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Abstract. In an orthogonal drawing of a plane graph G each vertex
is drawn as a point and each edge is drawn as a sequence of vertical
and horizontal line segments. A point at which the drawing of an
edge changes its direction is called a bend. Every plane graph of the
maximum degree at most four has an orthogonal drawing, but may need
bends. A simple necessary and sufficient condition has not been known
for a plane graph to have an orthogonal drawing without bends. In this
paper we obtain a necessary and sufficient condition for a plane graph
G of the maximum degree three to have an orthogonal drawing without
bends. We also give a linear-time algorithm to find such a drawing of G
if it exists.

Keywords: Graph, Algorithm, Graph Drawing, Orthogonal Drawing,
Bend.

1 Introduction

Automatic graph drawings have numerous applications in VLSI circuit layout,
networks, computer architecture, circuits schematics etc. For the last few years
many researchers have concentrated their attention on graph drawings and in-
troduced a number of drawing styles. Among these styles “orthogonal drawings”
have attracted much attention due to their various applications, specially in cir-
cuit schematics, entity relationship diagrams, data flow diagrams etc. [DETT99].
An orthogonal drawing of a plane graph G is a drawing of G with the given em-
bedding in which each vertex is mapped to a point, each edge is drawn as a
sequence of alternate horizontal and vertical line segments, and any two edges
do not cross except at their common end. A bend is a point where an edge
changes its direction in a drawing. Every plane graph of the maximum degree
four has an orthogonal drawing, but may need bends. For the cubic plane graph
in Fig. M(a) each vertex of which has degree 3, two orthogonal drawings are
shown in Figs. 0(b) and (c) with 6 and 5 bends respectively. Minimization of
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the number of bends in an orthogonal drawing is a challenging problem. Several
works have been done on this issue [GT95, GT97, RNN99, T87]. In particu-
lar, Garg and Tamassia [GT97] presented an algorithm to find an orthogonal
drawing of a given plane graph G with the minimum number of bends in time
O(n"/*\/logn), where n is the number of vertices in G. Rahman et al. gave an
algorithm to find an orthogonal drawing of a given triconnected cubic plane
graph with the minimum number of bends in linear time [RNN99].
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Fig. 1. (a) A plane graph G, (b) an orthogonal drawing of G with 6 bends, and (c) an
orthogonal drawing of G with 5 bends.

In a VLSI floorplanning problem, an input is often a plane graph of the
maximum degree 3 [L90, RNN00Oa, RNNOOb]. Such a plane graph G may have
an orthogonal drawing without bends. The graph in Fig.[2(a) has an orthogonal
drawing without bends as shown in Fig.[2(b). However, not every plane graph of
the maximum degree 3 has an orthogonal drawing without bends. For example,
the cubic plane graph in Fig. 1(a) has no orthogonal drawing without bends, since
any orthogonal drawing of the outer cycle of the graph needs at least four bends.
Thus one may assume that there are four or more vertices of degree two on the
outer cycle of G. It is interesting to know which classes of such plane graphs have
orthogonal drawings without bends. However, no simple necessary and sufficient
condition has been known for a plane graph to have an orthogonal drawing
without bends, although one can know in time O(n7/ 4/logn) by the algorithm
[GT97] whether a given plane graph has an orthogonal drawing without bends.

In this paper we obtain a simple necessary and sufficient condition for a plane
graph G of the maximum degree 3 to have an orthogonal drawing without bends.
The condition leads to a linear-time algorithm to find an orthogonal drawing of
G without bends if it exists.

The rest of the paper is organized as follows. Section 2 describes some defi-
nitions and presents known results. Section 3 presents our results on orthogonal
drawings of biconnected plane graphs without bends. Section 4 deals with or-
thogonal drawings of arbitrary (not always biconnected) plane graphs without
bends. Finally Section 5 gives the conclusion.
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Fig. 2. (a) A plane graph G and (b) an orthogonal drawing of G without bends.

2 Preliminaries

In this section we give some definitions and preliminary known results.

Let G be a connected simple graph with n vertices and m edges. We denote
the set of vertices of G by V(G) and the set of edges by E(G). The degree of a
vertex v is the number of neighbors of v in G. We denote the maximum degree
of graph G by A(G) or simply by A. The connectivity k(G) of a graph G is the
minimum number of vertices whose removal results in a disconnected graph or a
single vertex graph. We say that G is k-connected if k(G) > k. We call a vertex
of G a cut vertex if its removal results in a disconnected graph.

