
Computational Probabilistic Non-interference

Michael Backes1 and Birgit Pfitzmann2

1 Saarland University, Saarbrücken, Germany
mbackes@cs.uni-sb.de

2 IBM Zurich Research Laboratory, Rüschlikon, Switzerland
bpf@zurich.ibm.com

Abstract. In recent times information flow and non-interference have
become very popular concepts for expressing both integrity and pri-
vacy properties. We present the first general definition of probabilis-
tic non-interference in reactive systems which includes a computational
case. This case is essential to cope with real cryptography since non-
interference properties can usually only be guaranteed if the underlying
cryptographic primitives have not been broken. This might happen, but
only with negligible probability. Furthermore, our definition links non-
interference with the common approach of simulatability that modern
cryptography often uses. We show that our definition is maintained un-
der simulatability, which allows secure composition of systems, and we
present a general strategy how cryptographic primitives can be included
in information flow proofs. As an example we present an abstract specifi-
cation and a possible implementation of a cryptographic firewall guarding
two honest users from their environment.

1 Introduction

Nowadays, information flow and non-interference are known as powerful possi-
bilities for expressing privacy and integrity requirements a program or a crypto-
graphic protocol should fulfill. The first models for information flow have been
considered for secure operating systems by Bell and LaPadula [3], and Den-
ning [5]. After that, various models have been proposed that rigorously de-
fine when information flow is considered to occur. The first one, named non-
interference, was introduced by Goguen and Meseguer [6, 7] in order to analyze
the security of computer systems, but their work was limited to determinis-
tic systems. Nevertheless, subsequent work was and still is based on their idea
of defining information flow. After that, research focused on non-deterministic
systems, mainly distinguishing between probabilistic and possibilistic behav-
iors. Beginning with Sutherland [19] the possibilistic case has been dealt with
in [15, 20, 16, 22, 14], while the probabilistic and information-theoretic cases have
been analyzed by Gray [9, 10] and McLean [17]. Clark et. al. have shown in [4]
that possibilistic information flow analysis can be used to check for probabilistic
interference.

Gray’s definition of “Probabilistic Non-Interference” of reactive systems
stands out. It is closely related to the perfect case of our definition, but it does

D. Gollmann et al. (Eds.): ESORICS 2002, LNCS 2502, pp. 1–23, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

2 Michael Backes and Birgit Pfitzmann

not cover computational aspects which are essential for reasoning about systems
using real cryptographic primitives. Thus, if we want to consider real cryptog-
raphy we cannot restrict ourselves to perfect non-interference as captured by
the definition of Gray (nor to any other definition mentioned before, because
they are non-probabilistic and hence not suited to cope with real cryptography)
because it will not be sufficient for most cryptographic purposes. As an exam-
ple, consider an arbitrary public key encryption scheme. Obviously, an adversary
with unlimited computing power can always break the scheme by computing all
possible encryptions of every plaintext and comparing the results with the given
ciphertext. Moreover, even polynomially bounded adversaries may have a very
small, so-called negligible probability of success. Thus, cryptographic definitions
usually state that every polynomially bounded adversary can only achieve its
goal with a negligible probability. Adopting this notion we present the first gen-
eral definition of non-interference for this so-called computational case. Besides
our work, the paper of Laud [12] contains the only definition of non-interference
including such a computational case. However, only encryption is covered so far,
i.e., other important concepts like authentication, pseudo-number generators,
etc. are not considered. Moreover, the definition is non-reactive, i.e., it does not
comprise continuous interaction between the user, the adversary, and the sys-
tem, which is a severe restriction to the set of considered cryptographic systems.
Our definition is reactive and comprises arbitrary cryptographic primitives.

In contrast to other definitions, we will not abstract from cryptographic de-
tails and probabilism, e.g., by using the common Dolev-Yao abstraction or spe-
cial type systems, but we immediately include the computational variant in our
definition. This enables sound reduction proofs with respect to the security def-
initions of the included cryptographic primitives (e.g., reduction proofs against
the security of an underlying public key encryption scheme), i.e., a possibility
to break the non-interference properties of the system can be used to break the
underlying cryptography. Moreover, we show that our definition behaves well
under the concept of simulatability that modern cryptography often uses, i.e.,
non-interference properties proved for an abstract specification automatically
carry over to the concrete implementation. This theorem is essential since it
enables modular proofs in large systems, i.e., proofs done for ideal systems not
containing any probabilism simply carry over to their corresponding real cryp-
tographic counterparts. Moreover, properties of these ideal systems could quite
easily be proved machine-aided, so our theorem additionally provides a link
between cryptography and formal proof tools for non-interference. Thus, non-
interference properties can be expressed for reactive systems containing arbitrary
cryptographic primitives, which is of great importance for extensible systems like
applets, kernel extensions, mobile agents, virtual private networks, etc.

