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Abstract. We present a novel way to draw planar graphs with good
angular resolution. We introduce the polar coordinate representation and
describe a family of algorithms which use polar representation. The main
advantage of using a polar representation is that it allows us to exert
independent control over grid size and bend positions. Polar coordinates
allow us to specify different vertex resolution, bend-point resolution and
edge separation. We first describe a standard (Cartesian) representation
algorithm (CRA) which we then modify to obtain a polar representation
algorithm (PRA). In both algorithms we are concerned with the following
drawing criteria: angular resolution, bends per edge, vertex resolution,
bend-point resolution, edge separation, and drawing area.

The CRA algorithm achieves 1 bend per edge, unit vertex and bend
resolution,

√
2/2 edge separation, 5n × 5n

2 drawing area and 1
2d(v) angu-

lar resolution, where d(v) is the degree of vertex v. The PRA algorithm
has an improved angular resolution of π

4d(v) , 1 bend per edge, and unit
vertex resolution. For the PRA algorithm, the bend-point resolution and
edge separation are parameters that can be modified to achieve different
types of drawings and drawing areas. In particular, for the same param-
eters as the CRA algorithm (unit bend-point resolution and

√
2/2 edge

separation), the PRA algorithm creates a drawing of size 9n × 9n
2 .

1 Introduction

In the area of planar graph drawing there has been considerable interest in al-
gorithms that produce readable drawings [4]. Among the many properties which
contribute to the readability of planar graphs, edge smoothness, vertex resolu-
tion, bend-point resolution, angular resolution, and edge separation are of great
importance. Edges are often drawn as straight-line segments connecting two ver-
tices. An edge can also be drawn as a sequence of straight-line segments, in which
case the smallest number of bends is desirable. An edge may also be drawn as a
smooth curve. These three types of edges generally provide aesthetically pleasing
drawings.
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1.1 Definitions

A graph drawing has good vertex resolution if vertices cannot get arbitrarily close
to one another, that is, if vertices are well distributed in the drawing. As a result,
a great deal of research has been concentrated on graph drawing algorithms
which place vertices on the integer grid such that the drawing area is proportional
to the number of vertices n of the graph, typically O(n)×O(n). If there are bends
in the edges, then the bend-points are also placed on the integer grid. The bend-
point resolution of a graph refers to the minimum distance between two bends.
The edge separation of a graph refers to the minimum distance between two
edges that are sufficiently away from their endpoints (since incident edges can
get arbitrarily close to each other near their common endpoint).

A graph drawing has good angular resolution if adjacent edges cannot form
arbitrarily small angles. This is achieved by ensuring that the edges emanating
from a given vertex “fan out” evenly around the vertex. Note, however, that good
angular resolution cannot always be achieved while simultaneously guaranteeing
straight-line edges and small sub-exponential drawing area [9]. By introducing
bends in the edges, however, we can guarantee both good resolution and small
drawing area.

1.2 Previous Work

Garg and Tamassia [5] consider the problem of drawing with good angular res-
olution, and Kant [8] shows how to create drawings with angular resolution
of Θ(1/d(v)) in an O(n) × O(n) area grid, using edges with at most three
bends each. Gutwenger and Mutzel [7] describe an improved algorithm with
better constant factors which produces very aesthetically pleasing drawings in
a (2n − 5) × (3n/2 − 7/2) grid with at least 2/d(v) angular resolution using at
most three bends per edge. The algorithm of Goodrich and Wagner [6] requires
one less bend per edge and guarantees angular resolution of Θ(1/d(v)) for each
vertex v, but at the expense of larger area, (20n − 48) × (10n − 24). Cheng,
Duncan, Goodrich, and Kobourov [1] improve the above algorithm so that every
edge has at most one bend while the angular resolution is Θ(1/d(v)) for each
vertex v and maximum area is 30n × 15n.

1.3 Our Results

We first present a new Cartesian representation algorithm (CRA) which improves
the bounds of previous algorithms. In particular, CRA guarantees 1 bend per
edge, unit vertex resolution, unit bend-point resolution,

√
2/2 edge separation,

5n × 5n
2 drawing area, and 1

2d(v) angular resolution, where d(v) is the degree of
vertex v.