A graph is planar if it can be embedded in the plane so that no two edges
intersect geometrically except at a vertex to which they are both incident. A
plane graph G is a planar graph with a fixed planar embedding. A plane graph
G divides the plane into connected regions called faces. We refer the contour of
a face as a clockwise cycle formed by the edges on the boundary of the face. We
denote the contour of the outer face of G by C,(G).

An edge of G which is incident to exactly one vertex of a cycle C' and located
outside C is called a leg of the cycle C. The vertex of C' to which a leg is incident
is called a leg-vertex of C. A cycle in G is called a k-legged cycle of G if C' has
exactly k legs in G.

An orthogonal drawing of a plane graph G is a drawing of G with the given
embedding in which each vertex is mapped to a point, each edge is drawn as a
sequence of alternate horizontal and vertical line segments, and any two edges do
not cross except at their common end. A bend is a point where an edge changes
its direction in a drawing. A rectangular drawing of a plane graph G is a drawing
of G such that each edge is drawn as a horizontal or a vertical line segment, and
each face is drawn as a rectangle. Thus a rectangular drawing is an orthogonal
drawing in which there is no bends and each face is drawn as a rectangle. The
following result is known on rectangular drawings.

Lemma 1. Let G be a plane biconnected graph with A < 3. Assume that four
vertices of degree 2 on C,(G) are designated as the four corners of the outer
rectangle. Then G has a rectangular drawing if and only if G satisfies the following
two conditions [T84):
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(r1) every 2-legged cycle contains at least two designated vertices, and
(r2) every 3-legged cycle contains at least one designated vertez.

Furthermore one can check in linear time whether G satisfies the condition above,
and if G does then one can find a rectangular drawing in linear time [RNN9S].
O

A cycle in G violating (rl) or (r2) is called a bad cycle: a 2-legged cycle is bad
if it contains at most one designated vertex; a 3-legged cycle is bad if it contains
no designated vertex.

A linear-time algorithm has been obtained in [RNN9S§] to find a rectangular
drawing of a plane graph which has four designated corner vertices and satisfies
the conditions in Lemma [l We call it Algorithm Rectangular-Draw and use
it in our orthogonal drawing algorithm in this paper.

For a cycle C in a plane graph G, we denote by G(C') the plane subgraph of
G inside C (including C). A bad cycle C in G is called a mazimal bad cycle if
G(C) is not contained in G(C") for any other bad cycle C' of G. We say that
cycles C and C* in a plane graph G are independent of each other if G(C) and
G(C*) have no common vertex. We now have the following lemma.

Lemma 2. Let G be a biconnected plane graph of A < 3, and let four vertices
of degree 2 on C,(QG) be designated as corners. Then the maximal bad cycles in
G are independent of each other. a

3 Orthogonal Drawings of Biconnected Plane Graphs

In this section we present our results on orthogonal drawings of biconnected
plane graphs. From now on we assume that G is a biconnected plane graph with
A < 3 and there are four or more vertices of degree 2 on C,(G). The following
theorem is the main result of this section.

Theorem 1. Let G be a plane biconnected graph with A < 3 and four or more
vertices on Co(G). Then G has an orthogonal drawing without bends if and only
if any 2-legged cycle in G contains at least two vertices of degree 2 and any 3-
legged cycle in G contains at least one vertex of degree 2. O

Note that Theorem [l is a generalization of Lemma [l

It is easy to prove the necessity of Theorem [ as follows.

Necessity of Theorem [I. Assume that a plane biconnected graph G has an
orthogonal drawing D without bends.

Let C be any 2-legged cycle. Then the drawing of C' in D has at least four
convex corners (of interior angle 90°). These convex corners must be vertices
since D has no bends. The two leg-vertices of C' may serve as two of the convex
corners. However, each of the other convex corners must be a vertex of degree
2. Thus C' must contain at least two vertices of degree 2.

Similarly we can show that any 3-legged cycle C' in G contains at least one
vertex of degree 2. O
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In the rest of this section we give a constructive proof for the sufficiency of
Theorem [1] and show that the proof leads to a linear-time algorithm to find an
orthogonal drawing of a plane biconnected graph without bends if it exists.

