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Abstract. This paper presents an efficient algorithm that finds an in-
duced planar subgraph of at least 3n/(d + 1) vertices in a graph of n
vertices and maximum degree d. This bound is sharp for d = 3, in the
sense that if € > 3/4 then there are graphs of maximum degree 3 with
no induced planar subgraph of at least en vertices. Our performance ra-
tios appear to be the best known for small d. For example, when d = 3,
our performance ratio of at least 3/4 compares with the ratio 1/2 ob-
tained by Halldérsson and Lau. Our algorithm builds up an induced
planar subgraph by iteratively adding a new vertex to it, or swapping
a vertex in it with one outside it, in such a way that the procedure is
guaranteed to stop, and so as to preserve certain properties that allow
its performance to be analysed. This work is related to the authors’ work
on fragmentability of graphs.

1 Introduction

Finding a large planar subgraph of a graph is an important problem in graph
drawing [5]. In this paper, an induced planar subgraphs is sought, and its size is
taken to be the number of its vertices.

Formally, the problem we would like to solve is the following.
MAXIMUM INDUCED PLANAR SUBGRAPH (MIPS)
Input: Graph G, on n vertices.
Output: A largest set of vertices P C V(@) such that the induced subgraph
(P) is planar.

Of course, one can also look at the complementary, and computationally
equivalent, problem of finding the smallest set R of vertices whose removal leaves
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behind a planar graph (i.e., so that (V(G) \ R) is planar), and we sometimes
find this point of view convenient.

Unfortunately, MIPS is NP-hard [I8l[19], and is also hard to approximate
[22]. Halldérsson [I1] gives an approximation algorithm that finds an induced
planar subgraph of size 2(n~!(logn/loglogn)?) times the optimum. For graphs
of maximum degree d, Halldérsson and Lau [12] give a linear time algorithm
with a performance ratio of 1/[(d + 1)/3].

In this paper, we present a polynomial time algorithm that finds an induced
planar subgraph of at least 3n/(d + 1) vertices in a graph of maximum degree
d. This bound is sharp for d = 3, and some upper bounds are given for d > 3.
We also ask: for each d, what is the largest a(d) such that an induced planar
subgraph of a(d) - n vertices can be found in every graph of maximum degree d?
Note that this ratio compares the size of the induced planar subgraph found with
that of the whole graph, and so is not a performance ratio, though it certainly
implies a performance ratio of at least 3/(d + 1). In a sense, our result removes
the ceiling from the performance ratio of Halldérsson and Lau given above,
which for graphs of low d with d £ 2 (mod 3) is a significant improvement. For
example, when d = 3, our algorithm has performance ratio at least 3/4, whereas
that of [12] is 1/2. Also, the induced planar subgraphs found by Halldérsson and
Lau’s algorithm have maximum degree at most 2, whereas those found by our
algorithm are not so restricted in structure.

The algorithm we present is virtually implicit in our proof of [8, Theorem
3.2], though that proof is, on the face of it, non-algorithmic. Our purpose here
is to state the algorithm clearly and explicitly to the graph drawing community,
and to discuss its properties and some of the questions it raises.

The fact that the algorithm performs well for graphs of bounded degree
suggests that it may be useful in practical applications, where graphs are often
sparse (although that is not quite the same thing, of course).

We recognise that MIPS has attracted much less attention than the Maximum
Planar Subgraph (MPS) problem, in which a planar subgraph in the usual sense
(i.e., not necessarily induced) is sought, and its size is taken to be the number
of its edges (and its vertex set may as well be the vertex set of the input graph);
see, e.g., [IBJT6I720123]. MPS is known to be NP-hard [2]], even for graphs of
maximum degree 3 [9]. A number of exact or approximate algorithms have been
developed and studied [2BHITITOI5T6123], and the best known performance
ratio is 4/9, due to Calinescu et al. [3]. The literature on MIPS is much smaller.
(Liebers [20] reviews MIPS in two pages, while devoting ten to MPS.) Apart from
the complexity references cited above, we note work on finding large induced
planar subgraphs of graphs of a given genus [6/T3//14].

Throughout the paper, n is the number of vertices in the graph(s) under
discussion, m is the number of edges, and d is the maximum degree. If X C V(QG)
then k(X) denotes the number of components of (X). If XY C V(G), then
E(X,Y) denotes the set of edges with one endpoint in X and the other in Y.
If v € V(G) and X C V(G), then Nx(v) denotes the set of those vertices in X
that are adjacent to v.
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2 The Algorithm

By way of introduction, consider the following easy algorithm:

Algorithm 1. An obvious iterative algorithm
1. Input: Graph G.
2. P:=90
R:=V(G)
3. while ( there exists 9 € R such that
(PU{xo}) is planar )

P:=PU {330}
R:= R\ {zo}
}

This algorithm just keeps on adding vertices to P for as long as it is possible
to do so, while preserving planarity of (P). It is discussed briefly by Liebers
[20], who notes that it has complexity O(nm), where m = |E(G)|. Observe that,
when it stops, each vertex in R must be adjacent to at least two vertices in P
(else such a vertex could be added to P by the algorithm). A simple counting
argument then shows that the induced planar subgraph so found has at least
2n/(d+2) vertices. (Consider |E(P, R)|. Count (or rather, bound) it in two ways.)
Note that the same lower bound is achieved by an algorithm which replaces the
condition in Step 3 of Algorithm 1 by the simpler test

(' there exists g € R such that
degp(zo) <1 )

The modified algorithm may often do worse than Algorithm 1, and the vertex
set P found may not even be maximal (subject to planarity of (P)). Nonetheless,
the set P found still has at least 2n/(d + 2) vertices. It will also be easier to
implement, and faster.

