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Abstract. We review existing algorithms and present a new approach
for layout of disconnected graphs. The new approach is based on poly-
omino representation of components as opposed to rectangles. The pa-
rameters of our algorithm and their influence on the drawings produced
as well as a variation of the algorithm for multiple pages are discussed.
We also analyze our algorithm both theoretically and experimentally and
compare it with the existing ones. The new approach produces much
more compact and uniform drawings than previous methods.

1 Introduction

Graphs model the complex information of a system of discrete objects and their
relationship. Graph layout is the automatic positioning of the nodes and edges
of a graph in order to produce an aesthetically pleasing drawing that is easy to
comprehend [5[8].
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Fig. 1. An example of a disconnected graph.
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Many graph layout and editing systems have been developed in the past [5]
7UL1]. One essential aspect that has not been addressed sufficiently, is the layout
of disconnected graphs; that is, the placement of the components (possibly con-
sisting of a single isolated node) of a disconnected graph. Disconnected graphs
occur rather frequently in real life applications either during the construction of
a graph interactively or because of the nature of the application (Figure [IJ).

Most graph layout algorithms assume a graph to be connected and try to
minimize the area needed for the resulting drawing. No matter how effective such
an algorithm is, the space wasted overall could be arbitrarily large if the relative
locations of disconnected objects of a graph are chosen by a naive, inefficient
method.

Another key parameter here is the aspect ratio of the region (e.g., a window)
within which the graph is to be displayed (Figure 2). When displaying a graph,
the larger the wasted space is, the less visible objects will be, making the vi-
sualization process more difficult. Thus, a disconnected graph layout algorithm
must strive for a packing of disconnected objects which respects the aspect ratio
of the region in which it is to be displayed.

Fig. 2. How a naive disconnected graph layout algorithm can make inefficient use of
the area (left), and why the aspect ratio of the region in which the graph is to be
drawn should be taken into account during disconnected graph layout (middle and
right).

In this paper, we review existing two-dimensional packing algorithms for the
layout of disconnected graphs for a specified aspect ratio based on strip-packing,
tiling, and alternate-bisection methodologies [6], and introduce a new algorithm
that represents disconnected objects with polyominoes as opposed to rectangles.
We also discuss the experimental results obtained and compare our algorithm
with the previous ones. As expected, the new approach, which uses a more
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accurate representation for the objects, produces much more compact results.
The drawings are also more aesthetically pleasing as the new approach places
the objects more uniformly.

2 Definitions and Basics

Throughout the paper, the terms ”graph object”, or simply ”object”, are used
interchangeably to denote a component or an isolated node of the graph to be
laid out.

The tightest rectangle bounding the drawing of a graph object or the entire
graph is said to be its bounding rectangle. The size of a graph’s drawing is
identified with its bounding rectangle’s. The aspect ratio of a rectangle R =
(W, H) is equal to W/H.

Most layout algorithms represent graph objects with either points or rect-
angles in the plane. A polyomino is a geometric figure formed by joining unit
squares at the edges. In our new approach we use polyominoes to represent graph
objects (Figure 3.

Fig. 3. Polyominoes facilitate more accurate geometric representation for graph ob-
jects. Two different representations of an isolated node and a graph component: rect-
angle (dashed) and polyomino (solid).

The task for a disconnected layout algorithm is to position a set of objects
represented by rectangles or polyominoes with ordered dimensions (i.e., no rota-
tions allowed) such that no pair of objects overlap and the area of the bounding
rectangle of the drawing is minimized, respecting the aspect ratio of the region
in which the graph is to be displayed. There has been extensive research done on
two-dimensional packing of rectangles [3T/4]. In the graph layout version of the
problem, the user also specifies a desired aspect ratio for the resulting drawing
so that the scaling that needs to be done before displaying the graph is minimal
(Figure [2).