Assume that G satisfies the condition in Theorem [l We now need some
definitions. Let C be a 2-legged cycle in G, and let x and y be the two leg
vertices of C. We say that an orthogonal drawing D(G(C)) of the subgraph
G(C) is feasible if D(G(C')) has no bend and satisfies the following condition
(f1) or (f2).

(f1) The drawing D(G(C)) intersects neither the first quadrant with the origin
at x nor the third quadrant with the origin at y (after rotating the drawing
and renaming the leg-vertices if necessary). (See Fig.[3l) Note that C is not
always drawn by a rectangle.

Fig. 3. Illustration of (f1) for a 2-legged cycle.

(f2) The drawing D(G(C)) intersects neither the first quadrant with the origin
at  nor the fourth quadrant with the origin at y (after rotating the drawing
and renaming the leg-vertices if necessary). (See Fig.[4)

Fig. 4. Nllustration of (f2) for a 2-legged cycle.

Let C be a 3-legged cycle in G, and let x, y and z be the three leg-vertices. One
may assume that =, y and z appear clockwise on C. We say that an orthogonal
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drawing D(G(C)) of G(C) is feasible if D(G(C)) has no bend and D(G(C))
satisfies the following condition (f3).

(f3) The drawing D(G(C)) intersects none of the following three quadrants: the
first quadrant with origin at x, the fourth quadrant with origin at y, and the
third quadrant with origin at z (after rotating the drawing and renaming
the leg-vertices if necessary). (See Fig.[0l)

Fig. 5. Illustration of (f3) for a 3-legged cycle.

The conditions (f1), (f2) and (f3) imply that, in the drawing of G(C'), any
vertex of G(C') except leg-vertices is located in none of the shaded quadrants
in Figs. B, @ and [, and hence a leg incident to z, y or z can be drawn by
a horizontal or a vertical line segments without edge-crossing as indicated by
dotted lines in Figs. 3 @ and B

We now have the following lemma.

Lemma 3. Let G be a plane biconnected graph with A < 3 and four or more
vertices on Co(G), and assume that G satisfies the condition in Theorem[d, that
is, any 2-legged cycle in G contains at least two vertices of degree 2 and any
3-legged cycle in G contains at least one vertex of degree 2. Then G(C) has a
feasible orthogonal drawing for any 2- or 8-legged cycle C in G.

Proof. We give a recursive algorithm to find a feasible orthogonal drawing of
G(C). There are two cases to be considered.
Case 1: C is a 2-legged cycle.

Let x and y be the two leg-vertices of C, and let e, and e, be the legs incident
to x and y, respectively. Since C satisfies the condition in Theorem [[ C has at
least two vertices of degree 2. Let a and b be any two vertices of degree 2 on
C. We now regard the four vertices z, y, a and b as the four designated corner
vertices of C.

We first consider the case where G(C) has no bad cycle with respect to the
four designated vertices. In this case, by Lemma [[1G(C) has a rectangular draw-
ing D with the four designated corner vertices. Such a rectangular drawing D of
G(C) can be found by the algorithm Rectangular-Draw in [RNN9S]. Since the
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outer cycle C of G(C) is drawn as a rectangle in D, D satisfies Condition (f1)
or (f2) and, in particular, z, y, a and b are the convex corners of the rectangular
drawing of C. Since D is a rectangular drawing, D has no bend. Thus D is a
feasible orthogonal drawing of G(C).

