then this constraint will be violated since v2 will
be assigned to a layer above v1. All other edges (vi−1, vi), i = 3, . . . , k will point
downward.

We developed a solution for the case where vk is a normal sink. It consists of
adding a post-processing step that uses the previously computed layering to shift
down some vertices. Basically, for each vertex u ∈ V taken in the topological
order we assign u to a new layer lu = min(lv − 1 : for all vertices v such that
there is an edge (v, u) ∈ E′′); if there is no edge (v, u) ∈ E′′ for any v ∈ V , u is
kept in its current layer. The revised algorithm still runs in linear time. It moves
all vertices v2, . . . vk−1 k + lvk

− lv1 − 1 layers down. Unfortunately, the problem
persists for the case where vk is a fixed vertex: the vertex vk−1 will be assigned
to a layer below vertex vk. However, this is a problem due rather to a conflict
between focus and layout constraints than to the layering algorithm itself. Our
approach favors focus against layout constraints.



User Hints for Directed Graph Drawing 213

3.6 Crossing Reduction

In the next step of the Sugiyama method, we use the original graph G = (V, E)
as well as the layering defined by the previous step. A version of the barycenter
algorithm [2] is applied to handle focus and Left-Right constraints. This version
adjusts only the X-coordinate of selected vertices and solves constraints during
the processing. A general description of the algorithm is shown in Figure 5.

Fig. 5. Barycenter algorithm for Crossing Reduction with constraints and focus.

The algorithm uses a heuristic called FixConstraints(i) that reorganizes the
vertices in layer Li. This heuristic constructs a set S composed of all selected
vertices in Li that overlap (have the same X-coordinate), have a non-integer
X-coordinate or do not satisfy one or more Left-Right constraints. Then the
algorithm moves each vertex in S to an empty integer position in Li where the
number of unsatisfied constraints is minimized. If there are many equally possible
empty positions in the layer, the algorithm chooses the one closest to the vertex”s
current location. Left-Right constraints may involve vertices in different layers.
In this case, all constraint edges that have at least one vertex sitting on layer Li

will be analyzed.
Note that our implementation of FixConstraints may not result in satisfaction

of all Left-Right constraints, since it analyses locally the layers, and it demands
the existence of empty positions for moving vertices. Some vertices may also be
fixed, forbidding constraints to be solved. Nevertheless, we expect the heuristic to
solve many constraints when applied several times in the barycenter algorithm.

3.7 Horizontal Coordinate Assignment

Finally, the last step of Sugiyama method, the Horizontal Coordinate Assign-
ment, is not explicitly included in our approach. This is because the barycenter
algorithm combined with FixConstraints already assigns X-coordinates that do



214 H.A.D. do Nascimento and P. Eades

not produce many bends or long edges. Moreover, the algorithm in Figure 5 can
be re-applied for improving the horizontal coordinate assignment by focusing
only on vertices that cause bends or long edges.

4 The GDHints System

We implemented the Sugiyama steps described in the previous section into an
interactive system, called GDHints1. A snapshot of the system is shown in Figure
6. The system includes:

– a user interface, by which the user can select vertices for focus, add and
delete constraints or perform manual changes;

– graph drawing functions for layering (cycle removal and layer assignment)
and ordering (for crossing reduction); and

– displays of quality metrics of drawings.

User-System Cooperation and Quality Feedback. The system and the
user work together for improving a drawing of a graph. The drawing is improved
when its new layout is better than the previous one in the following priority of
aesthetic criteria: (1) number of upward edges, (2) number of edge crossings,
(3) number of dummy nodes, (4) number of edge bends and (5) drawing area.
At the beginning of the processing, the layering and the ordering functions are
automatically executed for a new graph in order to produce an initial drawing.
Then the user can call these functions again for redrawing selected parts of the
graph. The system evaluates the quality of every new drawings and automatically
saves the best drawing generated so far. At any time, the user can return to the
best drawing or can force the system to accept the current drawing as the best
one.

The system provides useful feedback for the user”s actions. This includes col-
ors for highlighting bad quality aspects of the drawing, and sound and animation
events for calling the user”s attention whenever a new solution better than the
current best one is found.

5 Pilot Study

An initial study with human experiments was done for validating our approach.
Five users took part in the experiments. All of them have a background in
Computer Science and in Graph Drawing. The users also had a 30-minute intro-
duction about the system, before starting the experiments.

The study involved three kinds of experiments: E1 (constraints only), E2
(constraints + focus) and E3 (constraints + focus + manual changes).