We then present a novel polar representation algorithm (PRA). The PRA
algorithm also guarantees π

4d(v) angular resolution, 1 bend per edge, and unit
vertex resolution. The bend-point resolution and edge separation are parameters
that can be modified to achieve different types of drawings and drawing areas.
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In particular, for the same parameters as the CRA algorithm (unit bend-point
resolution and

√
2/2 edge separation), the PRA algorithm creates a drawing of

size 9n× 9n
2 . Note that in some situations the vertex resolution is more important

than the bend-point resolution or the edge separation. In such situations, all of
the previous algorithms perform poorly since they are designed to maintain con-
stant resolution particularly between vertices and bend-points. Using the PRA
algorithm, we can relax the bend-point resolution constraints and get significant
improvements.

The PRA algorithm relies on a novel approach for representing bends and
vertices. Traditionally, vertices and bend-points are restricted to lie on integer
grid coordinates. One reason for this is that the points are defined by a pair
of integers. In this way, all operations on the points (for example, shifting) are
performed with integer arithmetic. At the drawing stage, the integer coordinates
are mapped to pixels on the screen.

Another reason for placing vertices and bend-points on integer grid coordi-
nates is that this approach guarantees good vertex resolution, good bend-point
resolution, and good edge separation [1,6,7,8]. Rather than insisting that bend-
points lie on integer grid coordinates, we propose an alternative approach which
allows bend-points to be located on a grid represented by polar coordinates.
We call this a polar representation approach because both the vertices and the
bend-points are represented using polar coordinates.

At the exact moment of drawing the graph onto the screen, an algorithm
using polar representation requires a rounding calculation to determine the exact
pixel location for the bend-points. Note, however, that the traditional approach
also uses a rounding calculation for scaling from the integer grid space to the
pixel space.

The main advantage of using a polar representation is that it allows us to
independently control grid size and bend positions. Polar coordinates allow us to
specify different vertex resolution, bend-point resolution, and edge separation.
We achieve this added flexibility at the expense of slightly increased storage
for the graph representation. A Cartesian representation requires exactly two
integers for each point while the polar representation requires up to five integers
per point.

2 The CRA Algorithm

The Cartesian Representation Algorithm is a natural extension of the previous
algorithms which guarantee good angular resolution [8,7,6,1]. For the remainder
of this paper, when we say “graph” we mean a fully triangulated, undirected,
planar graph. In our algorithm the vertices of the graph are inserted sequentially
by their canonical ordering, generating subgraphs G1, G2, . . . , Gn. The canonical
ordering [3] for a planar graph G orders the vertices of G so that they can be
inserted one at a time without creating any crossings. We define Gk at step i to
be the graph induced by vertices 1, 2, . . . , k. Graph Gk+1 is created from Gk by
inserting the next vertex vk+1 in the canonical order. Before we show the details
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Fig. 1. Graph Gk+1 after inserting vk+1. The shaded part is Gk. Vertices wl and wr are
the leftmost and rightmost neighbors of vk+1. The horizontal line segment below vk+1 is
the middle port region through which all the edges (vk+1, wi), l < i < r, are routed.

of our algorithm we need several definitions. Following the notation of [3], let
w1 = v1, w2, . . . , wm = v2 be the vertices of the exterior face Ck of graph Gk in
order. For a particular subgraph Gk and vertex vk+1, we refer to wl and wr as
the leftmost and rightmost neighbors of vk+1 on Ck, see Fig. 1.

2.1 Vertex Regions

In the immediate vicinity of every vertex there are two types of regions: free
regions and port regions. The free and port regions alternate around the vertex,
see Fig. 2(a). For each free region there is at most one edge passing through it
to v. Each port region is bounded by a line segment with a number of ports and
every edge inside the port region passes through a unique port. The number of
ports in a port region is as small as possible. Define and name the six regions
around v as follows:

There are three free regions Mf (between −45◦ and 45◦), Rf (between 90◦

and 135◦), and Lf (between −135◦ and −90◦). There are also three port regions
Mp (between Lf and Rf ), Lp (between Lf and Mf ), and Rp (between Rf and
Mf ).

