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Abstract. A book embedding of a graph consists of a linear ordering
of the vertices along a line in 3-space (the spine), and an assignment of
edges to half-planes with the spine as boundary (the pages), so that edges
assigned to the same page can be drawn on that page without crossings.
Given a graph G = (V, E), let f : V → N be a function such that
1 ≤ f(v) ≤ deg(v). We present a Las Vegas algorithm which produces
a book embedding of G with O(

√|E| · maxv�deg(v)/f(v)�) pages, such
that at most f(v) edges incident to a vertex v are on a single page. This
algorithm generalises existing results for book embeddings. We apply
this algorithm to produce 3-D orthogonal drawings with one bend per
edge and O(|V |3/2|E|) volume, and single-row drawings with two bends
per edge and the same volume. In the produced drawings each edge is
entirely contained in some Z-plane; such drawings are without so-called
cross-cuts, and are particularly appropriate for applications in multilayer
VLSI. Using a different approach, we achieve two bends per edge with
O(|V ||E|) volume but with cross-cuts. These results establish improved
bounds for the volume of 3-D orthogonal graph drawings.

1 Introduction

This paper presents a Las Vegas algorithm for producing book embeddings of
a graph with bounds on the number of edges incident to a vertex on a single
page. This algorithm is used as the basis of algorithms for producing three-
dimensional orthogonal graph drawings with one and two bends per edge. We
focus on drawings appropriate for applications in multilayer VLSI. Throughout
this paper, G = (V,E) is a undirected simple connected graph. We denote the
number of vertices of G by n = |V |, the number of edges of G by m = |E|, and
the maximum degree of G by ∆(G), or ∆ if the graph in question is clear.

1.1 Book Embeddings

A book consists of a line in 3-space, called the spine, and a number of pages,
each a half-plane with the spine as boundary. A book embedding (π, ρ) of a
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graph consists of a linear ordering π of the vertices, called the spine ordering,
along the spine of a book and an assignment ρ of edges to pages so that edges
assigned to the same page can be drawn on that page without crossings. That
is, for any two edges vw and xy, if v <π x <π w <π y then ρ(vw) �= ρ(xy).
The book thickness of a graph G is the minimum number of pages in a book
embedding of G. For graphs with genus γ, Malitz [13] proved that the book
thickness is O(

√
γ). Since γ ≤ m, the book thickness is O(

√
m), a result proved

independently by the same author [14].
Note that a book embedding may route all of the edges incident to a vertex

on a single page. In this paper we study book embeddings where the number of
edges incident to a vertex on a single page is bounded. We define the pagedegree
of a vertex v to be the maximum number of edges incident to v on a single page.
A bounding function of a graph G = (V,E) is a function f : V → N such that
1 ≤ f(v) ≤ deg(v) for all vertices v ∈ V . For some bounding function f of G, a
degree-f book embedding of G is one in which the pagedegree of every vertex v
is at most f(v). If for all vertices v ∈ V , f(v) = c for some constant c, a degree-f
book embedding is simply called a degree-c book embedding.

In this paper we establish that, for an arbitrary bounding function f of a
graph G, there is a degree-f book embedding with O(

√
mQf (G)) pages, where

Qf (G) = maxv∈V �deg(v)/f(v)�. We describe a Las Vegas algorithm which deter-
mines this book embedding in O(m log2 n log logm) time with high probability.
This result, and its proof, generalises the above-mentioned O(

√
m) bound on the

book thickness due to Malitz [14].

1.2 Three-Dimensional Orthogonal Graph Drawing

The three-dimensional orthogonal grid is the cubic lattice, consisting of grid-
points with integer coordinates, together with the axis-parallel grid-lines de-
termined by these points. We use the word box to mean a three-dimensional
axis-parallel box with integral boundaries. Boxes are possibly degenerate, in the
sense that they may be rectangles, line-segments or even a single grid-point. The
number of grid-points along the edge of a box parallel to theX-axis (respectively,
Y -axis and Z-axis) is called the width (depth and height) of the box. Note that
this is one more than the actual length. A W ×D×H box has width W , depth
D and height H. For each dimension I ∈ {X,Y, Z}, an I-line is a line parallel
to the I-axis, an I-segment is a line-segment within an I-line, and an I-plane is
a plane perpendicular to the I-axis.

A three-dimensional orthogonal drawing of a graph represents the vertices
by pairwise non-intersecting boxes in the three-dimensional orthogonal grid. An
edge vw is represented by a sequence of contiguous segments of grid-lines possibly
bent at grid-points, between the surfaces of the boxes of v and w. The interme-
diate grid-points along the path representing an edge do not intersect the box
of any vertex or any other edge route. From now on, we use the term drawing
to mean a three-dimensional orthogonal drawing, and the graph-theoretic terms
‘vertex’ and ‘edge’ will also refer to their representation in a drawing.
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The volume of a drawing is the number of grid-points in the smallest axis-
aligned box, called the bounding box, which encloses the drawing. The volume
and the maximum number of bends per edge are the most commonly proposed
measures for determining the aesthetic quality of a drawing. A drawing with
at most b bends per edge is called a b-bend drawing. For a graph G, denote
by vol(G, b) the minimum volume, taken over all b-bend drawings of G. Let
vol(n,m, b) be the maximum, taken over all graphs G with n vertices and m
edges, of vol(G, b). Thus, vol(n,m, b) is a volume bound within which we can
draw all graphs with n vertices and m edges, and with at most b bends per edge.
This paper establishes improved upper bounds on vol(n,m, 1) and vol(n,m, 2).

