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Abstract. We propose a planarization algorithm for clustered graphs
and experimentally test its efficiency and effectiveness. Further, we inte-
grate our planarization strategy into a complete topology-shape-metrics
algorithm for drawing clustered graphs in the orthogonal drawing con-
vention.

1 Introduction

Several application domains require to draw graphs in such a way that vertices
are grouped together into clusters. For example, a large computer network is
often partitioned into areas, and it is usual to represent the systems (routers,
switches, etc.) belonging to the same area inside the same region (rectangle or
convex polygon) of the drawing. Further, areas are recursively partitioned into
sub-areas with a structure that can have many levels. Other examples come
from the Computer Aided Software Engineering field, where in the diagrams
representing the design process it is often required to highlight the “cohesion”
among certain components.

Such application requirements motivated the study of algorithms for drawing
graphs with recursive clustering structures over the vertices, such as compound
digraphs and clustered graphs. Fig. 1 shows an example of clustered graph. Some
of the papers on the subject are discussed below. In [23] Sugiyama and Misue pro-
posed an algorithm for drawing compound digraphs within a drawing convention
that is related to the one commonly adopted for hierarchical graphs [24]. Feng,
Cohen, and Eades [14] studied the concept of planarity for clustered graphs (c-
planarity) and provided the first c-planarity testing algorithm. The construction
of orthogonal drawings of c-planar clustered graphs, based on visibility repre-
sentations and bend-stretching transformations, is studied by Eades et al. [11].
Straight line and orthogonal drawing algorithms, three dimensional visualization
techniques, and force directed methods are presented in [13,10,20,3], in [9], and
in [17], respectively. The related problem of constructing balanced clusters on
a given planar graph is studied by Duncan et al. [8]; the constructed clustered
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graph satisfies the conditions for c-planarity. However, as far as we know, a com-
plete algorithm, based on the topology-shape-metrics approach [5], for drawing
clustered graphs in the orthogonal drawing convention is currently not available.

Fig. 1. A clustered graph: clusters are dashed.

The main results presented in this paper are the following:

– We propose a planarization algorithm for a clustered graph C with n vertices,
m edges, and c clusters. It runs in O(mχ + m2c + mnc) time, where χ is
the number of crossings inserted in C by the algorithm. This is, as far as we
know, the first complete planarization algorithm for clustered graphs.

– As a by-product of the planarization algorithm, we present an algorithm for
constructing a “spanning tree” of C in O(m) time. A definition of the term
spanning tree for a clustered graph is given in Section 3.

– We present an implementation of the planarization algorithm with efficient
data structures and show an experimental study that compares the effective-
ness and the efficiency of the algorithm with those of simpler planarization
techniques. The computational results put in evidence performance that are
reasonable in many application domains.

– We describe the implementation of a complete drawing algorithm for clus-
tered graphs, based on the topology-shape-metrics approach.

The rest of this paper is organized as follows. In Section 2 we introduce the
basic terminology on clustered graphs. The planarization algorithm is presented
in Sections 3 and 4. A simple planarization algorithm, whose behaviour is used as
a reference point in our experiments, is described in Section 5. An experimental
analysis of the effectiveness and of the efficiency of our planarization algorithm
is presented in Section 6. The implementation of a complete drawing algorithm
for clustered graphs is sketched in Section 7. Open problems are addressed in
Section 8.

2 Preliminaries on Clustered Graphs and c-Planarity

We assume familiarity with connectivity and planarity of graphs [12,21,5]. Since
we consider only planar graphs, we use the term embedding instead of planar
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embedding. Also, we assume that an embedding determines a choice for the
external face.