These experiments were done using six graphs, which details are shown in
Table 1. Graphs G3, G4, G5 and G6 are from [2,3,4]. In total 90 experiments
1 Our system can be downloaded from www.cs.usyd.edu.au/∼visual/systems/gdhints



User Hints for Directed Graph Drawing 215

Fig. 6. The interactive system based on user hints

were done (5 users x 3 types of experiments x 6 graphs). We started with small
graphs, so that the users could improve their skills in giving hints smoothly.
Constraints were allowed in all experiments since they are an advanced feature
in interactive graph drawing and we wanted to test them as much as possible.
On the other hand, manual changes are very intuitive (the users could tend to
use mainly this option). For this reason, we considered manual changes only in
experiment E3.

The users” actions were recorded into history files for further analysis. After
the experiments we also got subjective feedback from the users. The first 15
experiments (related to graph G1) were not included in the average analysis
of the system, since we considered the users were still learning how to use the
system during that time.

Table 2 shows the minimum, the maximum and the average values of the
aesthetic criteria for the best drawings produced by the 5 users.

Compared to the initial solutions described in Table 1, the number of offend-
ing edges was not improved much. This is because the layering algorithm already
produces a result very close to the optimum. On the other hand, there was a
significant reduction of the number of edge crossings. The experiments where not
all users could improve crossings were the ones based only on constraints. When
focus and manual changes were allowed, all five users produced drawings with
lesser crossings. Note that the number of crossings could still be smaller than
the minimum presented here for some graphs, but this may result in a worse
solution, with more offending edges. Regarding the numbers of dummy vertices
and bends, and the area of the drawings, they were higher than the initial fig-
ures for almost all experiments. This shows that such aesthetics are in general
inversely proportional to the improvement of edge crossings. Some examples of
drawings produced by the users can be seen in the Appendix. Other drawings
are available in our web-page.



216 H.A.D. do Nascimento and P. Eades

We present relative results for experiments E1, E2 and E3 in Table 3. It
contains, in percentage, the average values from the previous table divided by
the initial values (from Table 1) and combined for graphs G2 to G6. We can
see that the users could reduce the number of edge crossings by about 20% on
average in experiment E1, 56% in experiment E2, and 65% in experiment E3.
The percentages for dummy vertices, bends and area of the drawings are greater
than 100% showing an increasing of the initial figures for these criteria. The
values for offending edges are not considered here.

An interesting point is the gap between the experiments E1 and E2. Adding
the focus facility to the system improved much the results. In fact, the users
affirmed it was difficult to improve the drawings in the experiment E1, since
adding new Left-Right constraints very often caused many edge crossings. We
concluded that the system was able to find solutions that satisfy Left-Right
constraints in most cases, but not the ones with minimal number of crossings.

The usage (percentage of user interactions represented by mouse clicks) of
the main operations in the system is presented in Table 4. The row Total is
the overall results for all experiments. The column Other includes align to grid
operations, zoom in, zoom out and other actions.

Table 4 shows that constraints played a less important role in the optimiza-
tion processing compared to focus (select operations) and manual changes (move
operations). Ordering was the most significant operation, and it was executed
for improving drawings after giving hints to the system. The users also pointed
out that the option for returning to the best solution was very important. They
used this facility in a simple search approach for escaping from local minima:
performing changes on the drawing and executing the ordering function several
times for improving the solution; after some iterations, the user presses a button
to recover the new best solution found.

Table 1. Graphs used for the experiments.

A final result obtained from the experiments regards processing time. The
users spent on average 14 minutes on each experiment. However, just 10% of this
time was used by the system for doing some processing. In the other 90%, that



User Hints for Directed Graph Drawing 217

Table 2. Quality of the best drawings produced by the users for all graphs.

Table 3. Overall results of the experiments compared to the quality of the initial
drawings.

Table 4. Usage of the main operations.



218 H.A.D. do Nascimento and P. Eades

we call idle time, the system was stopped, waiting for the user to do some action.
During that time the user was thinking about what kind of hint to give to the
system. This indicates that there is much CPU power left for improving the co-
operation between the system and the user in our approach. We envision a more
collaborative framework where the system may work in background improving
the results.

6 Conclusion

User hints, particularly focus and manual changes helped an optimization process
based on the Sugiyama method to improve drawings of directed graphs. Some
effort was demanded in order to adjust the traditional graph drawing method to
allowing user interaction. However, the system with this facility seems more at-
tractive and powerful than just a simple manual post-processing of the drawings.
We are now improving our system based on the results obtained from the pi-
lot study. The constraint mechanism is being revised to include new constraints
that can represent the users desires better. We are also investigating the use
of better optimization methods such as meta-heuristics and exact methods. For
such methods, hints can provide a good way of reducing the space of solution.
Moreover, we believe that focus and constraints can be implemented in a more
straightforward way in those methods.