A drawing with height k and with all vertices having height k is said to be
in the k-PCB (Printed C ircuit Board) model, as defined by Aggarwal et al. [2].
Such drawings, which we call multilayer drawings, are an appropriate model for
multilayer VLSI circuits. In multilayer VLSI, vertical edge segments between
different Z-planes, called cross-cuts, lead to a deterioration in performance with
an increase in the likelihood of faulty chips [2]. Therefore drawings without cross-
cuts are particularly desirable. In this paper we observe that for drawings with
a fixed maximum number of bends per edge, permitting cross-cuts allows for
drawings with less volume.

We consider three types of multilayer drawings, which are defined by the
relative positions of the vertices in a Z-plane. A multilayer drawing has a two-
dimensional general position vertex layout if no two vertices are intersected by
a single X- or Y -plane. For example, the vertices may have a two-dimensional
diagonal layout (see Fig. 3). We say a multilayer drawing has a linear vertex
layout if every vertex is intersected by a single X- or Y -plane (see Fig. 4).
Multilayer drawings with a linear vertex layout are particularly appropriate in
single-row VLSI routing problems (see [12] for example).Finally, in a grid vertex
layout the vertices are positioned in a square grid (see [4,7]).

1-Bend Drawings: Biedl et al. [7] construct 1-bend multilayer drawings of
the complete graph Kn with O(n3) volume; thus vol(Kn, 1) ∈ O(n3) and
vol(n,m, 1) ∈ O(n3). Vertices are Z-lines of length n positioned in a 2-
dimensional diagonal vertex layout, and each edge is routed in some Z-plane.
Biedl et al. [7] suggest a relationship between the assignment of Z-planes to
edges in orthogonal drawings and the assignment of pages to edges in book em-
beddings. Implicit in their 1-bend drawing of Kn is a degree-1 book embedding
of Kn with n pages.

Drawings with one bend per edge were also studied by Wood [18], who shows
that given a book embedding of a graph G with P pages, there is a 1-bend
drawing of G with O(nmP ) volume. Applying the book embedding algorithm of
Malitz [13], it follows that every graph with genus γ has a 1-bend drawing with
O(nm

√
γ) volume, and since γ ≤ m, it follows that vol(n,m, 1) ∈ O(nm3/2).

The first contribution of this paper is an algorithm for producing 1-
bend multilayer drawings without cross-cuts and with O(mn3/2) volume; thus
vol(n,m, 1) ∈ O(mn3/2). The algorithm is based on our result for bounded de-
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gree book embeddings. Compared with the above-mentioned result of Wood [18],
this represents an improvement by a factor of Θ

(√
m
n

)
for the volume of 1-bend

drawings. For graphs with m ∈ O(n3/2) this is the best known upper bound for
the volume of 1-bend drawings. (For graphs with m ∈ Ω(

n3/2
)
, using the 1-bend

drawing of Kn [7] produces a drawing with less volume.)
A lower bound for the volume of 1-bend drawings was established by Biedl [3],

who shows that the ∆-regular n-vertex Ramanujan graph Gn,∆ has Ω
(
n2∆

)
volume in any 1-bend drawing. Hence vol(n,m, 1) ∈ Ω(nm). SinceKn = Gn,n−1,
the 1-bend drawing of Kn [7] has optimal volume; that is, vol(Kn, 1) ∈ Θ(

n3
)
.

2-Bend Drawings: A 2-bend multilayer drawing of Kn in the linear layout
model, with no cross-cuts and with O(n3) volume is presented by Biedl et al. [7].
The second contribution of this paper is an algorithm for producing 2-bend mul-
tilayer drawings with no cross-cuts and with O(mn3/2) volume. This algorithm
is based on our result for bounded degree book embeddings and employs a linear
vertex layout. Again, for graphs with m ∈ O(n3/2) this is an improved bound
compared to the above result.

The algorithm of Biedl [5] produces 2-bend drawings with O(n2∆) volume
in which vertices are degree-restricted ; that is, the surface area of each vertex
is proportional to its degree. This feature is more appropriate for applications
in visualisation rather than VLSI. Strictly speaking, this algorithm does not
produce multilayer drawings. However, a trivial modification does produce mul-
tilayer drawings while maintaining the volume bound, at the expense of losing
the degree-restriction property. Regardless, this algorithm is not particularly ap-
propriate for multilayer VLSI since the produced drawings have long cross-cuts.

The third contribution of this paper is an algorithm which produces 2-bend
drawings with (short) cross-cuts and with O(nm) volume. Hence vol(n,m, 2) ∈
O(nm), which is an improvement on the above bound in [5] for all graphs. The
crucial step in this algorithm is the application of an equitable edge-colouring
result of Hakimi and Kariv [10].