The algorithm we now present improves on this basic iterative approach
by examining more carefully whether the vertex under consideration, xg, can
usefully be added to P. Sometimes it is advantageous to swap xy with some
vertex already in P. Care is needed to ensure that an algorithm that does this
will eventually stop.

The algorithm is based on the proof of [8, Theorem 3.2].

The algorithm maintains four sets of vertices of the input graph G: P, the
set of vertices of the induced planar subgraph constructed so far; R = V(G) \ P;
F, the set of vertices that belong to those components of (P) that are trees (i.e.,
the forest part of (P)); and N = P\ F' (non-trees).

Algorithm 2. Finding an induced planar subgraph of at least 3n/(d + 1) vertices.

1. Input: Graph G.
2.
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3. while ( there exists o € R such that
Nn(z0) <1 or (Ny(zo) =2 and Nr(zo) <1) )

{

3.1.if (Nn(zo) <1)
P:=PU {1’0}
R:= R\ {xo}
update N, F.

3.2. else if (the two vertices y, z in Ny (xo) are in different

components of N)

P:=PU {:Uo}
R:= R\ {xo}
update N, F.

3.3. else if (there is a unique y—z path in (N))
P:=PU {l’o}
R:= R\ {xo}
update N, F.

3.4. else
Let No be the vertex set of the component of N containing y
and z.
Find a y—z path IT in (Np).

Let it be y = 21, z2, ..., T+ = 2.
x; := first vertex on IT (when going from y towards z) such that:
there is a path IT" in (No) from x; to some later z;, j > 1,
with IT’ disjoint from IT except at its endpoints.
Pi=(P\{z:}) U{zo}
R:=(R\{zo}) U{z:}
update N, F'.
}

4.  Output: P.

Theorem 1 Algorithm 2 finds an induced planar subgraph of at least 3n/(d+1)
vertices.

Proof. See [8] Theorem 3.2]. []

In outline, the proof proceeds as follows. In Algorithm 2, it is easy to see that
conditions 3.1, 3.2 and 3.3, if satisfied, allow the vertex xy to be added to P. A
little more effort shows that, whenever step 3.4 is performed, the graph resulting
from this step is planar. Theorem 2 below shows that the algorithm finds an
induced planar subgraph. When the algorithm stops, each v € R satisfies either
dn(v) 2 3ordy(v) =2 A dp(v) > 2. These together imply dp(v) > 3+dp(v)/2.
If d > 4, we count the edges of F(P, R) in two ways (once from P, once from R)
and derive (at some length) inequalities yielding the claimed bound. If d = 3,
count E(N, R) instead.
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3 Discussion

3.1 Complexity
Theorem 2 Algorithm 2 has time complexity O(nm).

Proof. At each step, Algorithm 2 either

(i) increases |P|, while keeping (P) planar, or

(ii) decreases |E(P)|, while keeping |P| unchanged and maintaining planarity
of (P), or

(iii) decreases k(P), while keeping |P| and |E(P)| unchanged and maintaining
planarity of (P).

It follows that the algorithm stops eventually. In fact, if s;), 8(s4), S(sss) denote
the number of steps of Algorithm 2 that do (i), (ii) and (iii) respectively in the
above list, and the total number of steps is s = s(;) + S(ii) + S(4i), then we can
find a linear bound on s as follows. It can be shown that any step of type (i)
increases |E(P)|+ k(P) by at most 2, and any step of type (ii) or (iii) decreases
|E(P)| + k(P) by exactly 1. Hence

283y — S(i) — S(iii) = | E(P)| + k(P).

Combining this with the obvious s;) = n gives s(;;) + 831y < 2n, so that s < 3n.
(In fact, using |E(P)| > |P| — k(P) here gives s < 3n — | P|. Using our bound on
|P| (Theorem [)), we obtain s < 3nd/(d+1).) The time taken by each step is no
worse than linear in m, so the time complexity is O(nm).

In the light of the superficial similarity of MIPS and MPS, it is interesting
to note that Algorithm 2 actually tries (in steps of type (ii)) to decrease the
number of edges in (P) in situations when it cannot increase |P|. Of course, this
is quite understandable, as graphs with fewer edges should generally be more
amenable to the addition of vertices.

