
Exchanging Graphs with GXL

Andreas Winter

Universität Koblenz-Landau, Institut für Softwaretechnik
D-56016 Koblenz, Postfach 201602

winter@uni-koblenz.de
http://www.gupro.de/winter

Abstract. GXL (Graph eXchange Language) is designed to be a stan-
dard data exchange format for graph-based tools. GXL is defined as an
XML sublanguage, which offers support for exchanging instance graphs
together with their appropriate schema information in a uniform format.
Formally, GXL is based on typed, attributed, directed, ordered graphs
which are extended by concepts to represent hypergraphs and hierar-
chical graphs. Using this general graph model, GXL offers a versatile
support for exchanging nearly all kinds of graphs.

1 Motivation and Background

A great variety of software tools relies on graphs as internal data representa-
tion. A standardized language for exchanging those graphs offers a first step in
improving interoperability between these tools. In software reengineering, for in-
stance, various graph-based tools are used. These include extractors (e. g. scan-
ner, parser), abstractors (e. g. query tools, structure recognition tools, slicing
tools etc.), and visualizer (e. g. graph and diagram visualizer, code browser). Cur-
rently, these tool components are used more or less independently. [29] gives an
overview on existing combinations of tools used in various reengineering projects.
Using a common graph interchange format, these tools can be composed to build
a genral and powerful reengineering workbench.

The development of GXL (Graph eXchange Language) originally started to
support data interoperability between reengineering tools. But since GXL was
developed as a general format for describing graph structures, it is applicable
in further areas of tool interoperability. Especially, GXL is used to support in-
teroperability between graph transformation systems [45] or graph visualization
systems. Now, the work on GXL aims at offering a general exchange format for
graph-based tools.

Exchanging graphs with GXL deals with both, instance graphs and their cor-
responding graph schemas. Firstly, GXL offers a versatile support for exchanging
all kinds of data based on typed, attributed, directed, ordered graphs including
hypergraphs and hierarchical graphs. Secondly, GXL offers means for exchang-
ing graph schemas representing the graph structure i. e. the definition of node
and edge classes, their attribute schemas and their incidence structure. Both, in-
stance graphs and graph schemas, are exchanged by XML documents (Extended
Markup Language) [47].

P. Mutzel, M. Jünger, and S. Leipert (Eds.): GD 2001, LNCS 2265, pp. 485–500, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

486 A. Winter

After a short survey of the genealogy of GXL in section 2, the major concepts
of GXL to exchange instance graphs are introduced in section 3. The language
definition of GXL is given by its XML document type definition (DTD) in sec-
tion 3.4. Section 4 describes the exchange of graph schemas. The current and
intended usage of GXL is summarized in section 5.

More information on GXL can be found in [29] and [27]. Up-to-date in-
formation including tutorials and further GXL documents are collected at
http://www.gupro.de/GXL.

2 Genealogy of GXL

GXL originated in a merger of GRAph eXchange format (GraX) [10], Tuple At-
tribute Language (TA) [26], and the graph format of the PROGRES graph rewrit-
ing system [41]. The graph model resulting from this merger was supplemented
by additional concepts to handle hierarchical graphs and hypergraphs. Further-
more, GXL includes ideas from common exchange formats used in reengineering,
including ATerms [46], Relation Partition Algebra (RPA) [36], and Rigi Standard
Format (RSF) [52]. Further features from XML-based exchange of graph trans-
formation systems, developed by groups in Barcelona, Berlin, Budapest, and
Kent [22] were included into GXL. The development of GXL was also influenced
by various formats used in graph drawing e. g. daVinci [13], GML/Graphlet [18],
GRL [33] XGMML [53], and GraphXML [25]. Thus, GXL covers most of the
important graph formats. It can be viewed as a generalization of these formats.
The genealogy of GXL is depicted in figure 2.

WoSEF 2000

APPLIGRAPH meeting
on exchange formats for
Graph Transformation

Graph Drawing
workshop on data
exchange formats
(GD 2000)

CASCON 2000
WCRE 2000

Dagstuhl 2001
"Interoperability of
Reengineering Tools"

GraX

GXL 0.4.2

PROGRESTA

RPA
RSF

ATerms

GXL 0.6.6

GXL 0.7 GraphXML

Barcelona
Berlin

Budapest
Kent

WCRE 1999
AlGra 2000
GROOM 2000

GXL 0.7.2

GXL 1.0

daVinci
GML

Graphlet
GML

XGMML

Fig. 1. Genealogy of GXL

http://www.gupro.de/GXL

Exchanging Graphs with GXL 487

The development of GXL was advanced during various conferences and work-
shops since 1998. First efforts on defining a general exchange format for reengi-
neering data were made at WCRE 1998 [49] and at CASCON 1998 [5]. Ap-
proaches for graph-based exchange formats were discussed during meetings at
WCRE 1999 [50], AlGra 2000 [1], and GROOM 2000 [20]. These discussions
resulted in the first version of GXL, which was presented at the ICSE 2000
workshop on standard exchange formats (WoSEF 2000) [43]. Subsequent ver-
sions were discussed and compared to similar approaches from related areas
at the APPLIGRAPH meeting for exchange formats for graph transformation
systems [22] and the Graph Drawing 2000 workshop on exchange formats [16].
Improvements of these versions were presented in CASCON 2000 tutorials [28]
and workshops [44] and during the WCRE 2000 exchange formats workshop [31].