3-Bend and 4-Bend Drawings: A 3-bend multilayer drawing of Kn with
no cross-cuts and with O(n5/2) volume is presented by Biedl et al. [7]; thus
vol(n,m, 3) ∈ O(n5/2). By placing the vertices in a O(n1/2) ×O(n1/2) grid and
routing each edge in a distinct Z-plane, a simple algorithm by Biedl et al. [4]
produces a 3-bend multilayer drawings without cross-cuts and with O(nm) vol-
ume. A more complicated algorithm by the same authors produces 4-bend multi-
layer drawings with cross-cuts and with O(mn1/2) volume. They also prove that
the Ramanujan graph Gn,∆ requires Ω

(
∆n3/2

)
volume in any drawing. Thus

vol(n,m, b) ∈ Θ
(
mn1/2

)
for all b ≥ 4. Table 1 summarised the known upper

bounds on the volume of drawings in the multilayer VLSI model.
The remainder of the paper is organised as follows. Our algorithm for pro-

ducing degree-f book embeddings is presented in Section 2. In Section 3 and
Section 4 we describe our algorithms for producing 1-bend and 2-bend draw-
ings, respectively. In Section 5 we conclude with some open problems.
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Table 1. Upper bounds on the volume of multilayer drawings.

# bends bounding box vol(n, m, b) layout cross-cuts reference

O(n) × O(n) × O(n) O(n3) diagonal no [7]
1 O(n) × O(n) × O(m3/2) O(nm3/2) diagonal no [18]

O(n) × O(n) × O(mn−1/2) O(n3/2m) diagonal no Thm. 2

O(n) × O(n) × O(n) O(n3) linear no [7]
2 O(n) × O(n) × O(mn−1/2) O(n3/2m) linear no Thm. 3

O(n) × O(n) × O(∆) O(n2∆) gen. pos. yes [5]
O(n) × O(n) × O(mn−1) O(nm) diagonal yes Thm. 4

3 O(n1/2) × O(n1/2) × O(n3/2) O(n5/2) grid no [7]
O(n1/2) × O(n1/2) × O(m) O(nm) grid no [4]

4 O(n1/2) × O(n1/2) × O(mn−1/2) O(n1/2m) grid yes [4]

2 Bounded Degree Book Embeddings

This section describes a generalisation of the Las Vegas algorithm of Malitz [14]
for producing degree-f book embeddings. The following definitions are from [14].
A 2-coloured bipartite graph is a bipartite graph G = (VL ∪VR, E) whose vertices
have been coloured LEFT and RIGHT such that adjacent vertices are coloured
differently. Note that a bipartite graph with k connected components has 2k

vertex 2-colourings. For some edge e ∈ E, L(e) refers to the end-vertex of e
in VL, and R(e) refers to the end-vertex of e in VR. A canonical ordering of a
2-coloured bipartite graph G = (VL ∪ VR, E) is a linear ordering of the vertices
of G such that all LEFT vertices precede all RIGHT vertices.

Let π be a canonical ordering of a 2-coloured bipartite graph G = (VL ∪
VR, E). Two edges vw and xy are said to cross if v <π x <π w <π y. Two edges
are disjoint if they have no common endpoint and they do not cross. Two edges
intersect if they have a common endpoint or they cross. For (traditional) book
embeddings the number of pairwise crossing edges provides a lower bound on the
number of pages, whereas for degree-1 book embeddings the number of pairwise
intersecting edges plays the same role. G is completely intersecting with respect
to π if E can be labelled e1, e2, . . . , ek such that

L(e1) ≤π L(e2) ≤π · · · ≤π L(ek) and R(e1) ≤π R(e2) ≤π · · · ≤π R(ek) .

Intuitively, G is completely intersecting with respect to π, if in a degree-1 book
embedding with π as the spine ordering, every edge must be placed on a unique
page, as shown in Fig. 1.

Lemma 1. If a 2-coloured bipartite graph G is completely intersecting with re-
spect to some canonical ordering then G is a forest.

Proof. Let π be a canonical ordering of G. Suppose to the contrary that G is
not a forest and G is completely intersecting with respect to π. Then G contains
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Fig. 1. A completely intersecting canonical ordering of a graph.

a cycle (v1, w1, v2, w2, . . . , vk, wk, vk+1) with v1 = vk+1 for some k ≥ 2. Without
loss of generality we can assume that v1 is the leftmost vertex. We proceed
by induction on i with the following induction hypothesis: “For every i ≥ 1,
vi <π vi+1 and wi <π wi+1.”

To prove the basis of the induction, observe that if w2 <π w1 then v1w1 does
not intersect v2w2, and hence w1 <π w2. By our initial assumption, v1 <π v2.
w1 <π · · · <π wi. If vi+1 <π vi then vi+1wi does not intersect viwi−1. Thus
vi <π vi+1. If wi+1 <π wi then viwi does not intersect vi+1wi+1. Thus wi <π

wi+1. Therefore the inductive hypothesis holds, which is a contradiction as it
implies that v1 <π vk+1 and v1 = vk+1. ��

The next lemma for completely intersecting sets of edges, is the analogue of
Lemma 2.2 in [14] for completely crossing sets of edges. Generalising a result of
Tarjan [16], it says that book thickness can be determined efficiently if the spine
ordering is a canonical ordering of a bipartite graph.