We import several definitions from the papers on c-planarity by Cohen,
Eades, and Feng [14,13]. Given a graph, we call cluster a subset of its vertices.
A cluster that is included into another cluster s is a sub-cluster of s. A clustered
graph C = (G,T ) consists of an (undirected) graph G = (V,E) and a rooted
tree T such that the leaves of T are the vertices of G and each non-leaf node of
T has at least two children. Each node ν of T corresponds to the cluster V (ν)
of G whose vertices are the leaves of the subtree rooted at ν. The subgraph of
G induced by V (ν) is denoted as G(ν). An edge e between a vertex of V (ν) and
a vertex of V − V (ν) is said to be incident on ν. Clearly, the root of T does
not have incident edges. In the paper we denote by n, m, and c the number of
vertices of G, edges of G, and non-leaf nodes of T , respectively. Note that, since
each non-leaf node of T has at least two children, we have c < n.

Graph G and tree T are called the underlying graph and the inclusion tree
of C, respectively. Observe that, given two nodes µ and ν of T such that µ is an
ancestor of ν, V (ν) is a sub-cluster of V (µ).

Clustered graph C is connected if for each node ν of T we have that G(ν) is
connected. In a connected clustered graph m ≥ n − 1.

Suppose that C1 = (G1, T1) and C2 = (G2, T2) are two clustered graphs such
that T1 is a subtree of T2 and for each node ν of T1, G1(ν) is a subgraph of
G2(ν); then C1 is a sub-clustered-graph of C2.

In a drawing of a clustered graph C = (G,T ) each vertex of G is a point and
each edge is a simple curve between its end-vertices. For each node ν of T , G(ν)
is drawn inside a simple closed region R(ν) such that: (i) for each node µ of T
that is neither an ancestor nor a descendant of ν, R(µ) is completely contained
in the exterior of R(ν); (ii) an edge e incident on ν crosses the boundary of R(ν)
exactly once. We say that edge e and region R have an edge-region crossing if
both endpoints of e are outside R and e crosses the boundary of R more than
once; we assume that a drawing of a clustered graph does not have edge-region
crossings.

A drawing of a clustered graph is c-planar if it does not have edge crossings.
A clustered graph is c-planar if it has a c-planar drawing.

Theorem 1. [14] A connected clustered graph C = (G,T ) is c-planar if and
only if G is planar and there exists a planar drawing of G such that for each
node ν of T all the vertices and edges of G − G(ν) are in the external face of
G(ν).

Theorem 2. [14] Let C be a connected clustered graph whose underlying graph
has n vertices. There exists an O(nc) time algorithm for testing the c-planarity
of C.

Given a graph G = (V,E) that is (in general) not planar a planarization of
G is an embedded planar graph G′ = (V ′, E′) such that:

– V ′ = V ∪ D; the vertices of D represent crossings between edges, and are
called dummy vertices;
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– dummy vertices have degree equal to four;
– each edge (u, v) of E is associated with a path u, d1, . . . , dk, v (k ≥ 0) of G′

such that di ∈ D (i = 1, . . . , k); we call such a path an edge path of G′; and
– each dummy vertex is incident on two distinct edge paths and the edges

of the same path are not consecutive in the embedding around the dummy
vertex.

Given a clustered graph C = (G,T ) that is not c-planar, a planarization of
C is a c-planar clustered graph C ′ = (G′, T ′) such that:

– G′ is a planarization of G;
– T ′ is a tree obtained from T by adding one leaf for each dummy vertex of G′;
– let d be a dummy vertex of G′ and let u and v be the end-vertices of any

edge path containing d. Vertex d is a child of a node of T ′ (i.e. it belongs to
a cluster of C ′) that lies on the path of T ′ between u and v.

3 Computing a Maximal c-Planar Sub-clustered-Graph

We now describe a planarization algorithm for clustered graphs, which we call
ClusteredGraphPlanarizer. It follows the usual planarization strategy of the
topology-shape-metrics approach. First, a maximal c-planar sub-clustered-graph
of the given clustered graph is computed (Algorithm MaximalcPlanar). Second,
the edges removed in the first step are reinserted (Algorithm Reinsertion)
by suitably adding “dummy” vertices representing crossings. In this section we
concentrate on Algorithm MaximalcPlanar, while Algorithm Reinsertion will
be discussed in Section 4.