GXL (version 1.0) was ratified as standard exchange format in software
reengineering at the Dagstuhl Seminar ”Interoperability of Reengineering Tools”
in January 2001 [7]. Current work deals with gathering experiences with GXL
version 1.0 and providing tool support for working with GXL.

3 Exchanging Graphs

Due to their mathematical foundation and algorithmic power, graphs are a com-
mon data structure in software engineering. Different graph models e. g. directed
graphs, undirected graphs, node attributed graphs, edge attributed graphs, node
typed graphs, edge typed graphs, ordered graphs, relational graphs, acyclic
graphs, trees, etc. or combinations of these graph models are utilized in many
software systems. To support interoperability of graph-based tools, the under-
lying graph model has to be as rich as possible to cover most of these graph
models.

Such a common graph model is given by typed, attributed, directed, ordered
graphs (TGraphs) [9], [10]. TGraphs are directed graphs, whose nodes and edges
may be attributed and typed. Each type can be assigned an individual attribute
schema specifying the possible attributes of nodes and edges. Furthermore,
TGraphs are ordered, i. e. the node set, the edge set, and the sets of edges
incident to a node have a total ordering. This ordering gives modeling power
to describe sequences of objects (e. g. parameter lists) and facilitates the imple-
mentation of deterministic graph algorithms. In applying TGraphs to the other
graph models, not all properties of TGraphs have to be used to their full extent.
These graph models can be viewed as specializations of TGraphs. Exchanging
typed, attributed, directed, ordered graphs or their specializations with GXL is
introduced in section 3.1

To offer support for hypergraphs and hierarchical graphs, TGraphs were ex-
tended by n-ary edges and by nodes and edges containing lower level graphs.
GXL language constructs for exchanging hypergraphs and hierarchical graphs
are sketched in section 3.2 and 3.3. The complete GXL language definition is
given in section 3.4 in terms of a XML document type definition.

488 A. Winter

3.1 Exchanging Typed, Attributed, Directed, Ordered Graphs

The object diagram (cf. [40]) in figure 2 shows a node and edge typed, node and
edge attributed, directed, ordered graph representing a program fragment on
ASG (abstract syntax graph) level. Function main calls function a = max(a, b)
in line 8 and function b = min(b, a) in line 19. The functions main, max and
min are represented by nodes of type Function. These nodes are attributed with
the function name. FunctionCall nodes represent the calls of functions max and
min. They are associated to the caller by isCaller edges and to the callee by
isCallee edges. isCaller edges are attributed with a line attribute showing the
line number which contains the call. Input parameters (represented by Variable
nodes that are attributed with the variable name) are associated by isInput
edges. The ordering of parameter lists is given by ordering the incidences of
isInput edges pointing to FunctionCall nodes. The first edge of type isInput
incident to function call v2 (modeling the call of max(a,b)) comes from node v6
representing variable a. The second edge of type isInput connects to the second
parameter b (node v7). The incidences of isInput edges associated with node v3
model the reversed parameter order. Output parameters are associated to their
function calls by isOutput edges.

v1 : Function

name = "main"

v4 : Function

name = "max"

v6 : Variable

name = "a"

v7 : Variable

name = "b"

v5 : Function

name = "min"

v2 : FunctionCall v3 : FunctionCall

e1 : isCaller

line = 8

e2 : isCaller

line = 19

e3 : isCallee e4 : isCallee
e6 : isInput

e7 : isInput

e5: isInput e8 : isInput

{1}{1} {2}{2}

e9 : isOutput e10 : isOutput

Fig. 2. typed, attributed, directed, ordered graph

Exchanging graphs like the one in figure 2 requires language constructs for
representing nodes, edges and their incidence relation. Furthermore, support
for describing type information, attribute values, and ordering information is
needed.

Figure 3 depicts the graph from figure 2 as GXL document. The complete
grammar for these documents is given in section 3.4. XML documents start with
specifying the XML version and the underlying document type definition, here
”gxl.dtd”. The body of a GXL document is enclosed in <gxl> tags. The GXL

Exchanging Graphs with GXL 489

Fig. 3. GXL representation of graph from figure 2

document in figure 3 contains one graph, enclosed in <graph> tags, with an
unique identifier ”simpleGraph”. The graph refers to its associated graph schema
(cf. section 4) stored in file schema.gxl. GXL supports both, graphs with edges
having a unique object identifier, and graphs with unnamed edges. The attribute
edgeids = ”true” indicates uniquely named edges.

Nodes and edges of a given graph are exchanged by <node> and <edge>

elements which can be addressed by their identifier attribute. Incidence infor-
mation of edges including edge orientation is stored in from and to attributes
within <edge> tags. Ordering of incidences is also modeled here. Attributes fro-
morder and toorder represent the position of an edge in the incidence list of its
start and target node. Node and edge types are represented by links pointing to
the appropriate schema information. This link is enclosed in <type> tags.

<node> and <edge> elements may additionally contain further attribute in-
formation. <attr> elements describe attribute name and value. Like OCL [48],
GXL provides <bool>, <int>, <float>, and <string> attributes. Furthermore,
enumeration values (<enum>) and URI-references (<locator>) pointing to ex-

490 A. Winter

ternally stored objects are supported. Attribute values might be sub structured.
Here, GXL offers composite attributes like sequences (<seq>), sets (<set>),
multi sets (<bag>), and tuples (<tup>).

3.2 Exchanging Hypergraphs

In addition to graphs, GXL provides the exchange of hypergraphs. Hypergraphs [3]
are graphs with n-ary edges (hyperedges) with arbitrary n. Hyperedges represent
n-ary relations. GXL provides the exchange of typed, attributed, directed and
undirected, ordered hypergraphs.