The algorithm draws each edge in E by “routing” it through a port of one of
the two vertices in a fashion similar to [1]. Each edge consists of two connected
edge segments. One edge segment, the port edge segment, connects a vertex with
one of its ports. The other segment, the free edge segment, connects a vertex
to one of its neighbor’s ports. For example, for an edge e = (u, v), if we route
e through the leftmost port in u’s middle port region Mp, we would draw two
line segments, see Fig. 2(b): the port edge segment would pass from u to the
port, and the free edge segment would pass from the port to v. This method of
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Fig. 2. Vertex regions and edge routing: the number of ports along each port region is
determined by the number of edges that need to be routed through that port region. (a)
The area around a vertex v is divided into 6 regions. The free regions are shaded and at
most one free edge segment goes through each one of them. All the port segments use
ports in the port regions of v. (b) Routing an edge e = (u, v), where the port edge segment
connects u to one of its ports and the free edge segment connects the port to v, going
through one of v’s free regions.

construction guarantees that the free edge segments always pass through free
regions and that each port transmits at most one port edge segment.

We perform our construction in incremental stages, where each stage corre-
sponds to the insertion of a new vertex. Observe that at each stage, for every
vertex v except those on the external face, w1 = v1, w2, . . . , wm = v2, there
are exactly three free edge segments. The remaining edges are connected to v
via port segments. These remaining edges can be grouped into three classes
based on which port region they are routed through, Lp, Rp, or Mp. Count the
number of edges in each of these groups and let dl(v) be the number of port
edge segments using port region Lp. Similarly, define dr(v) and dm(v) to be the
number of port segments using port regions Rp and Mp. Observe that in the
final stage, there are exactly three vertices on the exterior face, v1, v2, vn, and
then

∑
v∈V (dl(v) + dr(v) + dm(v)) = |E|. That is, for every edge, there is a

corresponding port and free edge segment.
For a vertex v we define the maximal right port Rp

max as follows. Let v have
coordinates (vx, vy). Then the Rp

max of v has coordinates (vx + dr(v) + 1, vy +
dr(v)) if dr(v) > 0 and (vx, vy) otherwise. We define the maximal left port Lp

max

of v in a similar fashion, see Fig. 2(a).

2.2 Invariants of the CRA Algorithm

By design, our algorithm is incremental with n stages, where each stage cor-
responds to the insertion of the next vertex in the canonical order. Thus it is
natural to define several key invariants to be maintained at every stage. The
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four invariants below are similar in flavor to those of Cheng et al [1] except that
here we do not need to maintain any joint boxes.

1. All vertices and ports have integer coordinates.
2. Let w1 = v1, w2, . . . , wm = v2 be the vertices of the exterior face Ck of Gk in

order, and let x(wi) be the x-coordinate of vertex wi. Then x(w1) < x(w2) <
. . . < x(wm).

3. The free edge segment of edge e = (wi, wi+1), 0 < i < m, has slope ±1 and
e’s port edge segment goes through a maximal port.

4. For every vertex v there is at most one (free) edge segment crossing each of
its free regions. All other edge segments are port edge segments.

2.3 Vertex Shifting

In the algorithms that maintain good angular resolution with the aid of vertex
joint boxes [1,6], every time a new vertex is inserted, already placed vertices
need to be shifted a great deal so that the joint box can fit amongst them.
The amount of shifting required is typically of the order of the degree of the
vertex. Invariably this leads to large constants behind the O(n)×O(n) area, e.g.
(20n − 48) × (10n − 24) in [6] and 30n × 15n in [1]. In our algorithm we never
need to shift any vertex by more than five grid units allowing us to draw G in a
5n × 5n

2 grid. When a new vertex v is inserted, we must create enough space so
that the leftmost wl and rightmost wr neighbors of v can “see” v through their
respective maximal port regions. Note that the previous Rp

max port of wl and
Lp

max of wr were used at an earlier stage. Thus, we must create an additional
port along the Rp region of wl. Similarly, additional space is necessary along the
Lp region of wr.