References

1. G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph drawing: algo-
rithms for the visualization of graphs. New Jersey: Prentice-Hall, 1999.

2. K. Sugiyama, S. Tagawa, and M. Toda. Methods for visual understanding of
hierarchical systems. IEEE Trans. Syst. Man Cybern., SMC- 11(2):109-125,
1981.

3. R. Tamassia, G. Di Battista, and C. Batini. Automatic graph drawing and
readability of diagrams. IEEE Trans. Syst. Man Cybern., SMC- 18(1):61-79,
1988.

4. K. Sugiyama and K. Misue. Visualization of structural information: Automatic
drawing of compound digraphs. IEEE Trans. Softw. Eng., 21(4):876–892, 1991.

5. Proceedings of the 22nd Annual Conference on Software Engineering (ICSE
2000). Limerick, Ireland, June 4-11, 2000.

6. Graph Drawing Contest. In Proceedings of the 8th International Symposium on
Graph Drawing, GD 2000, Colonial Williamsburg, VA, USA, September 20-23,
2000. ISBN: 3-540-41554-8.

7. R. Davidson and D. Harel. Drawing graphs nicely using simulated annealing.
Technical report, Department of Applied Mathematics and Computer Science,
The Weizmann Institute of Science, Rehovot, 1989.

8. J. Utech, J. Branke, H. Schmeck, and P. Eades. An evolutionary algorithm for
drawing directed graphs. In Proc. of The International Conference on Imaging
Science, Systems, and Technology (CISST’98), pp. 154-160, Las Vegas, Nevada:
CSREA Press, July 6-9, 1998.



User Hints for Directed Graph Drawing 219

9. H. A. D. do Nascimento, P. Eades and C. F. Xavier de Mendonca Neto. A mul-
tiagent approach using A-Teams for Graph Drawing. In Proceedings of the 9th
International Conference on Intelligent Systems, Louisville, Kentucky - USA,
June 15-16, 2000, pag 39-42.

10. D. Andersen, M. Andersen, M. Lesh, J. Marks, B. Mirtich, D. Ratajczac and K.
Ryall, Human guided simple search, to appear in the proceedings of the annual
conference of the American Association for Artificial Intelligent, 2000.

11. N. Lesh, J. Marks, and M. Patrigname. Interactive Partitioning. Graph Drawing
Conference, 2000.

12. K. Ryall, J. Marks, S. Shieber. An interactive constraint-based system for draw-
ing graphs. In Proc. of the ACM Symposium on User interface Software and
Technology (UIST’ 97), pages 97-104, Oct. 1997, Banff, Alberta.

13. T. M. J. Fruchterman and E. M. Reingold. Graph drawing by force-directed
placement. Software-Practice and Experience, vol. 21, no. 11, 1129-1164, 1991.

14. K. Dauner. “Ein interaktiver Genetischer Algorithmus fur das Zeichnen von
Graphen”.(“Interactive genetic algorithm for graph drawing”). Diplomarbeit
(Master Thesis), Institute AIFB, University of Karlsruhe, 76128 Karlsruhe, Ger-
many, 1997.

15. A. E. Jacobsen. “Interaktion und Lernverfahren beim Zeichnen von Graphen
mit Hilfe evolutionarer Algorithmen” (“Interaction and learning methods for
graph layouts with the help of evolutionary algorithms”). Diplomarbeit (Master
Thesis), Institute AIFB, University of Karlsruhe, 76128 Karlsruhe, Germany,
2001.

16. E. Koutsofios and S. North. Drawings graphs with dot. Technical Report, AT&T
Bell Laboratoties, Murray Hill, NJ, USA, Sep 1991.

17. K.-F. Böhringer and F. N. Paulisch. Using constraints to achieve stability in au-
tomatic graph layout algorithms. Conference proceedings on Empowering peo-
ple: Human factors in computing system: special issue of the SIGCHI Bulletin,
pages 43 - 51,1990.

18. P. Eades. A Heuristics for Graph Drawing. Congr. Numer., 42, 149-160, 1984.

Appendix – Examples of Drawings Produced by the Users

(a) Unix System Family (G5) (b) Forrester’s World Dynamics Graph (G6)


	User Hints for Directed Graph Drawing
	Introduction
	Related Work
	Hints for Directed Graph Drawing
	Types of User Hints
	A Framework for Giving User Hints
	Implementing Focus and Constraints in the Sugiyama Method
	Cycle Removal
	Layer Assignment
	Crossing Reduction
	Horizontal Coordinate Assignment

	The GDHints System
	Pilot Study
	Conclusion
	References