Although the problem of finding a maximal or a maximum planar subgraph
of a given graph has been deeply studied (see, e.g., [7,19,18]), the problem of
determining a maximal c-planar sub-clustered-graph of a clustered graph C =
(G,T ) has not been investigated yet.

A possibility for solving the problem could be the one of inserting, start-
ing from the empty graph, one-by-one the edges of G, repeating a c-planarity
testing for each edge insertion and discarding the edges that cause crossings.
This technique, although attractive for its simplicity, cannot be easily adopted.
In fact, the only existing c-planarity testing algorithm [14] works only for con-
nected clustered-graphs, while the intermediate clustered-graphs produced by
the technique might be non-connected.

We adopt a different strategy. Instead of starting from the empty graph, we
start from a connected c-planar sub-clustered-graph C ′ = (G′, T ) that contains
all the vertices of G. Such a sub-clustered-graph is computed so that its under-
lying graph contains a spanning tree of G. The computation of C ′ consists of
two steps:

1. We compute a sub-clustered-graph C ′′ of C so that its underlying graph is
a spanning tree of G. We call SpanningTree this step of the algorithm.
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2. We compute C ′ from C ′′ by inserting edges that do not violate the c-
planarity. We call SimpleReinsertion this step of the algorithm.

Intuitively, Algorithm SpanningTree constructs C ′′ by associating a span-
ning tree with each node of T (cluster of C) and by merging all such spanning
trees. More formally, for each edge (u, v) of G we define the allocation node of
(u, v) as lca(u, v) in T , where lca(u, v) denotes the lowest common ancestor of
u and v. Note that ν = lca(u, v) is the deepest node of T such that cluster V (ν)
contains both u and v. See Fig. 2 to have an example.
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Fig. 2. (a) A fragment of a clustered graph. (b) A fragment of the inclusion tree, with
vertices u and v and their lowest common ancestor (allocation node of (u, v)).

Let ν be a non-leaf node of T with children ν1, . . . , νk. Graph F (ν) is defined
as follows (see for example Fig. 3):

– The vertices of F (ν) are ν1, . . . , νk.
– For each edge (u, v) such that u ∈ V (νi) and v ∈ V (νj) (i �= j) there is an

edge (νi, νj) in F (ν). Edge (νi, νj) is the representative of (u, v) in F (ν).

Property 1. For each edge (u, v) of G there exists exactly one node ν of T such
that F (ν) contains a representative of (u, v); ν is the allocation node of (u, v).

Property 2. The total number of vertices of graphs F (ν) is n + c − 1, and the
total number of edges of graphs F (ν) is m.

We denote by S(ν) a spanning tree of F (ν). We construct a subgraph ST of
G by selecting in G only the edges (u, v) such that, if ν is the allocation node of
(u, v), then (u, v) has its representative in S(ν).

Property 3. Graph ST is a spanning tree of G.

We call ST (ν) the graph obtained from the intersection of ST and G(ν).

Property 4. Graph ST (ν) is a spanning tree of G(ν), for each ν in T .
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Fig. 3. A clustered graph and graphs F (ν), F (ν1), F (ν2), and F (ν3). The edges in
bold are those of the spanning trees.

Lemma 1. A connected clustered graph whose underlying graph is a tree is c-
planar.
Proof. Follows from Theorem 1 and from the fact that, for any drawing, all the
vertices of a tree stay on the same face.

Lemma 2. Clustered graph C ′′ = (ST, T ) is a c-planar connected sub-clustered-
graph of C.
Proof. From Property 4 it follows that each ST (ν) is connected. Hence C ′′ is
connected and its underlying graph is a tree. From Lemma 1 it follows that C ′′

is also c-planar.