In order to create more space we need to move wl and wr. We also have to
ensure that the four invariants and the planarity of the graph are maintained.
This is achieved by shifting the “shifting set” of the vertex as well as the vertex
itself. Using the definition of de Fraysseix et al [3], define the shifting set Mk(wi)
for a vertex wi on the external face of Gk to be a subset of the vertices of G
such that:

1. wj ∈ Mk(wi) iff j ≥ i
2. Mk(w1) ⊃ Mk(w2) ⊃ . . . ⊃ Mk(wm)
3. Let δ1, δ2, . . . , δm > 0; if we sequentially translate all vertices in Mk(wi) by

distance δi to the right (i = 1, 2, . . . ,m), then the embedding of Gk remains
planar.

These shifting sets can be defined recursively. Let wl and wr be the leftmost and
rightmost neighbors of v on Ck. Then construct Mk+1(wi) recursively as follows:

Mk+1(wi) = Mk(wi) ∪ vk+1, for i ≤ l,

Mk+1(vk+1) = Mk(wl+1) ∪ vk+1,

Mk+1(wj) = Mk(wj), for j ≥ r.
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For convenience, define a right-shift of m units for a vertex wi as shifting
Mk(wi) by m units to the right so that all ports for every vertex in Mk(wi) also
shift except the ports in the Lp region of wi. Define a left-shift of m units for
vertex wi as shifting Mk(wi+1) by m units to the right so that all ports for every
vertex in Mk(wi+1) also shift. Note that in a left-shift, we also shift the ports in
the Rp region of wi by m units to the right.

2.4 CRA Overview

The CRA algorithm constructs the graph one vertex at a time, by creating the
graphs G1, G2, . . . , Gn. Constructing Gi, 1 ≤ i ≤ 3 is straightforward, so assume
that Gk has been constructed with exterior face Ck = (v1 = w1, w2, . . . , wm =
v2). Suppose we have embedded Gk with exterior face Ck. To construct Gk+1,
let vk+1 be the next vertex in the canonical ordering and recall that wl and wr

are, respectively, the leftmost and rightmost neighbors of vk+1 on the exterior
face Ck.

Recall that dr(wl) is the current number of port edge segments using Rp of
wl, and that dl(wr) is the current number of port edge segments using Lp of wr.
There are two cases to consider:

– case (a) dr(wl) = 0, see Fig. 3(a).
– case (b) dr(wl) > 0, see Fig. 3(b).

In case (a) perform a left-shift of 2 units on wl in order to free space for
a port in the Rp region of wl. In case (b) perform a left-shift of 1 unit on wl.
Similarly, if dl(wr) = 0 then perform a right-shift of 2 units on wr. Otherwise
perform a right-shift of 1 unit on wr.

Insert vk+1 at the intersection of lines l and r, where l is the line with slope
+1 through wl’s maximal right port and r is the line with slope −1 through wr’s
maximal left port, see Fig. 1. In the case where lines l and r do not intersect in
a grid point it suffices to shift all the elements in Mk(wr) one additional unit to
the right.

The edges from vk+1 to wl and wr are routed through wl’s maximal right
port and wr’s maximal left port, respectively. The remaining edges go from vk+1
to vertices wi, l < i < r. Let (vk+1(x), vk+1(y)) be the coordinates of vertex
vk+1. Let wa be the rightmost vertex such that wa(x) < vk+1(x). Before placing
the Mp region of vk+1 it is necessary to ensure that there are enough ports
on it that can be used to connect vk+1 to wl, wl+1, . . . , wr. The Mp region is
a horizontal line segment with 1, 3, . . . , 2m + 1 ports when the line segment is
1, 2, . . . ,m grid units below vk+1. It is necessary to find how many wi’s are to
the left and right of vk+1 in order to find exactly how far below vertex vk+1, the
region Mp must be placed. These numbers are a − l and r − a − 1 respectively
(from the definition of wa above). Then place the Mp region of vk+1 so that its
y coordinate is equal to vk+1(y) − max(a − l, r − a − 1). As shown in the next
section the Mp region can be placed correctly, that is, placed so that it does not
intersect the old graph Gk. After determining the location of Mp the edges are
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Fig. 3. Adding the current vertex vk+1. Here wl is the leftmost neighbor of vk+1 on the
exterior face of Gk. (a) If dr(wl) = 0, then we need to shift wl two grid units to the left.
(b) If dr(wl) > 0, then it suffices to shift wl only one unit to the left. Note that the shifting
set Mk(wl) also shifts with wl.