Outline of the paper. In Section 2 we briefly review the underlying model of
asynchronous reactive system introduced in [18]. The original contributions are
presented in Sections 3, 4 and 5. In Section 3 we extend the underlying model
to multiple users and we refer to as multi-party configurations; built on this
definition we construct our definition of non-interference. In Section 4 we show

Computational Probabilistic Non-interference 3

that our definition behaves well under simulatability, hence refinement does not
change the non-interference properties. In Section 5 we present an abstract spec-
ification and a possible implementation of a cryptographic firewall guarding two
honest users from their environment, and we prove that they fulfill our definition
of non-interference.

2 General System Model for Reactive Systems

In this section we briefly recapitulate the model for probabilistic reactive sys-
tems as introduced in [18]. All details of the model which are not necessary for
understanding are omitted; they can be looked up in the original paper.

Systems mainly are compositions of different machines. Usually we consider
real systems consisting of a set M̂ of machines {M1, . . . , Mn} and ideal systems
built by one machine {TH}, called trusted host. The machine model is proba-
bilistic state-transition machines, similar to I/O automata as introduced in [13].
For complexity we consider every automata to be implemented as a probabilis-
tic Turing machine; complexity is measured in the length of its initial state,
i.e. the initial worktape content (often a security parameter k, given in unary
representation).

Communication between different machines is done via ports. Inspired by the
CSP-Notation [11], we write output and input ports as p! and p?, respectively.
The ports of a machine M will be denoted by ports(M). Connections are defined
implicitly by naming convention, i.e., port p! sends messages to p?. To achieve
asynchronous timing, a message is not directly sent to its recipient, but it is
first stored in a special machine p̃ called a buffer and waits to be scheduled. If
a machine wants to schedule the i-th message of buffer p̃ (this machine must
have the unique clock-out port p�!) it simply sends i at p�!. The i-th message
is then scheduled by the buffer and removed from its internal list. In our case,
most buffers are either scheduled by a specific master scheduler or the adversary,
i.e., one of those has the corresponding clock-out port.

A collection C of machines is a finite set of machines with pairwise different
machine names and disjoint sets of ports. The completion [C] of a collection C is
the union of all machines of C and the buffers needed for every channel.

A structure is a pair (M̂ ,S), where M̂ is a collection of machines and S ⊆
free([M̂]), the so called specified ports, are a subset of the free1 ports of [M̂].
Roughly speaking the ports of S guarantee special services to the users. We
will always describe specified ports by their complements S c, i.e., the ports
honest users should have. A structure can be completed to a configuration by
adding special machines H and A, modeling honest users and the adversary. The
machine H is restricted to the specified ports S , A connects to the remaining
free ports of the structure and both machines can interact. If we now consider
sets of structures we obtain a system Sys .

Scheduling of machines is done sequentially, so we have exactly one active
machine M at any time. If this machine has clock-out ports, it is allowed to select
1 A port is called free if its corresponding port is not in the system. These port will

be connected to the users and to the adversary.

4 Michael Backes and Birgit Pfitzmann

the next message to be scheduled as explained above. If that message exists, it
is delivered by the buffer and the unique receiving machine is the next active
machine. If M tries to schedule multiple messages, only one is taken, and if it
schedules none or the message does not exist, the special master scheduler is
scheduled.

Altogether we obtain a runnable system which we refer to as a configuration
and a probability space over all possible executions (also denoted as runs or
traces) of the system. If we restrict runs to certain sets M̂ of machines, we
obtain the view of M̂ . Moreover we can restrict a run r to a set S of ports which
is denoted by r�S .

For a configuration conf , we furthermore obtain random variables over this
probability space which are denoted by runconf ,k and view conf ,k, respectively.

3 Expressing Non-interference and Multi-party
Configurations

In this section we define non-interference for reactive systems as introduced
in Section 2. At first we look at the more general topic of information flow.
Information flow properties consist of two components: a flow policy and a defi-
nition of information flow. Flow policies are built by graphs with two different
classes of edges. The first class symbolizes that information may flow between
two users, the second class symbolizes that it may not. If we now want to de-
fine non-interference, we have to provide a semantics for the second class of
edges.2 Intuitively, we want to express that there is no information flow from
a user HH to a user HL iff the view of HL does not change for every possible
behaviour of HH , i.e., HL should not be able to distinguish arbitrary two fam-
ilies of views induced by two behaviours of HH . As we have seen in Section 2,
we did not regard different honest users as different machines so far, we just
combined them into one machine H. Obviously, this distinction is essential for
expressing non-interference, so we first have to define multi-party configurations
for the underlying model. Multi-party configurations are defined identically to
usual configurations except that we have a set U of users instead of a one-user
machine H.