For an arbitrary list of n objects L,,, or simply L, let A4 (L) denote the area
actually used by a particular algorithm A when applied to L. The wasted space
is the unoccupied area of the packing: WS*(L) = A4(L) — 327" | A;, where
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A; is the area of object L;. Similarly, the fullness of a packing expresses, in
percentage, how effectively the area is used by the packing algorithm: FA(L) =
100 - (320, A;)/A(L). The adjusted fullness of a packing AF4(L) (< F4(L)),
expresses the fullness of a packing, in percentage, with respect to the desired
aspect ratio. To be precise, it considers the additional area wasted when the final
drawing is displayed in a region of desired aspect ratio DAR: AF*(L) = FA(L)-

A
AS AE{L ) where AR? (L) is the aspect ratio of the packing produced by algorithm

A when applied to objects L and we assume AR? < DAR. Figure [ illustrates
this with an example, in which F4(L) whereas AF4 (L) A
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Fig. 4. Total area in which rectangles are packed is divided into three disjoint regions

A (rectangles), B (wasted area), and C (additional area wasted when displayed in a
region of aspect ratio 2).
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Strip-Packing: One can find substantial literature on the design and anal-
ysis of algorithms for two-dimensional packing [IJ3]4], the most popular ver-
sion being strip-packing. In strip-packing, given a list of n > 1 rectangles
L, = (Ry,...,R,), each having ordered dimensions (W;, H;), they are to be
packed into a semi-infinite strip of unit width without any overlaps in order
to minimize the height of the packing. This problem has applications in many
areas including stock-cutting, two-dimensional storage problems, and resource-
constrained scheduling in computer systems [2].

The most popular approach to strip-packing is the level algorithms. First-F'it
Decreasing Height (FFDH) is a level algorithm, in which, at any point in the
packing sequence, the next rectangle to be packed is placed left-justified on the
first level on which it will fit. If none of the current levels will accommodate this
rectangle, a new level is started. Best-Fit Decreasing Height (BFDH) is similar
to FFDH except that the rectangles are packed, whenever possible, on current
levels where they fit best.

For an arbitrary list of n rectangles L,, all assumed to have width no
greater than 1, OPT(L) denotes the minimum possible bin height within which
rectangles in L can be packed.

Ordered One-Dimensional Packing: For a set of rectangles, one-dimensional
packing or simply 1D packing along x-axis (y-axis) corresponds to the process
of ordering these rectangles with respect to their x-coordinates (y-coordinates)
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without any overlaps to minimize the total width (height) of the bounding rect-
angle. If the current relative positions of rectangles are to be preserved in the
packing, we call it ordered 1D packing. Ordered 1D packing of n objects can be
performed in O(nlogn) time [12].

3 Related Work

In this section, we review the existing algorithms for disconnected graph layout,
which represent disconnected objects with rectangles. Detailed information on
these algorithms may be found in [6].

3.1 Strip-Packing Method

This method directly applies a known strip-packing algorithm such as BFDH.
The width of the strip (equivalently, the factor by which the rectangle dimensions
are to be scaled) is calculated based on the desired aspect ratio, using the theo-
retical performance of the strip-packing algorithm. With BFDH, assuming object
dimensions to be independent uniform random samples from the interval [0, 1]
and OPT(L) ~ n/4, the expected value of adjusted fullness, E[AFPFPH (L, )],
is shown to be 58.8 [0]. However, these calculations are based on the worst-case
performance bounds and are rarely met in practice, making it not a particularly
good “guess” for the bin width.
The algorithm is of O(nlogn) time complexity.

] T
-

I

Fig. 5. The same graph laid out with strip-packing, tiling, and alternate-bisection
methods, respectively for desired aspect ratio 1.0.

3.2 Tiling: Strip-Packing with Variable Width Strip

The tiling method eliminates the need to “guess” the right size strip by main-
taining a bin whose width dynamically changes (i.e., increases). The algorithm
starts by creating an initial level and placing the first rectangle in this level. It
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proceeds by determining whether the next rectangle in line should be added to
one of the existing levels (the one which is the least utilized at the moment) or
to a newly created level. The rectangle is tiled on one of the existing levels if
there is enough room. Otherwise, a decision is made on whether the current strip
width should be enlarged or a new level should be formed to keep the aspect
ratio closer to the desired one.

In general, the tiling algorithm does not assume any particular ordering of
the objects. However, experiments show that when graph objects are sorted in
nonincreasing height, most compact drawings are obtained. Notice that when
objects are processed in order of nonincreasing height, the algorithm turns into
a variation of a strip-packing algorithm, BFDH to be more specific, where the
strip width is dynamically increased as necessary to better fulfill the aspect ratio
constraint.