routed from vk+1 to wl+1, wl+2, . . . , wa starting from the leftmost port of Mp

of vk+1. Similarly, route the edges from vk+1 to wr−1, wr−2, . . . , wa+1 starting
from the rightmost port of Mp of vk+1.

3 Correctness of the Algorithm

The algorithm works correctly if all four invariants are maintained. We show that
free edge segments always remain in free edge regions and that there is at most
one free edge segment per free region. We then need to bound the drawing area
required by the algorithm and show that good angular resolution is maintained.
Finally, we have to bound the number of bends created and analyze the running
time. We leave the detailed proofs for the full version of the paper and present
brief proof sketches instead.

Lemma 1. Free edge segments in free regions remain in the free regions.

Proof Sketch: Recall that there are three types of free regions: Mf , Lf , Rf . Let
us first look at free edge segments in the Mf regions. Edge segments in the Mf

regions are created by a vertex v dominating another vertex w. But whenever v
dominates w, w is added to the shifting set for v and is only shifted when v is
shifted. Therefore, the slope of the free edge segment of the edge connecting v
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and w remains constant and the free edge segment remains within Mf . As the
two remaining cases are symmetric, without loss of generality, let us examine
the case when the free edge segment lies in the Lf region. This implies that the
slope of the free edge segment is between 0 and +1. Since shifting only moves
vertices farther apart in the x-direction, the slope can only get closer to 0, thus
remaining in Lf . ��

Lemma 2. Every free edge segment passes through a free region which contains
no other edges.

Proof Sketch: When a new vertex v = vk+1 is inserted there are two types of
new edges added: the outside edges between v and the outside neighbors, wl and
wr, and the inside edges between v and wi where l < i < r. In both cases the
new edge is routed through a port creating one free edge segment and one port
edge segment. A free edge segment of an outside edge has slope either +1 or −1
by construction; therefore it lies inside the free regions Lf and Rf of vertex v.
Since v is a new vertex, there are no other segments inside these two free regions.

Dealing with the inside edges is more complex. We first need to show that
there is sufficient space between the vertices on the exterior face of Gk and the
new vertex v. Second, we need to show that v has enough ports in its middle
port region Mp for each of the vertices on Gk that it is connected to. Third, we
need to show that the free edge segments of the inside edges remain inside their
free regions. We begin by showing that for every vertex wi, l < i < r,

– vertex wi lies below Mp, the middle port region for v, and
– we can assign a unique port along the Mp port region of v, such that the

edge segment connecting wi to that port fits inside wi’s middle free region
Mf

First consider the vertices wl, wl+1, . . . , wa. In the worst case, they have
monotonically increasing y-coordinates. Intuitively, this is the worst case be-
cause the area of Gk+1 − Gk is the smallest and hence it is more difficult to
ensure that there is enough space for the Mp region of v. Using invariant (3) we
can show that wa(y) ≤ v(y) − (a − l), since all the edges connecting consecutive
vertices on the outer face have both port and free edge segments, thus “free-
ing” at least one grid point distance between v and wa for every wi. Similarly,
wa+1(y) ≤ v(y) − (r − (a + 1)).