We then consider the case where G(C) has a bad cycle. Let C1,Cs,---,C; be
the maximal bad cycles of G(C). By Lemma [ Cy,Cs, - - -, C; are independent
of each other. Construct a plane graph @ from G(C) by contracting G(C;),1 <
i < I, to a single vertex v;, as illustrated in Figs. Bla) and (b). Clearly @ is a
plane biconnected graph with A < 3. Every bad cycle C; in G(C') contains at
most one designated vertex. If C; contains a designated vertex, then we newly
designate v; as a corner vertex of ) in place of the designated vertex. Thus @
has exactly four designated vertices. (In Fig. B @ has four designated vertices a,
b, x, and vy since the bad cycle Cy contains y.) Since all maximal bad cycles are
contracted to single vertices in @, @ has no bad cycle with respect to the four
designated vertices, and hence @ has a rectangular drawing D(Q), as illustrated
in Fig. Blc). Such a drawing D(Q) can be found by Algorithm Rectangular-
Draw. Clearly there is no bend on D(Q). The shrunken outer cycle of G(C) is
drawn as a rectangle in D(Q), and hence D(Q) satisfies conditions (f1) or (f2).
If C; is a 2-legged cycle, then v; and the two legs e,, and e,, are embedded in
D(Q) as illustrated in Figs.[d(b) and [Bb) or as in their rotated ones, and C;
and the two legs e,, and e,, have the embeddings in Figs.[[(c) and [§(c) and
their rotated ones. If C; is a 3-legged cycle, then v; and the three legs e;,, ey,
and e,, are embedded in D(Q) as illustrated in Fig.[(b) or as in their rotated
ones, and C; and three legs e,,, e,, and e,, have the embeddings in Fig. [d(c)
and their rotated ones. One can obtain a drawing D(G(C)) of G(C) from the
drawings of @ and G(C;) 1 < ¢ <, as follows. Replace each v;, 1 < ¢ <[, in
D(Q) with one of the feasible embeddings of G(C;) in Fig. [(c), Fig. Blc) and
Fig. @(c) and their rotated one that corresponds to the embedding of v; with
legs in D(Q), and draw each leg of C; in D(G(C)) by a straight line segment
having the same direction as the leg in D(Q), as illustrated in Fig. B(d). We call
this operation a patching operation.

&
»
Vi X
b Del >
Jed
1
,,,,,, I8 <3
A a g y a
D(Q) D(G(0))
© (d

Fig. 6. Illustration for Case 1 where C' has the maximal bad cycles C1, C3 and Cs.
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Fig. 7. (a) A 2-legged cycle C; having a feasible orthogonal drawing satisfying (f1),
(b) embeddings of a vertex v; and two legs e, and e, incident to v;, and (c) feasible
orthogonal drawings of G(C;) with two legs.

@ ®) %

Fig. 8. (a) A 2-legged cycle C; having a feasible orthogonal drawing satisfying (f2),
(b) embeddings of a vertex v; and two legs e, and ey, incident to v;, and (c) feasible
orthogonal drawings of G(C;) with two legs.

Fig.9. (a) A 3-legged cycle C; having feasible orthogonal drawings satisfying (£3), (b)
embeddings of a vertex v; and three legs es,, ey, and e, incident to v;, and (c) feasible
orthogonal drawings of G(C;) with three legs.
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We find a feasible orthogonal drawing D(G(C;)) of G(C;),1 <
i < I, in a recursive manner. We then patch the drawings D(G(C:)),
D(G(Cy)), -+, D(G(Cy)) into D(Q) by patching operation. Since there is no
bend in any of D(G(C1)), D(G(C3)),- -+, D(G(C})), there is no bend in the re-
sulting drawing D(G(C')). Since the outer boundary of D(Q) is a rectangle and
the resulting drawing D(G(C)) always expands outwards, D(G(C')) satisfies (f1)

or (f2). Hence D(G(C)) is a feasible orthogonal drawing.
Case 2: C is a 3-legged cycle.

Let x, y and z be the three leg-vertices of C, and let e., e, and e, be the legs
incident to x, y and z, respectively. Since C satisfies the condition in Theorem [
C has at least one vertex of degree 2. Let a be any vertex of degree 2 on C. We
now regard the four vertices x, y, z and a as designated corner vertices.

We first consider the case where G(C') has no bad cycle with respect to
the four designated vertices. In this case by Lemma [l G(C) has a rectangular
drawing D with the four designated vertices. Such a rectangular drawing D of
G(C) can be found by the algorithm Rectangular-Draw. Since the outer cycle
C of G(C) is drawn as a rectangle in D, D satisfies the condition (f3). Since D is
a rectangular drawing, D has no bend. Thus D is a feasible orthogonal drawing
of G(C).

We then consider the case where G(C) has a bad cycle. Let C1,Cs, -, C; be
the maximal bad cycles of G(C). By Lemmal[2 Cy, Cs, - - -, C; are independent of
each other. Construct a plane graph @ from G(C) by contracting each subgraph
G(Cy),1 < i <, to a single vertex v;. Clearly @ is a plane biconnected graph
wih A < 3, @ has no bad cycle with respect to the four designated vertices,
and hence @ has a rectangular drawing D(Q). Such a drawing can be found by
Algorithm Rectangular-Draw. Clearly there is no bend on D(Q). Since the
outer cycle of @ is drawn as a rectangle in D(Q), D(Q) satisfies the condition
(3).