Figure 4 shows a hypergraph in UML notation, modeling the function call
a = max(a, b) by a 5-ary hyperedge of type FunctionCall2. The diamond, repre-
senting the hyperedge, is connected by undirected lines (tentacles) to its related
Function- and Variable-nodes. These tentacles are marked with roles, identify-
ing caller, callee, input, and output. Numbers describing the order of incidences
of tentacles according the hyperedge, indicate the ordering of parameters. Like
edge e1 in figure 2, the hyperedge is attributed with a line attribute.

The GXL representation of this hyperedge is given in figure 5. Hyperedges
are represented by <rel> elements (relation). Like <node> and <edge> elements,
<rel> elements can contain type (<type>) and attribute (<attr>) information.
Tentacles, which point to the related graph objects (target), are represented by
<relend> subelements (relation end). Roles of tentacles are stored in role at-
tributes. Incidences according to the hyperedge are exchanged by startorder at-
tributes. The ordering of tentacles according their target objects can be modeled
by endorder attributes. Directed or undirected hyperedges and tentacles are dis-
tinguished by attributes isdirected and direction (cf. the GXL DTD in section 3.4).

v1 : Function

name = "main"

v4 : Function

name = "max"

v6 : Variable

name = "a"

v7 : Variable

name = "b"

r1 : FunctionCall2

line = 8

callee

inputinput

{1} {2}

caller

output

Fig. 4. Hypergraph Fig. 5. GXL representation

Edges can be viewed as 2-ary hyperedges. Thus, in GXL, edge information
can be represented by binary hyperedges. Since graphs with (binary) edges are
widespread in software engineering and most applications deal with graphs in-
stead of hypergraphs, GXL offers both, the element <rel> for hyperedges, and,
as a shortcut for binary hyperedges, <edge> elements.

Exchanging Graphs with GXL 491

3.3 Exchanging Hierarchical Graphs

Graphs gather their popularity from their mathematical foundation and their
visual capabilities to express complex contexts. However, due to their size, large
graphs become bulky and difficult to understand. This complexity can be re-
duced by structuring graphs. Parts of graphs representing related objects can
be grouped together to form encapsulated, higher level structures. Hierarchical
graphs [4] support structuring graphs by grouping and encapsulation.

v4 : Function

name = "max"

v4.4 : ReturnStmt

e4.7 : isPredicate

{1} {2}

v4.5: ReturnStmt

v4.6 : Variable

name = "x"

v4.8 : Operator

name = ">"

v4.7 : Variable

name = "y"

v4.3 : OpExpr

v4.2 : IfStmt

v4.1 : Interface

e4.1 : isFormalInput e4.2 : isFormalInput

e4.9 : isOperande4.8 : isOperand

e4.10 : isOperator

{1} {2}
e4.11 :

isReturn
Value

e4.12 :
isReturn
Value

e4.6: isFalseStmte4.5 : isTrueStmt

e4.3: isFormalOutput e4.4: isFormalOutput

Fig. 6. Hierarchical Graph Fig. 7. GXL representation

Figure 6 depicts a hierarchical graph. Node v4 (cf. figure 2) contains a sub-
graph of type asg (abstract syntax graph) representing the implementation
of function max. The GXL representation in figure 7 shows this subgraph as
<graph> subelement of node v4. Subgraphs associated to edges or hyperedges
are exchanged analogously (cf. the GXL DTD in section 3.4).

This representation for hierarchical graphs works for those hierarchical graphs
with strong ownership for each graph object. This representation also permits
edges and hyperedges crossing the boundaries of graph hierarchies. Those edges
are contained in the least-common-ancestor-graph.

Since no general model for hierarchical graphs exists so far (cf. [4]), GXL pro-
vides further support for exchanging graph hierarchies. Alternatively, references
to subgraphs and their elements can be exchanged using <locator> attributes
pointing to their appropriate GXL representation. Further support might be
offered in a next GXL version by graph-valued attributes or by special edges,
representing hierarchy.

3.4 GXL Document Type Definition

The language features of GXL for exchanging typed, attributed, directed, or-
dered graphs, hypergraphs, and hierarchical graphs are summarized in a concep-

492 A. Winter

<!� extensions �>
<!ENTITY % gxl-extension "" >
<!ENTITY % graph-extension "" >
<!ENTITY % node-extension "" >
<!ENTITY % edge-extension "" >
<!ENTITY % rel-extension "" >
<!ENTITY % value-extension "" >
<!ENTITY % relend-extension "" >
<!ENTITY % gxl-attr-extension "" >
<!ENTITY % graph-attr-extension"" >
<!ENTITY % node-attr-extension"" >
<!ENTITY % edge-attr-extension"" >
<!ENTITY % rel-attr-extension "" >
<!ENTITY % relend-attr-extension"" >

<!� attribute values �>
<!ENTITY % val " locator | bool | int | �oat | string |

enum | seq | set | bag | tup
% value-extension;" >

<!� gxl �>
<!ELEMENT gxl (graph* %gxl-extension;) >
<!ATTLIST gxl

xmlns:xlink CDATA #FIXED
"www.w3.org/1999/xlink"