Lemma 2. Let π be a canonical ordering of a 2-coloured bipartite graph G =
(VL ∪ VR, E) with m edges and n vertices. If at most k edges are completely
intersecting with respect to π, then a k-page degree-1 book embedding of G with
spine ordering π can be determined in O(m log log n) time.

Proof. Define a poset (E,�) as follows. For all e1, e2 ∈ E let

e1 � e2 def
= e1 = e2 or (L(e2) <π L(e1) and R(e1) <π R(e2)) .

It is a simple exercise to check that ≤ is reflexive, transitive and antisymmetric,
and thus is a partial order. Two edges are incomparable under � if and only if
they intersect. Thus an antichain is a completely intersecting set of edges, and
a chain is a set of pairwise disjoint edges. By Dilworth’s Theorem [9] there is
a decomposition of E into k chains where k is the size of the largest antichain.
That is, there is a k-page degree-1 book embedding of G with spine ordering
π. The time complexity can be achieved using a dual form of the algorithm by
Heath and Rosenberg [11, Theorem 2.3]. ��

An equivalent result to Lemma 2 is given by Malucelli and Nicoloso [15].
To enable this lemma to be extended to degree-f book embeddings, consider
the following construction. Let π be a linear ordering of the vertices of a graph
G = (V,E), and suppose f is a bounding function of G. We define a graph Gπ,f

and a linear ordering πf of Gπ,f as follows. Replace each vertex v ∈ V by f(v)
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consecutive vertices in πf , which we call sub-vertices of v. As shown in Fig. 2,
connect to each sub-vertex of v at most �deg(v)f(v) � edges incident to v so that no
two edges incident to a sub-vertex of v cross.

b b b b b b b b b b b bb b bb b bb b bb b b

9 = ;
ddeg(v)

f(v) e

8 > > > < > > > :
f(v)

Fig. 2. Constructing πf

Lemma 3. Let f be a bounding function, and let π be a canonical ordering of
a 2-coloured bipartite graph G = (VL ∪ VR, E) with m edges and n vertices. If
at most k edges of Gπ,f are completely intersecting with respect to πf , then a
k-page degree-f book embedding of G with spine ordering π can be determined in
O(m log log(

∑
v f(v))) time.

Proof. Apply Lemma 2 to Gπ,f with spine ordering πf , to obtain a degree-1
book embedding (πf , ρ) of Gπ,f with at most k pages. In (πf , ρ), the pagedegree
of a sub-vertex is at most one. Thus, in the book embedding (π, ρ) of G, the
pagedegree of v is at most f(v); that is, (π, ρ) is a degree-f book embedding of G.
The time bound follows from Lemma 2 and that Gπ,f has

∑
v f(v) vertices. ��

To prove the main theorem of this section, we will consider a random linear
ordering of V . Recall that Qf (G) = maxv�deg(v)f(v) �.
Lemma 4. Let f be a bounding function and let π be a random canonical or-
dering of a 2-coloured forest T = (VL ∪ VR, E) with n = |VL ∪ VR| vertices. The
probability that Tπ,f is completely intersecting with respect to πf is at most

2n(Qf (T ))|E|

|E|! .

Proof. The probability that Tπ,f is completely intersecting with respect to πf is
the number of canonical orderings π of T for which Tπ,f is completely intersecting
with respect to πf , divided by the number of canonical orderings of T . If Tπ,f

is completely intersecting with respect to πf then all edges incident to a vertex
v must be incident to the same sub-vertex of v in πf , and thus, T is completely
intersecting with respect to π. (Note that this implies that ∆(T ) ≤ Qf (T ).)
Thus, the desired probability is at most the number of canonical orderings π
of T in which T is completely intersecting, divided by the number of canonical
orderings of T .



Bounded Degree Book Embeddings 319

We first bound the number of canonical orderings of T for which T is com-
pletely intersecting. Initially suppose T is connected; that is, n = |E| + 1. For
some fixed ordering (v1, v2, . . . , vl) of VL, an ordering of VR which makes T
completely intersecting must be of the form

{R(e) : v1 ∈ e} , {R(e) : v2 ∈ e} , . . . , {R(e) : vl ∈ e} .

Similarly, if (w1, w2, . . . , wr) is a fixed ordering of VR, then an ordering of VL

which makes T completely intersecting must be of the form

{L(e) : w1 ∈ e} , {L(e) : w2 ∈ e} , . . . , {L(e) : wl ∈ e} .

The vertices within each set {R(e) : vi ∈ e} and {L(e) : wi ∈ e} possibly can be
permuted. Thus the number of canonical orderings of T which are completely
intersecting is at most

∏
x degT (x)!.