We then find a feasible orthogonal drawing D(G(C;)) of G(C;),1 <i <1, in
a recursive manner, and patch the drawings D(G(Ch1)), D(G(C3)),- -, D(G(C}))
into D(Q). Since there is no bend in any of D(G(C1)), D(G(C%?)),---, D(G(C})),
there is no bend in the resulting drawing D(G(C)). Since the outer boundary
of D(Q) is a rectangle and D(G(C)) expands outwards, D(G(C)) satisfies (f3).
Thus D(G(C)) is a feasible orthogonal drawing of G(C). o

We call the algorithm for obtaining a feasible orthogonal drawing of G(C)
as described in the proof of Lemma[3 Algorithm Feasible-Draw. We now have
the following lemma.

Lemma 4. Algorithm Feasible-Draw finds a feasible orthogonal drawing of
G(C) in time O(n(G(C)), where n(G(C)) is the number of vertices in G(C). O
We are now ready to prove the sufficiency of Theorem [T we actually prove

the following lemma.

Lemma 5. Let G be a plane biconnected graph with A < 3 and four or more
vertices of degree 2 on Co(G). If G satisfies the conditions in Theorem [, then
G has an orthogonal drawing without bends.
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Proof. Since there are four or more vertices of degree 2 on C,(G), we designate
any four of them as (convex) corners.

Consider first the case where G does not have any bad cycle with respect
to the four designated (convex) corners. Then by Lemma[l] there is a rectangu-
lar drawing of G. The rectangular drawing of G has no bends. Hence it is an
orthogonal drawing D(G) of G without bends.

Consider next the case where G has bad cycles. Let C1,C5,---,C; be the
maximal bad cycles in G. By Lemma[2 Cy,Cs, - -+, C; are independent of each
other. We contract each G(C;), 1 < i <, to a single vertex v;. Let G* be the
resulting graph. Clearly, G* has no bad cycle with respect to the four designated
vertices, some of which may be vertices resulted from the contraction of bad
cycles. By Lemma [[] G* has a rectangular drawing D(G*), which can be found
by the algorithm Rectangular-Draw. We recursively find a feasible orthogonal
drawing of each G(C;), 1 <i <, by Feasible-Draw. Patch the feasible orthog-
onal drawings of G(C1),G(Cs),---,G(C}) into D(G*) by patching operations.
The resulting drawing is an orthogonal drawing D of G. Note that D(G*) has no
bend and D(G(C;)), 1 < ¢ < I, has no bend. Furthermore, patching operation
introduces no new bend. Thus D has no bend. O

We call the algorithm for obtaining an orthogonal drawing of a biconnected
plane graph G described in the proof of Lemma [B] Algorithm Bi-Orthogonal-
Draw. We now have the following theorem.

Theorem 2. If G is a plane biconnected graph with A < 3, has four or more
vertices of degree 2 on Co(QG), and satisfies the condition in Theorem [ then
Algorithm Bi-Orthogonal-Draw finds an orthogonal drawing of G in linear
time. O

4 Orthogonal Drawings of Arbitrary Plane Graphs

In this section we extend our result on biconnected plane graphs in Theorem[T] to
arbitrary (not always biconnected) plane graphs with A < 3 as in the following
theorem.

Theorem 3. Let G be a plane graph with A < 3. Then G has an orthogonal
drawing without bends if and only if every k-legged cycle C in G contains at least
4 — k vertices having degree 2 in G for any k, 0 < k < 3.

The proof for the necessity of Theorem [ is similar to the proof for the
necessity of Theorem [Il In the rest of this section we give a constructive proof
for the sufficiency of Theorem Bl We need some definitions.

We may assume that G is a plane connected graph of A < 3. We call a
subgraph H of G a biconnected component of G if H is a maximal biconnected
subgraph of G. We call a single edge (u, v) of G together with the vertices u and
v a weakly biconnected component of G if either both v and v are cut vertices or
one of u and v is a cut vertex and the other one is a vertex of degree one.
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Let C be a cycle in G, and let v be a cut vertex of G on C. We call v an
out-cut vertex for C' if v is a leg-vertex of C in G, otherwise we call v an in-cut
vertez for C. Any in-cut vertex for C' is not a convex corner (having interior angle
90°) of the drawing of C' in any orthogonal drawing of G; otherwise, the edge of
G which is incident to v and is not on C could not be drawn as a horizontal or
vertical line segment. Similarly, any out-cut vertex for C' is not a concave corner
(having interior angle 270°). Thus the orthogonal drawing of G must satisfy the
following condition (f4).