%gxl-attr-extension; >

<!� type �>
<!ELEMENT type EMPTY>
<!ATTLIST type

xlink:type (simple) #FIXED "simple"
xlink:href CDATA #REQUIRED >

<!� graph �>
<!ELEMENT graph (type? , attr* ,

(node | edge | rel)*
%graph-extension;) >

<!ATTLIST graph
id ID #REQUIRED
role NMTOKEN #IMPLIED
edgeids (true | false) "false"
hypergraph (true | false) "false"
edgemode (directed | undirected |

defaultdirected | defaultundirected)
"directed"

%graph-attr-extension; >

<!� node �>
<!ELEMENT node (type? , attr*, graph*

%node-extension;) >
<!ATTLIST node

id ID #REQUIRED
%node-attr-extension; >

<!� edge �>
<!ELEMENT edge (type?, attr*, graph*

%edge-extension;) >
<!ATTLIST edge

id ID #IMPLIED
from IDREF #REQUIRED
to IDREF #REQUIRED
fromorder CDATA #IMPLIED
toorder CDATA #IMPLIED
isdirected (true | false) #IMPLIED
%edge-attr-extension; >

<!� rel �>
<!ELEMENT rel (type? , attr*, graph*, relend*

%rel-extension;) >
<!ATTLIST rel

id ID #IMPLIED
isdirected (true | false) #IMPLIED
%rel-attr-extension; >

<!� relend �>
<!ELEMENT relend (attr* %relend-extension;) >
<!ATTLIST relend

target IDREF #REQUIRED
role NMTOKEN #IMPLIED
direction (in | out | none) #IMPLIED
startorder CDATA #IMPLIED
endorder CDATA #IMPLIED
%relend-attr-extension; >

<!� attr �>
<!ELEMENT attr (type?, attr*, (%val;)) >
<!ATTLIST attr

id IDREF #IMPLIED
name NMTOKEN #REQUIRED
kind NMTOKEN #IMPLIED >

<!� locator �>
<!ELEMENT locator EMPTY >
<!ATTLIST locator

xlink:type (simple) #FIXED "simple"
xlink:href CDATA #IMPLIED >

<!� attribute values �>
<!ELEMENT bool (#PCDATA) >
<!ELEMENT int (#PCDATA) >
<!ELEMENT �oat (#PCDATA) >
<!ELEMENT string (#PCDATA) >
<!ELEMENT enum (#PCDATA) >
<!ELEMENT seq (%val;)* >
<!ELEMENT set (%val;)* >
<!ELEMENT bag (%val;)* >
<!ELEMENT tup (%val;)* >

Fig. 8. GXL Document Type Definition

tual model defining the graph model supported by GXL. The GXL graph model
is completely described at http://www.gupro.de/GXL/ (graph model) with its
graph structure part and its attribute part.

Since GXL is a XML sublanguage, the GXL graph model had to be tran-
scribed into a XML document type definition (DTD) or an appropriate XML
schema definition. To keep GXL simple and less verbose, this translation was
done manually. The resulting DTD (cf. figure 8, a commented version is given
at http://www.gupro.de/GXL (DTD)) requires only 18 XML elements. In con-
trast, an appropriate DTD generated with IBMs XMI Toolkit [30] according
the XML Metadata Interchange (XMI) principles for developing DTDs [35, sec-
tion 3] requires 66 elements for the GXL core and and additional 63 elements
for XMI and Corba related aspects.

http://www.gupro.de/GXL/
http://www.gupro.de/GXL

Exchanging Graphs with GXL 493

4 Exchanging Graph Schemas

Graphs only offer a plain structured means for describing objects (nodes) and
their interrelationship (edges, hyperedges). Graphs have no meaning of their
own. The meaning of graphs corresponds to the context in which they are used
and exchanged. The application and interchange context determines

– which node, edge, and hyperedge classes are used,
– which relations exist between nodes, edges, and hyperedges of given classes,
– which attribute structures are associated to nodes, edges, and hyperedges,
– which graph hierarchies are supported, and
– which additional constraints (like ordering of incidences, degree-restrictions
etc.) have to be complied.

This schematic data can be described by conceptual modeling techniques. Class
diagrams offer a suited declarative language to define graph classes with respect
to a given application or interchange context [10].

4.1 Describing Graph Classes by Class Diagrams

In GXL graph classes are defined by UML class diagrams [40]. Figure 9 shows a
graph schema defining classes of graphs like the one given in figure 2. Node classes
(FunctionCall, Function, and Variable) are defined by classes. Edge classes (is-
Callee, isInput, and isOutput) are defined by associations. Attributed edge classes
(isCaller) are described by associated classes. Like classes, they contain the as-
sociated attribute structures. The orientation of edges is depicted by a filled
triangle (cf. [40, p. 155]. Since most of the available UML tools do not offer
this UML construct, directed arrows (depicting visibility in original UML) can
be used alternatively (cf. figure 13). Multiplicities denote degree restrictions.
Ordering of incidences is indicated by the keyword {ordered}.