We claim that
∏

x degT (x)! ≤ ∆(T )|E|. To prove this claim, we proceed by
induction on |E|. The basis of the induction with |E| = 1 is trivial. Suppose for all
connected trees T ′ = (V ′, E′) with |E′| < |E| that ∏

x∈V ′ degT ′(x)! ≤ ∆(T ′)|E
′|.

Let v be a leaf of T incident to the edge vw. Let T ′ = (V ′, E′) = T \{vw}. Since
degT ′(w) = degT (w)− 1, and by the inductive hypothesis applied to T ′,

∏
x∈V

deg(x)! = deg(w)
∏

x∈V ′
degT ′(x) ≤ deg(w) ·∆(T ′)|E|−1 ≤ ∆(T )|E| . (1)

Thus the claim is proved.
Now suppose T is disconnected. Then T has n− |E| connected components.

Suppose the connected components have edge sets E1, E2, . . . , En−|E|. For T to
be completely intersecting, the LEFT vertices in each connected component must
be consecutive in the ordering, and similarly for the RIGHT vertices. Within VL,
the components can be ordered (n − |E|)! different ways. For a fixed ordering
of the connected components of VL, for T to be completely intersecting, the
components of VR must be ordered the same way. By (1), the number of canonical
orderings which are completely intersecting is at most

(n− |E|)!
n−|E|∏
i=1

∆(T )|Ei| ≤ (n− |E|)!∆(T )|E| .

The number of canonical orderings of T is |VL|! · |VR|!. Thus, the probability
that a random canonical ordering of T is completely intersecting is at most

(n − |E|)!∆(T )|E|

|VL|! · |VR|! ≤ (n − |E|)!∆(T )|E|(
n
2 !

)2 ≤ 2n (n − |E|)!∆(T )|E|

n!
≤ 2n ∆(T )|E|

|E|! ,

where the final three inequalities follow from well-known and easily proved facts
concerning factorials. The result holds, since ∆(T ) ≤ Qf (T ). ��

We now prove the main result of this section. It’s proof is a generalisation of
Theorem 2.3 in [14], which is based on ideas from Theorem 4.7 in Chung et al. [8].
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Theorem 1. Let f be a bounding function of a graph G = (V,E) with m edges.
There exists a degree-f book embedding of G with O

(√
mQf (G)

)
pages.

Proof. Let n′ = |V |, and denote Qf (G) by Q. Since G is connected, m ≥ n′ − 1.
If m = n′ − 1 then G is a tree. By considering a pre-order traversal of G, it is
easily seen that G has a book embedding (π, ρ) with one page [8]. The graph
Gπ,f is a forest with maximum degree Q, and thus has a edge-colouring χ with
Q colours. A book embedding (π, χ) of G is a degree-f book embedding of G
with Q ≤ √

∆Q ≤ √
mQ pages. Thus the result is proved for trees.

Now assume m ≥ n′. Let n = 2�log n′�, and add n− n′ isolated vertices to G.
(Unless stated otherwise all logarithms are base 2.) G now has n vertices, with
n a power of 2. Clearly, n ≤ 2n′, and n ≤ 2m.

Let π be a random linear ordering of V . For each j, 1 ≤ j ≤ log n, divide the
linear ordering π into 2j sections each with the same number of vertices, and
label the sections from left to right L, R, L, R, etc. The edges whose endpoints
are in adjacent L-R sections (but not adjacent R-L sections) are called j-level
edges. Note that every edge of G appears in a unique level, and edges in adjacent
L-R sections in some j-level are canonically ordered by π.

For each j, 1 ≤ j ≤ log n, let Aj
k be the event that there exists a k-edge

2-coloured subgraph T of G such that:

– T consists solely of j-level edges,
– T is canonically ordered with respect to π, and
– Tπ,f is completely intersecting with respect to πf .

By Lemma 1, such a subgraph T is a forest. The probability that Aj
k occurs

P
{
Aj

k

}
<

(
m

k

)
2k

︸ ︷︷ ︸
(1)

· 2j−1

︸︷︷︸
(2)

·
( n
2j

l

)( n
2j

r

)
l! r! (n− l − r)!

n!︸ ︷︷ ︸
(3)

· 2
l+rQk

k!︸ ︷︷ ︸
(4)

,

where:

(1) is an upper bound on the number of k-edge 2-coloured forests T with no
isolated vertices;

(2) is the number of pairs of adjacent L-R sections in the j-level;
(3) is an upper bound on the probability that π canonically orders T in the fixed

pair of adjacent j-level sections, where T has l LEFT vertices and r RIGHT
vertices; and

(4) is the probability that T is completely intersecting, by Lemma 4 and since
Qf (T ) ≤ Q.

Since
(
a
b

) ≤ ab

b! ,

P
{
Aj

k

}
<

(2m)k

k!
· 2j−1 ·

( n
2j

)l+r (n− l − r)!
n!

· 2
l+rQk

k!
.
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Applying Stirling’s Formula, where e is the base of the natural logarithm,

P
{

Aj
k

}
< (2m)k · 2j−1 ·

( n

2j

)l+r
√

n − l − r

n

(
n − l − r

e

)n−l−r ( e
n

)n

· 2
l+rQke2k

k2k+1 .