Theorem 3. Let C = (G,T ) be a connected clustered graph and let m be the
number of edges of G. Algorithm SpanningTree computes a connected sub-
clustered-graph of C whose underlying graph is a spanning tree of G in O(m)
time.
Proof. For each node ν of T the construction of F (ν) is performed by visiting
the edges of G and by assigning each edge to a specific F (ν). This requires the
computation of the allocation node ν = lca(u, v) of each edge (u, v) and the
computation of the children of ν in the paths from ν to u and from ν to v. A
trivial implementation of this step would require O(mc) time, where c is the
number of non-leaf nodes of T . However, we can do it in O(m) time by using
a variation of the Schieber and Vishkin data structure [22]. The original data
structure allows us, after a linear time preprocessing, to perform lowest common
ancestor queries on a tree in constant time. Unfortunately, it does not give
primitives to determine the required children of the lowest common ancestor. It
is possible to suitably enrich the information associated with the “inlabel paths”
of the data structure to solve the problem.

The computation of the spanning trees can be done in linear time.
Algorithm SimpleReinsertion constructs C ′ by reinserting into C ′′ =

(ST, T ) some edges that do not cause crossings. This is done with the pur-
pose of reducing the number of times the c-planarity testing is executed. The
reinsertion strategy is based on the following lemma.
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Lemma 3. A connected clustered graph whose underlying graph has n vertices
and n edges is c-planar.

Observe that, while any connected graph with n vertices and n+ 2 edges is
planar, there exist connected clustered graphs with n vertices and n + 1 edges
that are not c-planar. See Fig. 4.
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Fig. 4. Inserting edge (2, 6) and (5, 3) generates a crossing.

The following lemma generalizes Lemma 3.

Lemma 4. Let C = (G,T ) be a connected clustered graph whose underly-
ing graph G is a tree. Let u1, . . . , uk, v1, . . . , vk be vertices of G such that
edges (u1, v1), (u2, v2), . . . , (uk, vk) are not in G. If for each pair (ui, vi), (uj , vj)
(i �= j), lca(ui, vj) �= lca(lca(ui, vi), lca(uj , vj)) �= lca(uj , vi), then C remains
c-planar after adding (u1, v1), (u2, v2), . . . , (uk, vk).

Because of Lemma 4, we can do the following. We visit T bottom-up. For
each ν of T we check (i) if no edge of G(ν)− ST (ν) has been already reinserted
and (ii) if G(ν) − ST (ν) is not empty. If both conditions hold, then we reinsert
an edge of G(ν) − ST (ν). We apply the same procedure to all the nodes of T .

Theorem 4. Let C be a connected clustered graph whose underlying graph has
m edges. Algorithm SimpleReinsertion computes a connected c-planar sub-
clustered-graph of C in O(m) time.

After the construction of C ′ we reinsert a maximal number of edges of C
by testing c-planarity for each edge insertion, using each time the c-planarity
testing algorithm in [14]. After the last reinsertion we also compute a c-planar
embedding [14].

The following theorem is proved by using Theorems 3, 4, and 2.

Theorem 5. Let C be a connected clustered graph whose underlying graph has n
vertices and m edges. Algorithm MaximalcPlanar computes a connected maximal
c-planar embedded sub-clustered-graph of C in O(mnc) time.
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4 Reinsertion of the Discarded Edges

We describe Algorithm Reinsertion. A technique similar to the one adopted
by algorithm Reinsertion is sketched in [20]. Once a maximal connected c-
planar embedded sub-clustered-graph Cmp = (Gmp, T ) of C = (G,T ) has been
computed (where Gmp denotes a planar subgraph of G), the remaining edges
are reinserted by using a variation of the “classical” technique [5] that is based
on computing shortest paths on the dual graph of Gmp.

In fact, in the case of clustered graphs it is not possible to apply exactly the
same technique that is adopted for graphs. Fig. 5 shows how reinserting an edge
(u, v) by following a path on the dual graph of Gmp can cause: (i) an edge-region
crossing (Fig. 5.a) and/or (ii) more than one crossing between a cluster and one
of its incident edges. (Fig. 5.a).

a) b)

Fig. 5. Examples of wrong insertions: (a) edge-region crossing and (b) more than one
crossing between a cluster and one of its incident edges.

In order to avoid the above problems, we compute the shortest paths on a
planar embedded graph constructed as follows. Observe that the embedding of
Cmp induces a planar embedding on Gmp.