Function

name : string

Variable

name : string

FunctionCall
isCallee

0 ..*

1

1

0 ..* 0 ..*
0 ..*

isCaller

line : int

{ordered}

isCaller

isInput

isOutput

1

0 ..*

Fig. 9. Graph - Schema

In a similar way, UML class diagrams offer language constructs to specify
classes of hypergraphs and hierarchical graphs. Figure 10 shows a class diagram
defining hypergraphs like the one in figure 4. Classes of hyperedges are defined
by n-ary associations depicted by a diamond. This diamond is connected by
links to the related node classes. These links can be annotated by multiplic-
ity information to demand cardinalities, and by names indicating the role of

494 A. Winter

Function

name : string

Variable

name : string

FunctionCall

line : int

callee

input

{ordered}

caller

1

1 1

0..n output

Fig. 10. Hypergraph-Schema

Function
name : string

is
Operand

Interface

isReturnValue
{ordered}

Stmt

Operator
name : string

Variable
name : string

Expression

 is
Predicate

is
Operator

isFormal
Input

isFormalOutput

0 .. n

0 .. n0 .. 1 isTrueStmt

isFalseStmt0 .. 1

1

0 .. n
0 .. n 0 .. n

0 .. n

0 .. n

IfStmt

1

0 .. n

OpExpr

0 .. n

0 .. n

{ordered}

ReturnStmt

1

0 .. n

<< GraphClass >> asg

Fig. 11. Hierarchical Graph-Schema

participating classes. The keyword {ordered} demands ordering of tentacles in
appropriate instance graphs.

The definition of hierarchical graphs in UML requires an additional language
construct representing graph classes themselves. The stereotype <<GraphClass>>

distinguishes classes representing graph classes from classes defining node classes.
<<GraphClasses>> compose classes and associations to define the graph schema
on the next level of hierarchy. UML provides a nested notation to represent these
subschemas within the <<GraphClass>> classes. Strong ownership of subgraphs
to graph elements is expressed by composition (filled diamond). Figure 11 defines
a graph class for hierarchical graphs like the one, depicted in figure 6. Nodes of
Class Function contain graphs of graph class asg.

To offer up-to-date conceptual modeling power, the GXL schema notation
also provides generalization of node-, edge-, and hyperedge classes as well as
aggregation and composition by using the appropriate UML notation (cf. the
definition of <<GraphClass>> asg in figure 11.

4.2 Describing Graph Classes by Graphs

Since UML class diagrams are structured information themselves, they may be
represented as graphs as well. For exchanging graph schemas in GXL, UML class
diagrams are transfered into equivalent graph representations. Thus, instance
graphs and schemas are exchanged with the same type of document, i. e. XML
documents matching the GXL DTD (cf. section 3.4).

Figure 12 depicts the transformation of the class diagram in figure 9 into a
node and edge typed, node and edge attributed, directed graph. Node-, edge- and
hyperedge-classes, attributes and their domains are modeled by nodes of suit-
able node types. Their attributes describe further properties. Interrelationships

Exchanging Graphs with GXL 495

between surrogates of these classes are represented by edges of proper types.
Attribute information is associated with surrogates of node, edge, and hyper-
edge classes and associations by hasAttribute and hasDomain edges. from and
to edges model incidences of associations including their orientation. Multiplici-
ties of associations are stored in limits-attributes. The boolean attribute isOrdered
indicates ordered incidences.

GXL documents, representing instance graphs to a given graph schema, refer
to those nodes of the equivalent schema graph representing node classes (Node-
Class), edge classes (EdgeClass) and hyperedge classes (RelClass). The nodes
representing these class definitions in figure 12 which are referred by the graph
in figure 2 are shaded.

Class diagrams defining hypergraphs or hierarchical graphs can be trans-
formed into graphs analogously. Each class diagram defining a GXL graph
schema can be transformed into a graph (schema graph) matching a suited
schema, representing GXL schema graphs. Schema graphs are instances of the
GXL metaschema (cf. section 4.3). They are exchanged like all instance graphs
(cf. section 3) referring to a GXL schema graph. Since the schema graph, repre-
senting the GXL metaschema, is an instance of itself, it is exchanged by a self
referring GXL document.

name = "isCallee"
isAbstract = false
isDirected = true

name = "isInput"
isAbstract = false
isDirected = true

name = "isCaller"
isAbstract = false
isDirected = true

e1 : to
limits = (0,-1)

isOrdered = false

name = "Function"
isAbstract = false

name = "Variable"
isAbstract = false

v7: AttributeClass
name = "line"

v9 : Int

v8: AttributeClass
name = "name"

v10 : String

e5 : to
limits = (0,-1)

isOrdered = true

e3 : to
limits = (0,-1)

isOrdered = false

e2 : from
limits = (1,1)

isOrdered = false

e4 : from
limits = (1,1)

isOrdered = false

e7 : hasAttribute

e8 : hasDomain

e9 : hasAttribute e10 : hasAttribute
e11 : hasDomain

name = "isOutput"
isAbstract = false
isDirected = true

e11 : to
limits = (0,-1)

isOrdered = false

e6 : from
limits = (0,-1)

isOrdered = false

e12 : from
limits = (1,1)

isOrdered = false

FunctionCall :
NodeClass

name = "FunctionCall"
isAbstract = false

isCallee :
EdgeClass

isCaller :
EdgeClass

isInput :
EdgeClass

isOutput :
EdgeClass

Function :
NodeClass

Function :
NodeClass

Fig. 12. Graph - Schema (schema graph)

In contrast to the strategy proposed by XML Meta Data Interchange (XMI)
[35], GXL schemas are not exchanged by XML documents according to the Meta
Object Facility (MOF) [34]. XMI/MOF offers a general, but very verbose format
for exchanging UML class diagrams as XML streams. Next to its exaggerated
verbosity, which contradicts the requirement for exchange formats of as com-
pact as possible documents, the XMI/MOF approach requires different types of

496 A. Winter

documents for representing schema and instance graphs. Especially in applica-
tions dealing with schema information on instance level (e. g. in tools for editing
and analyzing schemas), this leads to the disadvantage of different documents
representing the same information, one on instance level (as XML document)
and one on schema level (as XML DTD). The GXL approach treats schema and
instance information in exactly the same way. Schema and instance graphs are
exchanged according the same DTD given in figure 8.