3.1 Multi-party Configurations

Definition 1. (Multi-Party Configurations) A multi-party configuration conf mp

of a system Sys is a tuple (M̂ ,S ,U , A) where (M̂ ,S) ∈ Sys is a structure,
U is a set of machines called users without forbidden ports, i.e., ports(U) ∩
forb(M̂ ,S) = ∅ must hold and the completion Ĉ := [M̂ ∪ U ∪ {A}] is a closed
collection. The set of these configurations will be denoted by Confmp(Sys), those
with polynomial-time users and a polynomial-time adversary by Confmp

poly(Sys).
We will omit the indices mp and poly if they are clear from the context. ✸

2 We will not present a semantics for the first class of edges here, because we only
focus on absence of information flow in this paper.

Computational Probabilistic Non-interference 5

� �

Fig. 1. A typical flow policy graph consisting of high and low users only

It is important to note that runs and views are also defined for multi-party
configurations because we demanded the completion Ĉ to be closed.

3.2 Flow Policies
We start by defining the flow policy graph.

Definition 2. (General Flow Policy) A general flow policy is a pair G = (S, E)
with E ⊆ S × S × {❀, �❀}. Thus, we can speak of a graph G with two different
kind of edges: ❀, �❀⊆ S×S. Furthermore we demand (s1, s1) ∈❀ for all s1 ∈ S,
and every pair (s1, s2) of nodes should be linked by exactly one edge, so ❀ and
�❀ form a partition of S × S. ✸

Remark 1. The set S often consists of only two elements S = {L, H} which are
referred to as low- and high-level users. A typical flow policy would then be given
by L ❀ L, L ❀ H , H ❀ H , and finally H �❀ L, cf. Figure 1, so there should
not be any information flow from high- to low-level users.

This definition is quite general since it uses an arbitrary set S. If we want to
use it for our purpose, we have to refine it so that it can be applied to a system
Sys of our considered model. The intuition is to define a graph on the possible
participants of the protocol, i.e., users and the adversary. However, this definition
would depend on certain details of the users and the adversary, e.g., their port
names, so we specify users by their corresponding specified ports of Sys , and the
adversary by the remaining free ports of the system to achieve independency.
After that, our flow policy only depends on the ports of Sys .

Definition 3. (Flow Policy) Let a structure (M̂ ,S) be given, and let Γ(M̂ ,S) =
{Si | i ∈ I} denote a partition of S for a finite index set I, so ∆(M̂ ,S) :=

Γ(M̂ ,S) ∪ {S̄} is a partition of free([M̂]). A flow policy G(M̂ ,S) of the structure

(M̂ ,S) is now defined as a general flow policy G(M̂ ,S) = (∆(M̂ ,S), E(M̂ ,S)).

The set of all flow policies for a structure (M̂ ,S) and a partition ∆(M̂ ,S) of

free([M̂]) will be denoted by POLM̂ ,S ,∆(M̂ ,S)
. Finally, a flow policy for a system

Sys is a mapping

φSys : Sys → POLM̂ ,S ,∆(M̂ ,S)

(M̂ ,S) �→ G(M̂ ,S)

that assigns each structure (M̂ ,S) a flow policy G(M̂ ,S) which is defined on

(M̂ ,S). ✸

6 Michael Backes and Birgit Pfitzmann

�� ��

����

��� �	
�
��� �	
�

�

�
�

����

��

Fig. 2. Sketch of our non-interference definition

We will simply write G, ∆, and E instead of G(M̂ ,S), ∆(M̂ ,S), and E(M̂ ,S) if the
underlying structure is clear from the context. Additionally, we usually con-
sider graphs with the following property: for blocks of ports SH ,SL ∈ ∆ with
(SH ,SL) ∈�❀ there should not be a path from SH to SL consisting of “❀”-
edges only. We will refer to this property as transitivity property and speak of
a transitive flow policy.

The relation �❀ is the non-interference relation of G, so for two arbitrary
blocks SH ,SL ∈ ∆, (SH ,SL) ∈�❀ means that no information flow must occur
directed from the machine connected to SH to the machine connected to SL. The
notion of a transitive flow policy is motivated by our intuition that if a user HH

should not be allowed to directly send any information to user HL, he should
also not be able to send information to HL by involving additional users, similar
for the adversary.

3.3 Definition of Non-interference

We still have to define the semantics of our non-interference relation �❀. Usually,
expressing this semantics is the most difficult part of the whole definition. In
our underlying model, it is a little bit easier because we already have definitions
for runs, views, and indistinguishability that can be used to express the desired
semantics.