3.2 Performance

It is natural to ask whether our lower bound of 3n/(d + 1) is the best possible,
or whether there is some constant € > 3/(d + 1) such that every graph on n
vertices with maximum degree d has an induced planar subgraph of at least en
vertices. Define a(d) by

a(d) = sup{e | every G such that A(G) <d
has an induced planar subgraph of > en vertices}.

We ask, then, for the value of a(d). Theorem [[]shows that
a(d) > 3/(d+1). (1)
On the other hand, the largest induced planar subgraph of K1 is Ky, so
ald) <4/(d+1). (2)
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Furthermore, the result [8 Theorem 3.3] implies that
a(d) < d/(2d —2).

This upper bound is better than ([2)) for d < 5, and together with () it gives us
the exact value

a(3) = 3/4. (3)

Biihler [T] has calculated the minimum size of all maximum induced planar
subgraphs of d-regular graphs on n vertices, for several values of n and d. This
is the quantity

mips(n,d) = min{mips(G) | G is d-regular and |V (G)| = n},

where mips(G) denotes the size of the maximum induced planar subgraph of G.
We give her results in the right column of the following table, with our lower
bound 3n/(d + 1) in the third column for comparison. Clearly our bound is not
tight, though whether the difference between it and mips(n, d) is just o(n), or is
O(n) and so a(d) > 3/(d+ 1), is not known to us.

[d]n][3n/(d+1)] | mips(n,d) by [1 |

310 8 8
12 9 10
14 11 11
16 12 13

4110 6 8
11 7 9
12 8 9
13 8 10

5 (12 6 8

3.3 One More Step

In some cases, it is possible to add one more vertex to P after Algorithm 2 stops.
This actually allows us to obtain a sharper bound on maximum induced planar
subgraph size.

Theorem 3 If G is a graph with d = 3, n = 0 or 1 (mod 4) and, after Al-
gorithm 2 stops, |P| = [3n/4], then any vertex v € R has the property that
(P U{v}) is planar.

Proof. Suppose d = 3. Observe first that the stopping condition of the algorithm
implies that R forms an independent set in GG, and that each of its vertices have
3 neighbours in P. Furthermore, if G is connected then (P) is too, else another
step of type (i), (ii) or (iii) would be possible and the algorithm would not have
stopped.
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Choose any v € R, and put P/ = PU {v} and R’ = R\ {v}. Observe that
|[E(R')| = 0, and if |P| = [3n/4] then |R'| = [n/4] — 1 so that |E(P',R)| =
3|R'| =3(|n/4] — 1). Hence we have

|[E(P")| = |E| - |E(P",R)| - |[E(R)|
<3[n/2] = 3([n/4] - 1)
< [3n/4] + 4,

provided n =0or 1 (mod 4) (for the sake of the final inequality). Now, if (P’)
were nonplanar, it would contain a subdivision of K3 3. Since it is connected,
we would have |E(P')| = |P'| + 3 > [3n/4] + 4, a contradiction. Hence (P’) is
planar. []
So, whend=3andn=0or 1 (mod 4), we can ensure that |P| > [3n/4] +
1: either Algorithm 2 gives such a P, or, if not, we can add any vertex into
P to achieve it. We can summarise the achievements of both Algorithm 2 and
Theorem [3 by saying that, in combination, they give an induced planar subgraph
of at least [(3n + 2)/4] vertices when d = 3: for all G on n vertices with d = 3,

mips(G) > [(3n + 2)/4]. (4)

It is intriguing to note that this refined lower bound equals Biihler’s calcu-
lation of mips(n,3) for all the values quoted for d = 3 above. We find (using
Biihler’s program) that they are also equal for the odd values n =9, 11,13, with
the caveat that mips(n,3) is taken to be a minimum over graphs of maximum
degree 3 since such G' cannot be 3-regular. This raises the question of whether
our refined lower bound is actually sharp, for d = 3, in the much stronger sense
of actually equalling mips(n, 3), and not just differing from it by o(n) (which is
what (3) tells us). This looks unlikely, however: a program of Biihler’s was used
to establish that mips(18,3) = 15, whereas our lower bound is 14.

3.4 Modifications for Maximality

As with the modified version of Algorithm 1, Algorithm 2 does not necessarily
find a maximal induced planar subgraph. (Indeed, Theorem Bl gives cases where
it never does.) It can easily be extended to do so, in various ways. The main
loop control in Step 3 can be replaced by

while ( [3z0 € R : (PU{xo}) is planar] or
[Fzo € R,z € P: (((P\{z})U{xo}) is planar) and
( [E(P\A{z}) U{zo})| < |E(P)] or

[(IE((P\ {z}) U {zo})| = |[E(P)|) and

(k((P\A{z}) U{zo}) <k(P))])])
The tests of Steps 3.1-3.3 could be combined and replaced by a single test of
whether or not (PU{z¢}) is planar. The resulting algorithm will find a maximal
induced planar subgraph, and should in practice produce larger induced planar
subgraphs than Algorithm 2. On the other hand, it will be slower, harder to
implement from scratch, and the techniques we have discussed here and in [g]
do not give a stronger result on its performance.
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