The same argument implies that there are at least as many ports along the
middle port region Mp of v as there are vertices wi, l < i < r. We route the
inside edges for v as follows: starting with the leftmost port on the middle port
region Mp of v, we assign consecutive ports to wl+1, wl+2, . . . , wa and route the
corresponding free edge segments from wi to the ports. The port edge segments
for the inside edges connect the same ports to v. Similarly, starting with the
rightmost port on the middle port region Mp of v we assign consecutive ports to
wr−1, wr−2, . . . , wa+1 and route the corresponding free edge segments from wi

to the ports. The port edge segments for the the inside edges connect the same
ports to v.
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Combining the above observations, it can also be shown that for every vertex
wi, l < i < r, the free edge segment of its edge to v fits inside the middle free
region Mf of wi. ��
Lemma 3. If Gk maintains invariants one through four, then Gk+1 maintains
invariants one through four.

Proof Sketch: By definition of the shifting set, invariants one and two hold,
see [6]. By construction of the algorithm, invariant three holds as well. Also
by construction every edge inserted has a port edge segment and a free edge
segment. By lemmas 1 and 2 invariant four also holds. ��
Lemma 4. The angular resolution for vertex v ∈ G as produced by the algorithm
is 1/2d(v), where d(v) is the degree of vertex v.

Proof Sketch: The worst angle is achieved between a free edge segment for
some edge f and a port edge segment for some edge e, where f is located at the
boundary of its free region and e is the neighboring port edge segment. There are
six possible cases but the argument is the same for all of them, so without loss of
generality consider the case in Fig. 4. Let v be the vertex and d(v) = d its degree.
Also let s and t be the lengths as shown in Fig. 4. Let θ be the angle between f
and e, and x the number of ports as shown in the figure. Note that all vertices
have three edges connected to them via free edge segments. Then the number
of ports in any port region is at most d − 3. From the figure, tan(θ) = t/(s − t)
and hence arctan(t/(s − t)) = θ. But

t

s − t
=

√
2/2√

2(x + 1) − √
2/2

=
1

2x + 1

Using the Maclaurin expansion for arctan(y), where y < 1 we have

arctan(y) = y − y3/3 + y5/5 − ...

Since 1/(2x + 1) < 1, and x ≤ d − 3 this yields θ ≥ 1/2d which completes the
proof. ��
Theorem 1. For a given planar graph G, the algorithm produces in O(n) time a
planar embedding with grid size 5n×5n/2, using at most one bend. The angular
resolution for every vertex v of G is 1/2d(v).

Proof Sketch: Since every edge has only two segments, there can be at most
one bend per edge. Chrobak and Payne [2] show how to implement the algorithm
of De Fraysseix, et al. [3] in linear time. Their approach can be easily extended
to our algorithm. By invariants three and four and by lemma 4 the angular
resolution is at most 1/2d(v).

It remains to show that the drawings produced by the algorithm fit on the
5n × 5n/2 grid. Every time we insert a vertex vk, we increase the grid size by
at most 5 units, which implies that the width of the drawing is at most 5n. The
final drawing fits inside an isosceles triangle with sides of slope 0, +1,−1. The
width of the base is 5n and so the height is less than 5n/2. ��
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Fig. 4. The minimum angle between two edges adjacent to vertex v is proportional to the
degree d of the vertex. Using our algorithm the angle cannot be smaller than 2/d.

4 The PRA Algorithm

In this section, we introduce a novel approach to representing bends and vertices.
Rather than insisting that bends lie on integer grid coordinates, we propose an
alternative approach which allows bends to be located on a grid represented
by polar coordinates. Using a polar representation allows us to independently
control the grid size and edge bend positions. We begin by considering the polar
representation in general and then present the PRA algorithm that uses the new
approach.

A point p in the polar grid system is represented by a set of integers. For the
vertices we only need two integers (px, py). For the bend-points we may need up
to five integers. We shall see in the PRA algorithm that these five integers need
not be explicitly stored for every bend-point. In general, a bend-point is given
by:

– (px, py), the origin of the polar system
– pr, the radius of the circle around the origin (px, py)
– pd and pn, the angle (pθ) of the circle where the point is located, i.e., pθ =

2πpn/pd. For convenience, we consider pθ = 0 to be the vertical direction.