(f4) Every in-cut vertex for any cycle is not a convex corner and every out-cut
vertex is not a concave corner in the drawing of the cycle.

We now have the following lemmas.

Lemma 6. Let G be a connected plane graph of A < 3 satisfying the condition in
Theorem[3. Then any biconnected component H of G has an orthogonal drawing
which has no bends and satisfies (f4). O

We call two subgraphs H; and H; of G are disjoint with each other if H; and
H; have no common vertex. One can easily observe the following lemma.

Lemma 7. Let G be a connected plane graph of A < 3. Then the biconnected
components in G are disjoint with each other.

A block of a connected graph G is either a biconnected component or a weakly
biconnected component of the graph. The blocks and cut-vertices in a connected
graph G can be represented by a tree which is called the BC-tree of G. In the
BC-tree of G every block is represented by a B-node and each cut vertex of G
is represented by a C-node. The BC-tree of the plane graph G(C4) is depicted
in Fig. I0(b), where each B-node is represented by a rectangle and each C-node
is represented by a circle.

We call a cycle C in G a mazimal cycle of G if G(C) is not contained in
G(C") for any other cycle C’ in G. Thus a maximal cycle is an outer cycle of a
biconnected component of G. The graph G in Fig. [0(a) has two maximal cycles
Cy and Cy drawn by thick lines. G(C) is called a maximal closed subgraph of G
if C' is a maximal cycle of G. We now have the following lemma.

Lemma 8. Let G be a connected plane graph of A < 3 satisfying the condition
in Theorem[3, and let C be a mazimal cycle in G. Then G(C) has an orthogonal
drawing which has no bends and satisfies (f4).

Proof. We give an algorithm for finding an orthogonal drawing of G(C') which
has no bends and satisfies (f4).

If G(C) is a biconnected component of G, then by Lemma [6 G(C) has an
orthogonal drawing which has no bends and satisfies (f4). One may thus as-
sume that G(C) is not a biconnected component of G. Then G(C) has some
biconnected components and weakly biconnected components. By Lemma [{]the
biconnected components of G(C) are disjoint with each other. We can find an



Orthogonal Drawings of Plane Graphs without Bends 403

orthogonal drawing of a biconnected component which has no bend and satisfies
(f4) by an algorithm similar to Algorithm Bi-Orthogonal-Draw. We can draw
a weakly biconnected component by a horizontal or vertical line segment. It is
thus remained to merge the drawings of biconnected components and weakly
biconnected components without introducing new bends and edge crossings.

We construct a BC-tree of G(C). Let By be the node in the BC-tree cor-
responding to the biconnected component of G(C') whose outer cycle is C. We
consider the BC-tree of G(C) as a rooted tree and regard By as the root. Starting
from the root we visit the tree by depth-first search and merge the orthogonal
drawings of the blocks in the depth first-search order. Let By, By, B, -+, By be
the ordering of the blocks following a depth-first search order starting from By.
The BC-tree of G(C4) of G in Fig. [0{a) is depicted in Fig.[ITO(b), where By is the
root of the tree and the other B-nodes are numbered according to a depth-first
search order starting from By.

H % vis M1 Vo
f:f 3
v,
1
Y Mz Y,

V,
%
Vlb—I\ﬂo s ? gis | °
Ve D(Bp)
A % Yo Y
Vis Vs
D(B) . s v
D(G(CY)

©

Fig. 10. (a) A plane graph G with two maximal cycles C1 and Cs, (b) G(C1) and its
BC-tree, (c) drawings of the two biconnected components By and Bs of G(C1) and the
final drawing of G(C1).

We assume that we have obtained an orthogonal drawing D;, which has
no bends and satisfies (f4), by merging the orthogonal drawings of the blocks
By, -+, B, and we are now going to obtain an orthogonal drawing D, 1, which
has no bends and satisfies (f4), by merging D; with the orthogonal drawing of
the block B;y; with D;. Let v; be the cut-vertex corresponding to the C-node
which is the parent of B;; in the BC-tree of G(C). Let B, be the parent of v,
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in the BC-tree. Then both B, and B;y; contain the vertex v, and D; contains
the drawing of B,. We have the following three cases to consider.