The algorithm is of O(nlogn) time complexity.

3.3 Alternate-Bisection Method

This divide-and-conquer method works by bisecting the disconnected objects
of a graph alternately as follows. The objects are bipartitioned using a metric
such as total area and objects in each partition are recursively laid out. The
recursion continues until a partition consists of a small, constant number of
objects (e.g., one) whose optimal layout becomes easy if not trivial. At the end
of each recursive step, when placing the two embedded partitions relatively,
the orientation is alternated. For instance, the last step would place the two
already positioned partitions side by side (horizontally) if the four partitions in
the previous step were placed one on top of the other (vertically) pairwise.

The theoretical analysis prove that the total area wasted by the algorithm for
n objects, W (n), is roughly O(n'4) [6], which is quite inefficient. However, when
simple alternating ordered 1D packings are applied in each recursive step (e.g.,
objects in upper (lower) left partition are packed downwards (upwards), towards
the horizontal separating axis in Figure[d]), the experimental results show that
much more compact results are obtained [6]. The overall time complexity of the
algorithm is O(nlog® n).

For independent, uniformly distributed random object dimensions, this al-
gorithm will not favor one orientation over the other and yield “square-like”
drawings. The desired aspect ratio can be respected by this algorithm by ini-
tially recursively partitioning the set of objects into two, one partition to be
laid out with aspect ratio 1.0 and the other with DAR(L) — 1.0 (= %), as-
suming DAR(L) = % > 1.0 (Figure[@]). Alternatively, the object dimensions can
be scaled with respect to the desired aspect ratio as a preprocessing step, after
which, the desired aspect ratio may be assumed to be 1.0.

3.4 Comparison of the Methods

In [6], experiments with graphs laid out with random aspect ratio and with
random object dimensions are presented. Notice here that the graph objects
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Fig. 6. An example of the alternate-bisection method; on one branch of the recursion,
alternately partitioned objects are shown with separating lines and different colors
(left). An example of how the alternate-bisection method can be adapted to an arbi-

trary aspect ratio (right).

are represented with rectangles and the area wasted by such representation is
ignored. In the context of graph layout, it is argued that the object dimensions
are not completely of uniform distribution since the two types of disconnected
objects, isolated nodes and larger components, in most cases will be of highly
varying dimensions. Experiments conducted with two groups of objects with
dimensions uniformly distributed within each group but with different means

are presented in Figure [l

Fig. 7. Comparison of the performance of the three methods using a distribution model
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of dimensions that is more suitable in the context of graph layout.

In terms of execution time, both split-packing and tiling methods are superb
since they are of O(nlogn). The alternate-bisection method, on the other hand,
gets a little slow as the number of objects are over a thousand. Considering that




Disconnected Graph Layout and the Polyomino Packing Approach 385

most interactive graph drawing applications will not consist of more than, say
one hundred, disconnected objects, this method is also of practical value.

In terms of the quality of the packings produced, the experiments show that
the tiling method clearly produces the most compact drawings. However, the re-
sults obtained from the alternate-bisection method tend to be more aesthetically
pleasing since the objects are generally distributed more uniformly (Figure [3]).

4 Polyomino Packing Approach

In this approach each graph object is represented by a polyomino. We define a
polyomino as a finite set of k£ > 1 cells of the infinite planar square grid G that
are fully or partially covered by the drawing of the object. If the case that an
object is placed completely inside another one is not desirable, the definition can
be modified and the uncovered grid cells that are completely bounded by the
covered ones can be included as well.

Given a set of polyominoes P;, 1 < i < n, packing them into a minimum area
is clearly NP-hard, even when the polyominoes are restricted to rectangles [9].
Our heuristic algorithm for polyomino packing is a greedy one: it places the
objects one by one, finding the optimal place for the new object, one at a time,
with respect to the already placed ones. The optimal place for a polyomino
is simply calculated as the grid cell G, located at (z,y) where the function
max(|z|, |y|) is minimized over all grid cells. The cost function defines the order
in which the cells are examined and this order is the same for all polyominoes.