The PRA algorithm places vertices at integer grid coordinates, thus guaran-
teeing unit vertex resolution. As it is based on the CRA algorithm it also uses
only 1 bend per edge. The main difference in the two algorithms is in the place-
ment of the bend-points. In the PRA algorithm, bend-points will be placed on
a circle around the vertex (rather than on a straight-line segment). Therefore,
the origin, (px, py) for each bend-point need not be explicitly stored – it suffices
to store the origin of the vertex that the bend-point is associated with. Simi-
larly, groups of bend-points around a given vertex will have the same radius and
hence each of the bend-points need not explicitly store pr. Since the points will
be evenly spaced in a port region, the values for pθ need also not be explicitly
stored for each bend-point.
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(a) (b)
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Fig. 5. Vertex wl is the left-most neighbor of the next vertex vk+1 along the exterior face
of Gk. The dr(wl) ports of wl are evenly spaced on the arc of a circle of radius 2dr(wl)
bounded by the middle free region Mf and the right free region Rf . (a) An example of the
layout for the Rp region with dr(wl) = 3. (b) The distance x between two adjacent ports
or a port and an adjacent free region can be computed given the radius of the circle and
the angle between the edges connecting the ports to wl: x = 2r sin α

2 .

Consider the leftmost neighbor, wl, of the next vertex in the canonical order,
vk+1. The ports are evenly spaced in the Rp region for wl, Fig. 5(a). The length
of the straight-line segment separating two bend-points or a bend-point and
an adjacent free region can be computed as follows. Consider the example in
Fig. 5(b). We would like to compute the length x in terms of the radius of the
circle and the angle between the two line segments connecting consecutive ports
to wl. From basic trigonometry, the angle between h and x is α/2. We can express
h in terms of r and α: h/r = sin α and we can express x in terms of h and α:
h/x = cos α/2. Combining the two expressions we obtain

x =
h

cos α
2

=
r sin α

cos α
2

=
2r sin α

2 cos α
2

cos α
2

= 2r sin
α

2
.

Assume we have inserted v1, v2, . . . , vk and have a drawing of Gk with exterior
face Ck. Consider inserting the next vertex vk+1 in the canonical order. Let wl

and wr be the leftmost and rightmost neighbors of vk+1 on the exterior face Ck.
Define fb and fe to be the bend-point resolution and edge separation respectively.
Observe that in the standard Cartesian representation algorithms fb = 1 and
fe =

√
2/2. Let dr(wl), respectively dl(wr), be the number of port edge segments

using Rp of wl, respectively Lp of wr. When inserting vk+1, the degrees for wl

and wr affect the amount of shifting necessary to ensure proper resolution. As
the cases for dr(wl) and dl(wr) are symmetrical, we shall concentrate on dr(wl).
There are two cases to consider:

– case (a) dr(wl) = 0 prior to insertion
– case (b) dr(wl) ≥ 1 prior to insertion
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In case (a) we insert the first edge in the port region Rp between the two
free regions Rf and Mf of wl. We place the port in the middle of the arc of
a circle connecting Rf and Mf . Since there are no other bends yet in Rp we
are only concerned with maintaining the edge separation. We need to place the
port sufficiently away from the vertex wl. Consider the relationship between the
radius of the circle and the edge separation, see Fig. 5.

The edge separation fe = x = 2r sin α
2 . But since there is only one port and

it is in the middle of the arc, α = π/8. We are interested in the radius necessary
to achieve the edge separation fe which is given by

r =
fe

2 sin α
2

=
fe

2 sin π
16

<
4fe√

2
= 2

√
2fe.

Since we maintain that the vertices are at integer coordinates and the radii
are also integers, then the minimum radius required in case (a) is

r < 
2
√

2fe�.

In case (b) we insert an additional port in the port region Rp which already
has at least one port. In this case, we must ensure that both the edge separation
fe and bend-point resolution fb are preserved. In this case the radius required
is given by:

max {
 fe

2 sin π
8(dr(wl)+1)

�, 
 fb

2 sin π
8(dr(wl)+1)

�}.