Now, n− l− r < n. By elementary properties of a forest, k+1 ≤ l+ r ≤ 2k.
Since l + r ≤ 2 n

2j , we have k ≤ n
2j−1 , and hence 2j−1 ≤ n

k ≤ 2m
k . Thus,

P
{
Aj

k

}
< (2m)k+1 ·

(
1
2j

)k+1

n(l+r)+(n−l−r)−n · e−(n−l−r)+n+2k · 22kQk

k2(k+1)

<

(
8e4mQ
2jk2

)k+1

.

Define kj = 4e2
√

m Q
2j . Since m ≥ n

2 and Q ≥ 1,

P
{
Aj

kj

}
<

(
1
2

)1+4e2
√

m Q/2j

<
1
2

(
1
2

)2√2 e2
√

n/2j

.

Consider the event that Aj
kj

occurs for some j, 1 ≤ j ≤ log n.

P



logn⋃
j=1

Aj
kj


 <

1
2

log n∑
j=1

(
1
2

)2√2 e2
√

n/2j

.

By induction on N , the following can be proved.

∀a > 1, ∀b ≥
√
2− loga(a− 1)√

2− 1
,

N∑
j=1

(
1
a

)b
√
2N−j

<

(
1
a

)b−1
.

Applying this fact with N = log n, a = 2 and b = 2
√
2 e2,

P



logn⋃
j=1

Aj
kj


 <

1
2

(
1
2

)2√2 e2−1
=

(
1
2

)2√2 e2

.

Thus,

P

{
log n⋂
j=1

Aj
kj

}
= P




log n⋃
j=1

Aj
kj


 = 1 − P

{
log n⋃
j=1

Aj
kj

}
> 1 −

(
1
2

)2
√

2 e2

> 0.99999 .

This says that for the random linear ordering π, with (very high) positive
probability, Aj

kj
does not occur for all j, 1 ≤ j ≤ log n. Therefore, there exists a

linear ordering π′ of V such that Aj
kj

does not occur for all j. That is, in each
pair of adjacent L-R sections in the j-level, there is no completely intersecting
subgraph in π′

f with at least kj edges. For each pair of adjacent L-R sections in
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level j, apply Lemma 3 to the subgraph of Gπ′,f consisting of j-level edges with
endpoints in that pair of sections (using the canonical ordering π′

f ). By using
the same set of pages for j-level edges, we obtain a degree-f book embedding of
G with spine ordering π′, and with the number of pages at most

logn∑
j=1

kj = 4e2
√
mQ

log n∑
j=1

√
1
2j
<

4e2
√
mQ√

2− 1
< 72

√
mQ . ��

Corollary 1. Let f be a bounding function of graph G = (V,E) with n ver-
tices and m edges. There is a Las Vegas algorithm which will compute, with
high probability, a degree-f book embedding of G with O(

√
mQf (G)) pages in

O(m log2 n log logm) time.

Proof. Consider the following Las Vegas algorithm to compute the book embed-
ding whose existence is proved in Theorem 1.

1. Choose a random linear ordering π of V .
2. Partition the edges into j-levels with respect to π.
3. Embed each set of j-level edges in its own set of pages (using Lemma 3

applied to Gπ,f as described above).
4. If the total number of pages is at most 4e

2√
m Q√

2−1 then halt. Otherwise repeat
from Step 1.

The time taken for each iteration within in each j-level is
O(m log log(

∑
v f(v))) by Lemma 3. Since f(v) ≤ deg(v),

∑
v f(v) ∈ O(m),

and the time taken for each iteration is O(m log n log logm). For each iteration
of the above algorithm, we say the algorithm fails if the randomly chosen
linear ordering π does not admit a degree-f book embedding with at most
(4e2

√
mQ)/(

√
2− 1) pages. The probability of failure is at most 2−2√2 e2

. If we
repeat the above algorithm at most logn times, the probability of failure every
time is at most 2−2√2 e2 logn = n−2√2 e2 → 0 as n → ∞. Thus, with probability
tending to 1 as n → ∞, the above algorithm will determine a degree-f book
embedding of G with at most 72

√
mQf (G) pages in O(m log2 n log logm)

time. ��
Note that Theorem 1 with the bounding function f(v) = deg(v) is the same

result proved by Malitz [14], and the above proof is based on Malitz’s idea of
defining j-levels and applying Dilworth’s Theorem to a partial ordering of the
edges in each level. However, our proof differs in two respects. First, we do
not assume that j ≤ k, as is the case in [14, page 76] (also see [13, page 92]).
Furthermore, we do not use a book embedding of the complete graph K√

n for
levels j = 1

2 log n+ 1, 12 log n+ 2, . . . , log n.

3 1-Bend Drawings

The following simple result highlights the relationship between degree-1 book
embeddings and 1-bend drawings.
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Lemma 5. If a graph G = (V,E) has a degree-1 book embedding (π, ρ) with P
pages then it has a 1-bend drawing with O(n2P ) volume.