– We “materialize” the boundary of each cluster. Namely, we augment Gmp as
follows: (i) for each pair e, ν such that e is an edge of Gmp incident on cluster
ν, we split e by inserting a boundary vertex ve,ν ; (ii) for each face we traverse
the border counterclockwise and construct a list of boundary vertices; (iii) for
each pair of boundary vertices ve1,ν , ve2,ν that belong to the same face f and
that are consecutive in the list of f , we insert a boundary edge (ve1,ν , ve2,ν).
See Fig. 6. Observe that each boundary edge corresponds to one specific
cluster and that the boundary edges corresponding to the same cluster are
arranged into simple cycles (boundary cycles). Boundary cycles and clusters
(except for the root of T ) are in one-to-one correspondence.

– We compute the planar embedded dual G′
mp of the planar graph described

in the previous step. Note that each face f of G′
mp is inside a certain set

of boundary cycles. Such cycles correspond to clusters that are on a rooted
path p of T . If the set is empty we associate f with the root of T ; otherwise,
we associate f with the lowest node of p.



68 G. Di Battista, W. Didimo, and A. Marcandalli

e1

e2

e1,νv
e ,ν2

v

ν

Fig. 6. Insertion of edges and vertices for representing the boundaries of the clusters.

At each edge reinsertion we perform the following algorithm. Let (u, v) be
the edge to be reinserted and let ν1, . . . , νk be the nodes of the path of T from u
to v (the path contains the allocation node of (u, v)). We orient or temporarily
remove each edge (f, g) of G′

mp as follows (See Fig. 7).

u
v

Fig. 7. Orientation and removal of edges of graph G′
mp. The edges of G′

mp are grey.

Two cases are possible:

1. f is associated with node νi and g is associated with node νj (i, j ∈
{1, . . . , k}): if i = j, then we give a bidirectional orientation to (f, g), else
(assume without loss of generality that i < j) we orient (f, g) from f to g.

2. either f or g is not associated with a node of ν1, . . . , νk: we temporarily
remove (f, g).

After orienting the graph and temporarily removing some of its edges, we
compute a directed shortest path between the set of faces incident on u and
the set of faces incident on v. Edge (u, v) is reinserted into Gmp by following
the computed shortest path. Dummy vertices representing edge crossings are
inserted. The dual graph G′

mp is modified accordingly. The temporarily removed
edges are restored and the orientation of the edges is removed.
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Theorem 6. Let Cmp = (Gmp, T ) be a maximal connected c-planar embedded
sub-clustered-graph of a clustered graph C = (G,T ). Let m be the number of
edges of G and let m′ be the number of edges of G − Gmp. Starting from Cmp,
Algorithm Reinsertion computes a planarization of C with χ dummy vertices
(crossings) in O(m′χ+m′mc) time.

Proof. Augmenting the embedding of Cmp inserting the border edges is done in
O(nc) time, where n is the number of vertices of G and c is the number of non-
leaf nodes of T . The same amount of time is required to compute the dual graph
G′

mp. At each edge reinsertion we spend O(χ+mc) time both for computing the
orientation of the dual graph and for computing, with a breadth-first-search, the
shortest path. We remark that each reinsertion can originate at most c crossings
between the inserted edge and the border edges of the clusters.

In the implementation of Algorithm Reinsertion we adopted a slightly dif-
ferent strategy. Although such a strategy does not reduce the time complexity
of the algorithm, it has shown positive effects on the execution time of the algo-
rithm.

A heavy step of the algorithm is the one that requires the orientation and the
removal of some edges of G′

mp at each edge reinsertion. To avoid that, we have
used a modified breadth-first-search that is performed directly on G′

mp. Suppose
that we are reinserting edge (u, v) and that we are visiting face f associated
with cluster ν. Also, suppose we are going to traverse edge (f, g). Face g can be
visited if and only if the cluster associated with g is either ν or the cluster that
immediately follows ν in the path p of T from u to v. Of course, this requires
the computation of p. This can be efficiently done by determining the allocation
node of (u, v) in constant time exploiting the same variation of the Schieber
and Vishkin data structure [22] mentioned in the proof of Theorem 3. A simpler
but less efficient alternative would be the one of determining p with a dove-tail
bottom-up visit of T starting from u and v.