Typically, fb ≥ fe, so we can assume that the bend-point resolution deter-
mines the radius in case (b). Using this together with the fact that sin α > 0.97α
for α < π/8, the minimum radius required is

r < 
 fb

2 sin π
8(dr(wl)+1)

� < 

√

2fb(dr(wl) + 1)�

Summing over all vertices in the graph, the sum of the radii used for the
right port regions, R, yields:

R =
∑

vi∈V :dr(vi)=1


2
√

2fe� +
∑

vi∈V :dr(vi)>1



√

2fb(dr(vi) + 1)�. (1)

With R we bounded the number of shifts required because of “right” neigh-
bors. Similarly, we can define L, the shifts necessary due to “left” neighbors:

L =
∑

vi∈V :dl(vi)=1


2
√

2fe� +
∑

vi∈V :dl(vi)>1



√

2fb(dl(vi) + 1)�. (2)

L and R bound the number of shifts required due to left and right neighbor
visibility. Note, however, that if we shift by the minimum amount required by
the fe and fb parameters, the location of the next vertex vk+1 may not be at
integer coordinates. We can guarantee that vk+1 is placed on the integer grid
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Fig. 6. A graph with 11 vertices drawn using (a) the canonical ordering on the 10 × 19
grid; (b) the CRA algorithm on the 14 × 29 grid; (c) the PRA algorithm on the 23 × 45
grid.

Fig. 7. A graph with 17 vertices drawn using (a) the canonical ordering on the 16 × 31
grid; (b) the CRA algorithm on the 21 × 41 grid; (c) the PRA algorithm on the 43 × 85
grid.

by performing some additional shifts. By shifting at most 3 more units, we are
guaranteed to find an integer location for vk+1. Then the total shifting required
is at most L + R + 3n. Since the final drawing fits inside an isoceles right-angle
triangle, the total area required for the drawing is (L + R + 3n) × (L+R+3n

2 ).
In order to compare the PRA algorithm to the CRA algorithm, we evaluate

equations 2 and 1 using two sets of parameters, Table 1. In all three cases the
algorithms guarantee at most one bend per edge. The PRA algorithms place all
the vertices on grid points and each bend-point is determined by at most five
integer polar coordinates.

Table 1. Fixing specific values for the vertex resolution fv, bend-point resolution fb, and
edge separation fe allows us to compare the PRA and CRA algorithms.

Algorithm fv fb fe drawing area resolution

CRA 1 1
√
2/2 5n × 5n/2 1/2d(v)

PRA1 1 1
√
2/2 9n × 9n/2 π/4d(v)

PRA2 1 1/2 1/2 7n × 7n/2 π/4d(v)

5 Conclusion and Open Problems

In this paper we present two algorithms for drawing planar graphs with good
angular resolution while maintaining small drawing area. Other drawing criteria
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optimized by the algorithms include number of bends, vertex resolution, bend-
point resolution, and edge separation. The first algorithm, CRA, is a traditional
algorithm in which vertices and bend-points are represented using Cartesian
coordinates. It improves on the best known simultaneous bounds for the six
drawing criteria. In the PRA algorithm vertices and bend-points are represented
using polar coordinates. It is based on the CRA algorithm but allows for inde-
pendent control over the grid size and bend positions.

Using a polar coordinate representation yields slightly worse area bounds
compared to the CRA algorithm, see Fig 6 and Fig. 7. We believe, however,
that the PRA approach is more promising. The angular resolution of the PRA
algorithm is better and it provides greater control over the drawing process.

The PRA bounds presented in this paper can be further improved. Using two
integers to represent the radius (similar to the way the angles are currently rep-
resented) will most likely result in smaller drawing area. Our current estimates
indicate that certain (small) values of edge separation and bend-point resolution
yield grids of size 4n×2n. It is likely that when using only one bend per edge, the
best angular resolution will be achieved for vertex regions in which each of the
port and free regions have angles π/3 rather than a combination of π/4 and π/2.
The biggest challenge, however, to the success of the PRA algorithm deals with
the three potential shifts needed to align a new vertex onto an integer grid. If
we can reduce this bottleneck, we feel that the PRA algorithm can significantly
surpass the bounds of the CRA algorithm.
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