Case 1: B, is a biconnected component and B;;; is a weakly biconnected
component.

In this case B;;1 is an edge and will be drawn inside an inner face of the
drawing D;. Let C; be the facial cycle of B,. Then v, is an in-cut vertex for
C¢. Since we have obtained a feasible orthogonal drawing of B, which has no
bends and satisfies (f4), v; is not drawn as convex corner in the drawing of C
in D(B,), and hence the embedding of v; in D; is one of the two embeddings
in Fig. [ or a rotated one. We can draw B;.1 as a horizontal or a vertical line
segment started from vy as illustrated by dotted lines in Fig.[I1l Thus we obtain
the drawing D, 1. Clearly no new bend is introduced in D, and D; may be
expanded outwards to avoid edge crossings. In Fig.[I0(c) the weakly biconnected
component By of edge (vs,ve4) is merged to a biconnected component By at
vertex vs.

Fig. 11. Embeddings of v; in D; when B, is a biconnected component and B;11 is a
weakly biconnected component.

Case 2: Both B, and B;;; are weakly biconnected components.

In this case v; is drawn in an inner face of D; and has degree 1 or 2 in D;.

We first consider the case where v, has degree 1. Then v; in D; has the
embedding in Fig. [(a) or a rotated one. We draw B; as the dotted line in
Fig. [2(a).

We next consider the case where v; has degree 2 in D;. Then v; has degree 3
in G(C), and let z, y, and z be the three neighbors of v; in G. We may assume
without loss of generality that edges (v, z) and (v, y) are already drawn in D;
and we now merge the drawing of the edge (v¢, z) = B;4+1 to D;. It is evident from
the drawing described above that (v, z) and (v, y) are drawn on a (horizontal
or vertical) straight line segment. We draw the edge (v¢, z) as a dotted line as in
Fig. T2(b).

Case 3: B, is a weakly biconnected component and B;;; is a biconnected
component.

In this case v; is drawn in D; as the end of a horizontal or vertical line
segment inside an inner face of D;. Vertex v; has degree 2 in B;;1 and is an
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Fig. 12. Embedding of B; when both B, and B;+1 are weakly biconnected components

out-cut vertex for C,(B;+1). Hence by Lemma [Bl v; is not a concave corner of
the drawing of C,(B;t1) in D(B;y1). Therefore D(B; 1) can be easily merged
with D; by rotating D(G(B;+1)) 90° or 180° or 270° and expanding the drawing
D; if necessary. In Fig. [0(c) the orthogonal drawing of Bj is merged to Do at
vertex v1; where D(Bs) has been rotated 90° and the drawing D5 is expanded
outwards. O

We call the algorithm described in the proof of Lemma 8] Algorithm
Maximal-Orthogonal-Draw

We are now ready to give a proof for the sufficiency of Theorem [3.

Proof for Sufficiency of Theorem [3]

We decompose GG into maximal closed subgraphs and weakly biconnected
components. We find an orthogonal drawing of each maximal closed subgraph by
Algorithm Maximal-Orthogonal-Draw. Each weakly biconnected component
can be drawn by a horizontal or a vertical line segment. Using a technique
similar to one in the proof of Lemma[§ we merge the drawings of maximal closed
subgraphs and weakly biconnected components in the outer faces of maximal
closed subgraphs. The resulting drawing is an orthogonal drawing of G without
bends. O

We call the algorithm described in the proof for the sufficiency of Theorem [
Algorithm No-bend-Orthogonal-Draw. We now have the following theorem.

Theorem 4. If G is a plane connected graph of A < 3 and satisfies the con-
dition in Theorem [3, then Algorithm No-bend-Orthogonal-Draw finds an
orthogonal drawing of G without bends in linear time. 0O

5 Conclusions

In this paper we established a necessary and sufficient condition for a plane
graph G with the maximum degree at most 3 to have an orthogonal drawing
without bends. We gave a linear-time algorithm to determine whether G has an
orthogonal drawing without bends and find such a drawing of G if it exists. It is
remained as a future work to establish a necessary and a sufficient condition for
a plane graph of the maximum degree at most 4 to have an orthogonal drawing
without bends.
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