Proof. Let (v1, v2, . . . , vn) be the numbering of vertices corresponding to the
linear ordering π. Represent vertex vi by a Z-line at (i, i), and draw an edge vivj

(i < j) with the route (i, i, ρ(vw)) → (j, i, ρ(vw)) → (j, j, ρ(vw)). Two edges can
only intersect if they have the same Z-coordinate; that is they are on the same
page. Such an intersection would imply a crossing in the book embedding. Hence
no two edges routes intersect; see Fig. 3(a). ��

Given a book embedding (π, ρ) of a graph G = (V,E), consider the follow-
ing elementary method for producing a degree-1 book embedding. First, ap-
ply Vizing’s Theorem [17] to obtain an edge-colouring χ of G with ∆(G) + 1
colours. (In fact a greedy edge-colouring with O(()∆) colours will suffice.) Let
ρ′(vw) = ρ(vw) · χ(vw) for all edges vw ∈ E. Then (π, ρ′) is a degree-1 book
embedding with O(∆P ) pages. By Lemma 5, there is a 1-bend drawing with
O(n2∆P ) volume. This bound is reduced to O(nmP ) by Wood [18]. The results
in [18] discussed in the introduction follow from the bounds on P in [13,14].

The following algorithm for producing 1-bend drawings exploits a degree-f
book embedding where f(v) is proportional to the ratio of the degree of v and
the average degree of the graph. In the produced drawing, the width and depth
of a vertex v equals f(v). Edges in the same page are routed in a single Z-plane.

Theorem 2. Let G = (V,E) be a graph with n = |V | vertices and m = |E|
edges. There is a 1-bend drawing of G with O(mn3/2) volume.

Proof. Let f be the bounding function defined by f(v) = � n
2m deg(v)� for all

vertices v ∈ V . Then

Qf (G) = max
v∈V

deg(v)
� n
2m deg(v)� ≤ 2m

n
.

That is, Qf (G) is at most the average degree of G. By Theorem 1, there is
degree-f book embedding (π, ρ) of G with P = O(

√
mm

n ) = O(mn
−1/2) pages.

For each vertex v, let Sv =
∑

w<πv f(w). Represent v by the f(v)× f(v)×P
box with minimum corner at (Sv, Sv, 0). Clearly, vertices do not intersect. The
ith successor of v on a page p is the edge vxi in the list vx1, vx2, . . . , vxk of
edges incident to v on page p such that v <π x1 <π x2 <π · · · <π xk. The
ith predecessor of v on page p is the edge vxi in the list vx1, vx2, . . . , vxk of
edges incident to v on page p such that xk <π xk−1 <π · · · <π x1 <π v. For
every edge vw (v <π w), if vw is the ith successor of v on page ρ(vw) and the
jth predecessor of w on page ρ(vw), then draw vw with the 1-bend edge route
(Sv + f(v)− 1, Sv + f(v)− i, ρ(vw)) → (Sw + j − 1, Sv + f(v)− i, ρ(vw)) →
(Sw + j − 1, Sw, ρ(vw)), as illustrated in Fig. 3(b).

Two edges can only intersect if they have the same Z-coordinate; that is they
are on the same page. Such an intersection would imply a crossing in the book
embedding. Hence no two edges intersect. The width and depth of the bounding
box is

∑
v

(� n
2m deg(v)� + 1

) ≤ 2n+ n
2m (2m) = 3n. The height of the bounding

box is P = O(mn−1/2). Thus the volume is O(mn3/2). ��



324 D.R. Wood

Y

X
(a)

v1

v2

v3

v4

v5

v6

(b)
(Sv ; Sv)

v

f(v)

b

b

b

w

�
i

fj

Fig. 3. 1-bend edge routes within a Z-plane.

4 2-Bend Drawings

We now present our algorithms for producing 2-bend drawings, the first with a
linear vertex layout, and the second with a diagonal vertex layout.

Theorem 3. Every graph G = (V,E) with n vertices and m edges has a 2-bend
linear drawing with O(mn3/2) volume.

Proof. Let f be the same bounding function defined in Theorem 2. By Theorem 1
there is degree-f book embedding (π, ρ) of G with P = O(mn−1/2) pages. For
each vertex v ∈ V , let Sv =

∑
w<πv f(w). Represent v by the f(v) × 1 × P box

with minimum corner at (Sv, 0, 0). Clearly, vertices do not intersect.
Denote by ω(vw), the pagewidth of an edge vw in (π, ρ); that is, the maximum

number of edges cut by a line-segment contained in ρ(vw), perpendicular to the
spine ordering, and with endpoints on vw and the spine.

For every vertex v ∈ V and page p, the ith neighbour of v on page p is the edge
vxi in the list vx1, vx2, . . . , vxk of edges incident to v on page p such that x1 <π

x2 <π · · · <π xk. For every edge vw (v <π w), if vw is the ith neighbour of v on
page ρ(vw), and vw is the jth neighbour of w on page ρ(vw), then draw vw with
the 2-bend edge route (Sv + i− 1, 0, ρ(vw)) → (Sv + i− 1, ω(vw), ρ(vw)) →
(Sw + j − 1, ω(vw), ρ(vw)) → (Sw + j − 1, 0, ρ(vw)), as illustrated in Fig. 4.