4.3 GXL Metaschema

The GXL metaschema defines the set of graphs representing correct GXL schema
graphs. The class diagram in figure 13 shows the graph part of the GXL meta-
schema. This graph class provides constructs to define classes of graph elements
i. e. nodes (NodeClass), edges(EdgeClass), and hyperedges (RelClass) including their
interrelationships. Their attributes distinguish abstract classes, classes of di-
rected or undirected edges or hyperedges or contain multiplicity constraints etc.

Fig. 13. GXL Metaschema (graph part)

To express associated attribute structures GraphElementClasses can be con-
nected to attribute structures (AttributedElementClass). The definition of attribute

Exchanging Graphs with GXL 497

structures supports the structured attributes used in GXL including the defini-
tion of default values (cf. the complete GXL metaschema, including its attribute
and value parts, at http://www.gupro.de/GXL/ (meta schema)). Generalization
is provided for all GraphElementClasses by isA edges. GraphElementClasses containing
lower level graphs are associated to the representation of the lower level Graph-
Class representation by contains edges. The GraphClass contains those node-, edge-,
and hyperedge classes representing its structure. Aggregation (AggregationClass)
and composition (CompositonClass) are modeled by specializations of EdgeClasses.

5 Using GXL

At the Dagstuhl seminar on ”Interoperability of Reengineering Tools” GXL ver-
sion 1.0 was ratified as the standard exchange format in software reengineering
[7]. Currently, various groups in software (re)engineering are implementing GXL
import and export facilities to their tools (e. g. Bauhaus [2], Columbus [11],
CPPX [6], Fujaba [14], GUPRO [23], PBS [37], RPA (Philips Research), PRO-
GRES [38], Rigi [39], Shrimp [42]). Others are going to implement tools to sup-
port working with GXL. For instance, a framework for GXL Converters [15] and
a XMI2GXL translator [54] are being developed at Univ. BW München. Further
activities deal with providing graph query machines (GReQL, Univ. Koblenz)
to GXL graphs or GXL-based graph databases (Univ. Aachen).

An important feature of GXL is its support for exchanging schema informa-
tion. Based on this capability, reference schemas for certain standard applications
in reengineering are currently under development. These activities address ref-
erence schemas for data reverse engineering (DRE, Univ. Namur, Paderborn,
Victoria), the Dagstuhl Middle Model [32] or abstract syntax graph models for
C++ [6], [12].

Furthermore, groups developing graph transformation tools (e. g. GenSet [17],
PROGRES [38]) or graph visualization tools (e. g. GVF [24], Shrimp [42], yFiles
[55]) already use GXL or pronounced to use GXL. At University of Toronto,
GXL is applied within an undergraduate software engineering course to create
a graph editor/layouter [8].

GXL also serves as foundation to define further graph oriented exchange for-
mats. Thus, GXL defines the graph part in the exchange format GTXL (Graph
Transformation eXchange Language) [21], [45]. Activities in the graph drawing
community also deal with the development of an exchange format for graphs
including layout information [16]. There is evidence of combining the structure
part of GXL with the graph layout part and the modularization part of GraphML
[19] to form a general and comprehensive graph exchange format.

6 Conclusion

The previous sections gave a short introduction in the GXL Graph eXchange
Language version 1.0 and its current application.

Summarizing, GXL offers an already widely used XML sublanguage for in-
terchanging typed, attributed, directed, ordered graphs including hypergraphs

http://www.gupro.de/GXL/

498 A. Winter

and hierarchical graphs together with their appropriate schemas. By focusing on
graph structure, GXL contributes the core for defining a family of special suited
graph exchange formats.

Acknowledgment. I would like to thank the GXL co-authors Richard C. Holt,
Andy Schürr, and Susan Elliott Sim for various fruitful discussions on the devel-
opment of GXL, Jürgen Ebert, Bernt Kullbach, and Volker Riediger for many
interesting discussions on TGraphs and GXL, and Kevin Hirschmann for im-
plementing the GUPRO related GXL tools. Thanks to all users of GXL, who
currently applying and testing GXL 1.0 in their tools. Their experience will be
an important aid to improve GXL.

References

1. Workshop on Algebraic and Graph-Theoretic Approaches in Software Reengineer-
ing, Koblenz, February 28, 2000.
http://www.uni-koblenz.de/˜winter/AlGra/algra.html (14.9.2001).

2. Bauhaus: Software Architecture, Software Reengineering, Program Understanding.
http://www.informatik.uni-stuttgart.de/ifi/ps/bauhaus/ (1.9.2001).

3. C. Berge. Graphs and Hypergraphs. North-Holland, Amsterdam, 2 edition, 1976.
4. G. Busatto. An Abstract Model of Hierarchical Graphs and Hierarchical Graph

Transformation (current draft).
http://www.informatik.uni-bremen.de/˜giorgio/papers/phd-thesis.ps.gz
(16.9.2001).

5. Data Exchange Group, Conclusions from Meeting at CASCON 1998,30. Nov 1998.
http://plg.uwaterloo.ca/˜holt/sw.eng/exch.format (14.9.2001).

6. CPPX: Open Source C++ Fact Extractor. http://swag.uwaterloo.ca/˜cppx/
(1.9.2001).

7. J. Ebert, K. Kontogiannis, J. Mylopoulos: Interoperability of Reengineering Tools.
http://www.dagstuhl.de/DATA/Reports/01041/ (18.4.2001), 2001.