The following theorem summarizes the time complexity of the whole pla-
narization algorithm.

Theorem 7. Let C = (G,T ) be a clustered-graph. Let n, m, and c be the num-
ber of vertices of G, edges of G, and non-leaf nodes of T , respectively. Algorithm
ClusteredGraphPlanarizer computes a planarization of C with χ dummy ver-
tices in O(mχ+m2c+mnc) time.

5 A Simple Planarization Algorithm

We now describe a planarization algorithm for a clustered graph C = (G,T )
simpler than the one described above. We use it as a reference point in experi-
menting the effectiveness of our algorithm. We call it SimplePlanarizer.

We visit T top-down. We start from the root ν of T and compute graph F (ν).
Then, we apply any planarization algorithm (see, e.g. [5]), in order to compute a
planarization of F (ν). Consider now a child ν1 of ν. We would like to compute a
planarization of F (ν1) and to “glue” it into F (ν). It turns out that the ordering
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of the edges incident on ν1 in the planarization of F (ν) induces a constraint in
the planarization of F (ν1). Namely, the vertices of F (ν1) that are incident on
edges of G that are also incident on cluster ν must satisfy two constraints:

– they must stay on the external face of F (ν1) and
– while visiting the external face of F (ν1) they must appear in the same clock-

wise order of the edges incident on ν1 in F (ν).

The above type of constraints on the topology can be imposed by using the
facilities of existing graph drawing libraries (see, e.g. [16]). The same strategy is
applied to all the descendants of ν, recursively.

We conclude this section by observing that Algorithm SimplePlanarizer
works also for the case of non connected clustered graphs.

6 Experimental Study

The algorithms presented in Sections 3, 4, and 5 have been implemented and
extensively tested. The implementation of all algorithms have been done by us-
ing the C++ language (Visual C++ compiler) and exploiting the basic graph
drawing facilities of the GDToolkit library [16]. Also, for implementing Algo-
rithm MaximalcPlanar, we used the implementation of the c-planarity testing
algorithm [14] in the AGD library [1] .

All the experiments have run on a personal computer equipped with an AMD
Athlon K7 (500 MHz) and 128 MB of RAM.

We have used two test suites. The first one (Suite 1 ) consists of more than
11, 000 graphs with number of vertices ranging from 10 to 100; it has been intro-
duced in [6] and since then has become a widely used test-suite in experimental
Graph Drawing. The average density of its graphs is about 1.3.

The second test suite (Suite 2 ) has been conceived to test the algorithms
against graphs with higher density. It has been generated with a graph genera-
tor that works as follows. For generating a graph the user specifies two values:
the number n of vertices and the desired density d. The graph is generated by
randomly inserting nd edges on the set of n vertices. The result is kept if it is
connected and does not contain multiple edges, otherwise it is discarded and the
generation process is repeated. With such a graph generator we have generated
10 groups of graphs. Each group has a fixed density and contains 50 graphs with
number of vertices in the range 10 − 100. Densities range from 1.2 to 3.

The graphs of Suites 1 and 2 are just graphs and do not have a cluster
structure. In order to perform our experiments, we have augmented them with
clusters with the following algorithm. Let G be a graph of a suite. We randomly
select a vertex v and compute a breadth-first-search spanning tree of G starting
from v. At this point we randomly select a vertex u and perform a breadth-first-
search on the spanning tree starting from u and visiting an edge with probability
0.7. The visited set of vertices of G is a cluster. The same algorithm is recursively
repeated on the spanning tree using as boundary of the visits the clusters already
computed. It is easy to see that the obtained clustered graphs are connected.
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They have an average number of clusters that is about 1/4 of the number of
vertices. The depth of the obtained inclusion trees is in the range 2 − 5. The
probability 0.7 of visiting an edge has been chosen after several experiments to
keep high the number of generated clusters.