Y

X

Fig. 4. A Z-plane within a 2-bend linear drawing

Two edges can only intersect if they have the same Z-coordinate; that is,
they are on the same page of the book embedding. Clearly Y -segments do not
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intersect. An X-segment intersecting a Y -segment would imply a crossing in the
book embedding. TwoX-segments on the same page either have noX-coordinate
in common, or they are nested, and therefore have different pagewidth, and thus
have different Y -coordinates. Hence no two edges routes intersect.

The maximum pagewidth and hence the depth of the bounding box is at most
the width of the bounding box. As in Theorem 2, the width and hence the depth
of the bounding box is O(n). The height of the bounding box is P = O(mn−1/2),
and thus the volume is O(mn3/2). ��

The next drawing algorithm, which does not use a book embedding, exploits
a (non-proper) edge-colouring in which the colours are evenly distributed about
the edges incident to each vertex. The colour of an edge determines its ‘height’
in the drawing.

Theorem 4. Every graph G = (V,E) with n vertices and m edges has a 2-bend
multilayer drawing with cross-cuts and with O(nm) volume.

Proof. Hakimi and Kariv [10, Theorem 3] prove that for every k ∈ N, every graph
has a (non-proper) edge k-colouring such that the number of monochromatic
edges incident to a vertex v is at most � 1k (deg(v) + 1)�. Apply this result with
k = � 2mn �, to obtain an edge � 2mn �-colouring χ of G, such that the number of
monochromatic edges incident to a vertex v is at most �(deg(v) + 1)/� 2mn �� ≤
� n
2m (deg(v)+1)�. Let π be an arbitrary linear ordering of V . For each vertex v, let
Sv = � n

2m (deg(v)+1)� and Tv =
∑

w<πv Sw. Represent v by the Sv ×Sv ×2� 2mn �
box with minimum corner at (Tv, Tv, 0). Clearly, vertices do not intersect.

Define the ith successor and ith predecessor of a vertex v with colour c as
in Theorem 2 but with “colour” replacing “page”. For every edge vw (v <π w),
if vw is the ith successor of v coloured χ(vw), and vw is the jth predecessor
of w coloured χ(vw), then draw vw with the 2-bend edge route (Tv + Sv − 1,
Tv + Sv − i, 2χ(vw)) → (Tw + j − 1, Tv + Sv − i, 2χ(vw)) → (Tw + j − 1, Tv +
Sv − i, 2χ(vw)− 1) → (Tw + j − 1, Tw, 2χ(vw)− 1).

The ith successor of a vertex v coloured c is a unique edge, and similarly
for predecessors. Thus two X-segments have different Z-coordinates or differ-
ent Y -coordinates, and any two Y -segments have different Z-coordinates or
different X-coordinates. Hence such edge-segments do not intersect. Since X-
segments have even Z-coordinates, and Y -segments have odd Z-coordinates, no
X-segment intersects a Y -segment. The unit-length Z-segment in each edge does
not intersect any other edges as this would imply that one of the adjacent X- or
Y -segments would have been involved in an intersection. Thus no two edges inter-
sect. The width and depth of the bounding box is

∑
v

(� n
2m (deg(v) + 1)� + 1

) ≤
2n+ n

2m (2m+n) ≤ 2n+ n
2m (4m) = 4n. The height of the bounding box is O(m

n ).
Therefore the volume is O(nm). ��

5 Conclusion

We have presented a Las Vegas algorithm for producing book embeddings with
bounds on the pagedegree of each vertex. This algorithm is used to produce
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1-bend and 2-bend drawings without cross-cuts. Using an approach based on
equitable edge-colourings we described an algorithm for producing 2-bend draw-
ings with cross-cuts and with the best known volume upper bound. For all of our
algorithms constant-factor improvements are easily possible. For example, in the
1-bend algorithm half the pages can be routed in the space with Y -coordinate
greater than X-coordinate. In the 2-bend algorithm with a diagonal layout, 2-D
general position vertex layouts [6] can be used to reduce the width and depth.

We finish with some open problems. First, what are values of vol(n,m, 1),
vol(n,m, 2) and vol(n,m, 3)? The best known bounds are Ω(nm) �
vol(n,m, 1) ∈ O(min{mn3/2, n3}), and for b ∈ {2, 3}, Ω(

n1/2m
) � vol(n,m, b) ∈

O(nm). For b ≥ 4, vol(n,m, b) ∈ Θ(
mn1/2

)
. The algorithm in [4] produces mul-

tilayer drawings with O(mn1/2) volume but with cross-cuts. Does every graph
have a multilayer drawing with no cross-cuts and with O(mn1/2) volume? Some
progress towards a positive answer to this question is presented in [19]. If the
answer is negative, is there a lower bound of Ω(nm) for the volume of multilayer
drawings with no cross-cuts regardless of the number of bends?
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this topic, and to everyone in the School of Computer Science at McGill Univer-
sity, especially Sue Whitesides, for their generous hospitality.
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