8. S. Easterbrook. CSC444F: Software Engineering I (Fall term 2001), University of
Toronto. http://www.cs.toronto.edu/˜sme/CSC444F/ (15.9.2001), 2001.

9. J. Ebert and A. Franzke. A Declarative Approach to Graph Based Modeling.
In E. Mayr, G. Schmidt, and G. Tinhofer, editors. Graphtheoretic Concepts in
Computer Science, LNCS 903. Springer, Berlin, pages 38–50. 1995.

10. J. Ebert, B. Kullbach, and A. Winter. GraX – An Interchange Format for Reengi-
neering Tools. In [50], pages 89–98. 1999.

11. R. Ferenc, F. Magyar, Á. Beszédes, Á. Kiss, and M. Tarkiainen. Columbus - Tool
for Reverse Engineering Large Object Oriented Software Systems. In Proceedings
SPLST 2001, Szeged, Hungary
(http://www.inf.u-szeged.hu/∼ferenc/research/ferencr columbus.pdf,
(1.9.2001)), pages 16–27. June 2001.

12. R. Ferenc, S. Elliott Sim, R. C. Holt, R. Koschke, and T. Gyimòthy. Towards a
Standard Schema for C/C++. To appear in 8th Working Conference on Reverse
Engineering. IEEE Computer Soc., 2001.

13. M. Fröhlich and M. Werner. daVinci V2.0.x Online Documentation.
http://www.tzi.de/˜davinci/docs/ (18.4.2001), June 1996.

14. Fujaba: From UML to Java and back again.
http://www.uni-paderborn.de/cs/fujaba/ (1.9.2001).

http://www.uni-koblenz.de/~winter/AlGra/algra.html
http://www.informatik.uni-stuttgart.de/ifi/ps/bauhaus/
http://www.informatik.uni-bremen.de/~giorgio/papers/phd-thesis.ps.gz
http://plg.uwaterloo.ca/~holt/sw.eng/exch.format
http://swag.uwaterloo.ca/~cppx/
http://www.dagstuhl.de/DATA/Reports/01041/
http://www.cs.toronto.edu/~sme/CSC444F/
http://www.tzi.de/~davinci/docs/
http://www.uni-paderborn.de/cs/fujaba/

Exchanging Graphs with GXL 499

15. GCF - a GXL Converter Framework.
http://www2.informatik.unibw-muenchen.de/GXL/triebsees/ (1.9.2001).

16. Workshop on Data Exchange Formats, Graph Drawing 2000.
http://www.cs.virginia.edu/˜gd2000/gd-satellite.html (14.9.2001), 2001.

17. GenSet: Design Information Fusion.
http://www.cs.uoregon.edu/research/perpetual/dasada/Software/GenSet/
(1.9.2001).

18. The GML File Format.
http://www.infosun.fmi.uni-passau.de/Graphlet/GML/ (18.4.2001).

19. The GraphML File Format. http://www.graphdrawing.org/graphml/
(31.8.2001), 2001.

20. 7-ter Workshop des GI-Arbeitskreises GROOM, UML - Erweiterungen und
Konzepte der Metamodellierung, 4.-5. April 2000, Universität Koblenz-Landau.
http://www2.informatik.unibw-muenchen.de/GROOM/META/ (14.9.2001).

21. Graph Transformation System Exchange Language.
http://tfs.cs.tu-berlin.de/projekte/gxl-gtxl.html (18.08.2001).

22. First APPLIGRAPH meeting on GXL (graph exchange language) and GTXL
(graph transformation exchange language) Paderborn (September 5-6, 2000).
http://tfs.cs.tu-berlin.de/projekte/gxl-gtxl/paderborn.html (11.9.2001).

23. GUPRO: Generic Understanding of Programs. http://www.gupro.de/ (1.9.2001).
24. GVF - Graph Visualization Framework. http://www.cwi.nl/InfoVisu (1.9.2001).
25. I. Herman and M. S. Marshall. Graph XML – An XML based graph interchange

format. Report INS-0009, CWI, Amsterdam, April 2000.
26. R. C. Holt. An Introduction to TA: The Tuple-Attribute Language.

http://plg.uwaterloo.ca/˜holt/papers/ta.html (18.4.2001), 1997.
27. R. C. Holt and A. Winter. A Short Introduction to the GXL Software Exchange

Format. In [51], pages 299–301. 2000.
28. R. C. Holt and A. Winter. Software Data Interchange with GXL: Introduction

and Tutorial, CASCON 2000.
http://www.cas.ibm.com/archives/2000/workshops/descriptions.shtml\#16
(15.9.2001), November 13-16, 2000.

29. R. C. Holt, A. Winter, and A. Schürr. GXL: Toward a Standard Exchange Format.
In [51], pages 162–171. 2000.

30. XMI Toolkit 1.15. http://alphaworks.ibm.com/tech/xmitoolkit (1.9.2001).
31. K. Kontogiannis. Exchange Formats Workshop. In [51], pages 277–301. 2000.
32. T. Lethbridge, E. Plödereder, S. Tichelar, C. Riva, and P. Linos. The Dagstuhl

Middle Level Model (DMM). internal note, 2001.
33. F. Newbery Paulish. The Design of an Extendible Graph Editor, LNCS 704.

Springer, Berlin, 1991.
34. Meta Object Facility (MOF) Specification.

http://www.omg.org/technology/documents/formal/mof.htm (2.9.2001), March
2000.