A grid data structure is used to represent free grid cells, which are later
marked as occupied as polyominoes are placed. In order to find the best place
the algorithm PACKPOLYOMINOES looks sequentially through all cells in the
increasing order of the cost function defined above. If an available spot (a set of
unoccupied grid cells where the polyomino fits) is found, it is placed there and the
corresponding grid cells are marked as occupied. When testing for intersections,
we simply go through all polyomino cells and test whether each can be placed
in a free grid cell.

Our experiments show that the quality of the packing depends very much on
the order in which the polyominoes are processed. The best results are obtained
when they are ordered and processed from the largest to the smallest, which
conforms to the ordering in heuristic approaches for the bin packing [2] and
strip-packing problems [3]. The size of each polyomino can be defined in several
ways including its number of cells (i.e., area) and the perimeter of its bounding
rectangle. Experiments show that both give similar results, so we choose the
perimeter of the bounding rectangle for calculating the object sizes for the ease
of implementation.

Here is a pseudo code of our algorithm:

algorithm PACKPOLYOMINOES(P;,1 < i < n)
(1) sort P;,1 <1i < n in the order of nonincreasing size
(2) initialize the grid G using the sizes of P;,1 <i<n
(3) foreach polyomino P; do
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calculate (z,y) such that the cost function is minimized
while cannot place P; in G centered at (x,y) do
calculate next (x,y) using the cost function
end while
mark the cells in G covered by P; as occupied
end foreach

© 00 ~J O Ut
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Figure[§ illustrates an example drawing produced using our algorithm for the
component placement of a forest. Also see Figure [d for the drawing produced by
our algorithm for the graph in Figure [

Fig. 8. An example packing produced by our algorithm.

4.1 Parameters

The grid step [ is obviously the most significant parameter of this approach. We
would like to guarantee that the average polyomino size s is not exceeding some

constant c:
1<~ W, H;
5= EZ(T”TW <c

1=

1 —, W H;
I+ <c
n — l l

= > WiH; +1Y (Wi + H;) + 1> < cnl®

i=1 i=1



Disconnected Graph Layout and the Polyomino Packing Approach 387

THistory of multiple
physical complaints with
at lcast 4 pain symptoms,
2 gastrointestinal
symptoms, 1 sexual

Symptom or defieit - Thysical complaints
affocting voluntary | [SSMEIIFZYIIEN] ure fully explained by
motor or sensory DISORDER a general medical

- condition and

Specilic GENERAL]
MEDICAL
CONDITION (no
[

Other physical

Physical symptoms arc
complaints ¥

intentionally produced

N v

Preoccupation JUNDIFFERENTIA|
with idea of TED

“fuctors
adversely
affect general

PSYCHOLOGICAL
FACTORS

Clinically
signilicant
somatoform

BODY DYSMORPHIC
DISORDER (if
delusional, also see

HYPOCHONDRI
ASIS

Sce Psychatic
Disorders tree

symptoms that
do not meet

Pain Disorder

No Yes

Somatoform SOMATOFOR

ey M DISORDER
(somatoform

symploms that

Pain is focus of
clinical attention, and
factors

mploms are
y produced

FACTITIOUS
MALINGERING DISORDER

Fig. 9. The disconnected graph in Figure [l laid out with the new algorithm (displayed
with the same width to illustrate better usage of the area of aspect ratio 1.0).

Consequently, the grid step I can be calculated from the following quadratic
equation:
(cnf ].) 12— Z(Wl +H1) [ — ZWsz =0

=1 i=1

With the average polyomino size s < ¢, the total area of all polyominoes does not
exceed n - s. Practical experiments show that the algorithm produces drawings
of almost constant fullness (Figure[T2), so the total packing area is also O(n - s).

To find a suitable place, each polyomino is tested for each cell. The test
whether a polyomino fits in the specified place can be performed in O(s) time
in the worst case. Thus the complexity of the algorithm is O(n? - s2). Since ¢
and consequently s are constants this yields an O(n?) time overall, based on
experimental results.