Fig. 8.a shows the average number of edge crossings obtained by Algorithm
SimplePlanarizer and by Algorithm ClusteredGraphPlanarizer on the clus-
tered graphs of Suite 1. Algorithm ClusteredGraphPlanarizer outperforms Al-
gorithm SimplePlanarizer by about 40%. Another interesting reference point
for evaluating the effectiveness of Algorithm ClusteredGraphPlanarizer is to
compare its behavior against the one of a standard planarizer, used for planariz-
ing the same graphs, considered without clusters. Fig. 8.b shows a comparison
with the planarizer of GDToolkit. The results are quite encouraging and show
how clusters have a limited impact on the number of crossings.

0

20

40

60

80

100

120

10 20 30 40 50 60 70 80 90 100

(a)

0

10

20

30

40

50

60

70

80

10 20 30 40 50 60 70 80 90 100

(b)

Fig. 8. Suite 1. (a) Average number of edge crossings obtained by Algorithm
SimplePlanarizer and by Algorithm ClusteredGraphPlanarizer (curve below). (b)
Average number of edge crossings obtained by Algorithm ClusteredGraphPlanarizer
and by the GDToolkit planarizer (curve below).

Fig. 9 confirms the good behavior of ClusteredGraphPlanarizer also with
graphs of higher density. It has been obtained using the graphs with densities 2
and 3 of Suite 2. We omit the graphics obtained with other densities, since they
confirm what appears in Fig. 9.

Fig. 10 shows how Algorithm ClusteredGraphPlanarizer have time perfor-
mance that are reasonable for usual applications. Even for the largest graphs
of Suite 1 (Suite 2) the time is less than 4 seconds (9 seconds). Algorithm
SimplePlanarizer is much less efficient. However, the implementation of Al-
gorithm SimplePlanarizer did not exploit sophisticated data structures at the
level of Algorithm ClusteredGraphPlanarizer. We believe that a more careful
implementation could reduce the gap between the time performance of the two
algorithms.
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Fig. 9. Suite 2. Average number of edge crossings obtained by Algorithm
SimplePlanarizer and by Algorithm ClusteredGraphPlanarizer (curves below). (a)
Density 2. (b) Density 3.
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Fig. 10. (a) Suite 1. Average time (seconds) spent by Algorithm SimplePlanarizer
and by Algorithm ClusteredGraphPlanarizer (curve below). (b) Suite 2, density 3.
Average time (seconds) spent by by Algorithm SimplePlanarizer and by Algorithm
ClusteredGraphPlanarizer (curve below).

7 A Complete Drawing Algorithm for Clustered Graphs

We have embedded Algorithm ClusteredGraphPlanarizer into a complete
topology-shape-metrics algorithm for computing drawings of clustered graph
within the orthogonal podevsnef [15] drawing convention.

After the planarization has been performed, for computing the shape of the
drawing, representing clusters as boxes, we use the same technique adopted in [3,
20]. Namely, we use the variation described in [2] of the min-cost-flow based
algorithm in [15]. The boundary cycles representing the borders of the clusters
are constrained to have the shape of a rectangle. This can be easily done by
using constraints on the flow traversing the edges of those cycles.

We compute the metric of the drawing with the compaction algorithm de-
scribed in [4]. Fig. 11 shows a drawing computed by the algorithm.
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Fig. 11. A clustered graph with 40 vertices and 7 clusters.

8 Open Problems and Future Work

Several problems are still open in the field of clustered graphs. In particular, we
are interested in finding planarization algorithms that are more efficient (theo-
retically and experimentally) than the one described in this paper. Further, the
role of connectivity in the c-planarity of clustered graphs is still unclear. Namely,
it is unknown whether the c-planarity testing problem for non connected clus-
tered graphs is computationally hard or not. Studies on this matter could open
new perspectives for the planarization problem.
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