35. XML Meta Data Interchange (XMI) Specification.
http://www.omg.org/technology/documents/formal/xmi.htm (1.9.2001), No-
vember 2000.

36. R. Ommering, L. van Feijs, and R. Krikhaar. A relational approach to support
software architecture analysis. Software Practice and Experience, 28(4), pages 371–
400, April 1998.

37. PBS: The Portable Bookshelf. http://swag.uwaterloo.ca/pbs/ (1.9.2001).

http://www2.informatik.unibw-muenchen.de/GXL/triebsees/
http://www.cs.virginia.edu/~gd2000/gd-satellite.html
http://www.cs.uoregon.edu/research/perpetual/dasada/Software/GenSet/
http://www.infosun.fmi.uni-passau.de/Graphlet/GML/
http://www.graphdrawing.org/graphml/
http://www2.informatik.unibw-muenchen.de/GROOM/META/
http://tfs.cs.tu-berlin.de/projekte/gxl-gtxl.html
http://tfs.cs.tu-berlin.de/projekte/gxl-gtxl/paderborn.html
http://www.gupro.de/
http://www.cwi.nl/InfoVisu
http://plg.uwaterloo.ca/~holt/papers/ta.html
http://www.cas.ibm.com/archives/2000/workshops/descriptions.shtml#16
http://alphaworks.ibm.com/tech/xmitoolkit
http://www.omg.org/technology/documents/formal/mof.htm
http://www.omg.org/technology/documents/formal/xmi.htm
http://swag.uwaterloo.ca/pbs/

500 A. Winter

38. A Graph Grammar Programming Environment - PROGRES.
http://www-i3.informatik.rwth-aachen.de/research/projects/progres/
(1.9.2001).

39. RIGI: a visual tool for understanding legacy systems.
http://www.rigi.csc.uvic.ca/ (1.9.2001).

40. J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language Refer-
ence Manual. Addison Wesley, Reading, 1999.

41. A. Schürr, A. J. Winter, and A. Zündorf. PROGRES: Language and Environment.
In H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg, editors. Handbook on
Graph Grammars, volume 2. World Scientific, Singapore, pages 487–550. 1999.

42. ShriMP Views: simple Hierarchical Multi-Perspective.
http://www.shrimpviews.com/ (1.9.2001).

43. S. Elliot Sim, R. C. Holt, and R. Koschke. Proceedings ICSE 2000 Workshop on
Standard Exchange Format (WoSEF). Technical report, Limerick, 2000.

44. S. Elliott Sim. Software Data Interchange with GXL: Implementation Issues,
CASCON 2000.
http://www.cas.ibm.com/archives/2000/workshops/descriptions.shtml\#17
(14.9.2001), November 13-16, 2000.

45. G. Taenzer. Towards Common Exchange Formats for Graphs and Graph Transfor-
mation Systems. In Proceedings UNIGRA satellite workshop of ETAPS’01. 2001.

46. M. van den Brand, H. A. de Jong, P. Klint, and P. A. Olivier. Efficient annotated
Terms. Software: Practice and Experience, 30(3), pages 259–291, March 2000.

47. Extensible Markup Language (XML) 1.0. W3c recommendation, W3C XMLWork-
ing Group, http://www.w3.org/XML/ (17.4.2001), February 1998.

48. J. B. Warmer and A. G. Kleppe. The Object Constraint Language : Precise Mod-
eling With UML. Addison-Wesley, 1998.

49. 5th Working Conference on Reverse Engineering. IEEE Computer Soc., 1998.
50. 6th Working Conference on Reverse Engineering. IEEE Computer Soc., 1999.
51. 7th Working Conference on Reverse Engineering. IEEE Computer Soc., 2000.
52. K. Wong. RIGI User’s Manual, Version 5.4.4.

http://www.rigi.csc.uvic.ca/rigi/rigiframe1.shtml?Download (18.4.2001),
30. June 1998.

53. Extensible Graph Markup and Modeling Language).
http://www.cs.rpi.edu/˜puninj/XGMML/ (19.8.2001), 2001.

54. XIG - An XSLT-based XMI2GXL-Translator.
http://ist.unibw-muenchen.de/GXL/volk/ (1.9.2001).

55. yFiles - Interactive Visualization of Graph Strucutres.
http://www-pr.informatik.uni-tuebingen.de/yfiles/ (1.9.2001).

http://www-i3.informatik.rwth-aachen.de/research/projects/progres/
http://www.rigi.csc.uvic.ca/
http://www.shrimpviews.com/
http://www.cas.ibm.com/archives/2000/workshops/descriptions.shtml#17
http://www.w3.org/XML/
http://www.rigi.csc.uvic.ca/rigi/rigiframe1.shtml?Download
http://www.cs.rpi.edu/~puninj/XGMML/
http://ist.unibw-muenchen.de/GXL/volk/
http://www-pr.informatik.uni-tuebingen.de/yfiles/

	Exchanging Graphs with GXL
	Motivation and Background
	Genealogy of GXL
	Exchanging Graphs
	Exchanging Typed, Attributed, Directed, Ordered Graphs
	Exchanging Hypergraphs
	Exchanging Hierarchical Graphs
	GXL Document Type Definition

	Exchanging Graph Schemas
	Describing Graph Classes by Class Diagrams
	Describing Graph Classes by Graphs
	GXL Metaschema

	Using GXL
	Conclusion
	Acknowledgment
	References