The value of the constant ¢ must be selected carefully since its influence on the
running time can be as much as O(c?). Figure [0 shows how the approximation
quality paremeter ¢ influences the adjusted fullness and the running time. For
measurements, as a typical example a random forest of 300 trees of random
order between 2 and 100 were generated (Figure [ shows a smaller example of
such a forest). The trees were laid out with a spring embedder algorithm similar
to [I0]. For small values of ¢, the adjusted fullness increases rapidly and converges
towards 60%. The observed running time increases linearly with c. The difference
from the theoretical bound of O(c?) can be explained by the observation that
an occupied place is detected on average in constant time since almost all tested



388 K. Freivalds, U. Dogrusoz, and P. Kikusts

places are occupied. The choice ¢ = 100 seems to be a good compromise between
the quality and the speed.
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Fig. 10. How the grid step influences the adjusted fullness and running time.

The white space desired among the graph objects can be obtained by simply
enlarging each object by half the spacing amount on each side.

The algorithm above does not favor one dimension over the other one and
yields square-like drawings. In order to satisfy the desired aspect ratio DAR, one
can simply take DAR as the unit grid step in « direction and 1 as the unit step
in the y direction.

4.2 Packing in Multiple Pages

In certain applications, the graph is to be laid on multiple pages, and the task is
to minimize the number of pages where the size of a page is defined in advance.

The approach is the same as above except the cost function is modified as
max(z,y),x > 0,y > 0, which defines the ordering starting from the corner of
the page. Although such ordering lacks the nice central symmetry that we had
in the original case, we have to modify the placement rule in order to better
fill the sides of each page. We assume that each object separately fits in an
empty page; otherwise an appropriate scaling should be performed. In algorithm
PACKPOLYOMINOESINMULTIPAGES we start by fitting the first polyomino on
the first page. If the current polyomino does not fit in the current page, the next
page is tried until it is successfully placed. Similar to the original algorithm, the
best results are obtained when the objects are sorted in their decreasing sizes. An
optimization can be achieved by considering only those grid cells on the current
page for which the bounding rectangle of the current polyomino is completely
inside the page.

Here is a pseudo code of the multi page placement algorithm:

algorithm PACKPOLYOMINOESINMULTIPAGES(P;, 1 < i < n, pageSize)
(10) sort P;,1 <4 < n in the order of nonincreasing size
(11) initialize the grid G for the first page using pageSize
(12) foreach polyomino P; do
(13) set pageNo to 1
(14) while P; not placed do
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(15) calculate (z,y) such that the cost function is minimized
(16) while cannot place P; on page pageNo centered at (z,y)
(17) and (x,y) is within page boundaries do

(18) calculate next (z,y) using the cost function

(19) end while

(20) if P; not placed then

(21) set pageNo to the next one

(22) if G not extended for page pageNo then

(23) extend G for page pageNo

(24) end if

(25) end if

(26) end while

(27) mark those cells in G covered by P; as occupied

(28) end foreach

5 Comparison with Previous Methods

We have compared our new method with the tiling and alternate-bisection meth-
ods discussed earlier. During the experiments, graphs that contained up to a
thousand disconnected objects were used. Each object was assumed to be a star
polygon with random number of corners in [3...8], each with random integer
coordinates in [1...100], all independent and uniformly distributed. The value
for the approximation quality constant ¢ was taken to be 100. The desired as-
pect ratio was taken to be 1. For the previous methods the tightest rectangles
bounding these polygons were used, whereas with our new approach, the smallest
polyomino tightly bounding the polygons were used. Figure [[1] shows a sample
set of drawings produced by these methods for the same set of objects. The
performance comparison of the methods is presented in Figure [I2

Clearly the new approach results in much more compact drawings. In terms
of the execution time, it is slower but still easily within acceptable bounds given
the fact that it is highly rare that a graph contains more than a few hundred
disconnected objects.

6 Conclusion

In this paper, we reviewed existing algorithms and presented a new approach for
layout of disconnected graphs. The new approach uses polyominoes as opposed
to rectangles used in previous approaches for representation of isolated nodes
and components, and produces much more compact and uniform drawings. The
parameters of our algorithm and how they affect the drawings produced as well
as a variation of the algorithm for multiple pages were discussed.

Acknowledgement. The authors wish to thank Cihad Baskoy for his help with
the implementation and experimentation of certain algorithms.
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Fig.11. A sample from the random set of objects laid out with all three methods:
tiling (left), alternate-bisection (right), and polyomino (middle) packing.
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Fig. 12. Comparison of the new approach with the previous ones.
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