Figure 2 contains a sketch of our definition of non-interference between two
users HH and HL (one of them might also be the adversary). Mainly, we define
a specific machine BITH , that simply chooses a bit b ∈ {0, 1} at random and
outputs it to HH . Non-interference now means that HH should not be able to
change the view of HL, so it should be impossible for HL to output the bit b
at p∗L bit! with a probability better than 1

2 in case of perfect non-interference.
Statistical and computational non-interference now means that the advantage
of HL for a correct guess of b should be a function of a class SMALL or neg-
ligible, respectively, measured in the given security parameter k. The approach
of “guessing a bit”, i.e., including the machines BITH and OUTL in our case, is
essential to extend the notation of probabilistic non-interference to error prob-
abilities and complexity-theoretic assumptions. Moreover, it is a fundamental
concept in cryptography, so our definition additionally serves as a link between

Computational Probabilistic Non-interference 7

prior work in non-interference and real cryptographic primitives along with their
security definitions.

These specific configurations including the special BITH - and OUTL-
machines will be called non-interference configurations. Before we turn our at-
tention to the formal definition of these configurations we briefly describe which
machines have to be included, how they behave, and which ports are essential
for these sort of configurations, cf. Figure 3.

First of all, we have special machines BITH , OUTL and Xn in. As described
above, BITH will uniformly choose a bit at the start of the run and output it to
the user HH , the second machine simply catches the messages received at port
p∗L bit?.

The machine Xn in is the master scheduler of the configuration. Its function is
to provide liveness properties and to avoid denial of service attacks, so it ensures
that every machine will be able to send messages if it wants to. Before we turn
our attention to this machine, we briefly describe the ports of the users. In order
to improve readability we encourage the reader to compare these descriptions
with Figure 3.

At first, we demand that every user must not have any clock-out ports;
instead they have additional output ports ps! connected to the master scheduler
for every “usual” output port p!. The master scheduler will use these ports to
schedule outputs from ports p!, so a user can tell the master scheduler which
port it wants to be scheduled. This is essential for achieving liveness properties,
because otherwise, there might be cycles inside of the system, so that neither the
master scheduler nor some users will ever be scheduled. Therefore, we explicitly
give the control to the master scheduler and define a suitable scheduling strategy
in the formal definition.

We now focus on the ports of the master scheduler. First of all, it has the
corresponding input ports ps? for receiving scheduling demands from the users,
and the corresponding clock-out ports ps�!. Furthermore, it has clock-out ports
p�! to schedule every buffer p̃ that delivers messages from the users to the actual
system. Finally, it has special ports masteri ! to schedule (or to give control to)
the user Hi. The actual scheduling process, i.e., how and in what order users are
scheduled will be described in the formal definition.

Definition 4. (Non-Interference Configuration) Let a finite index set I with
A �∈ I and H, L ∈ I ∪ {A}, H �= L be given. Furthermore, let a multi-party
configuration conf mp

H,L = (M̂ ,S ,U ∪ {BITH , OUTL, Xn in}, A) of a system Sys
with U = {Hi | i ∈ I} and a partition ∆ = {Si | i ∈ I} ∪ {S̄} of free([M̂])
be given. For naming convention we set HA := A and SA := S̄ . We call this
configuration a non-interference configuration of Sys if the following holds:

a) The ports of BITH are given by {masterBITH
?, pH bit!, pH bit

�!}.
The specific machine OUTL has only one input port p∗L bit? connected to HL.
The machine Xn in is the master scheduler of the configuration. Its ports are
given by
• {clk�?}: The master clock-in port.

8 Michael Backes and Birgit Pfitzmann

�� ������

�

��� �	
�
��� �	
�

�

�
�

����

�������

������
�
�

������
�
�

���
�

����

����������
�

������

�����

����������

���

���

�

Fig. 3. Main Parts of a non-interference configuration. Additionally, the ports of
the master scheduler Xn in and the two emphasized users HH and HL are sketched

• {p�! | p�! ∈ S c
i , i ∈ I}: The ports for scheduling buffers between users

and the actual system.
• {ps?, ps�! | p�! ∈ S c

i , i ∈ I}: The ports connected to the users for receiving
scheduling demands.
• {ps∗

L bit?, p
s∗
L bit

�!, p∗L bit
�!}: The ports for scheduling demands and out-

puts to machine OUTL.
• {masteri !, masteri

�! | i ∈ I ∪ {A} ∪ {BITH}}: The ports for scheduling
(that is giving control to) the users, the adversary and BITH .

b) For i ∈ I the ports of Hi must include {ps! | p�! ∈ S c
i } ∪ {masteri?}, the

ports of the adversary must include masterA?. Additionally, HH must have
an input port pH bit?, HL must have output ports p∗L bit! and ps∗

L bit!.
Furthermore, we demand that the remaining ports of every user and of the
adversary connect exactly to their intended subset of specified ports. For-
mally,

ports(HH)\({pH bit?}∪{ps! | p�! ∈ S c
H}∪{masterH?}) = S c

H\{p�! | p�! ∈ S c
H},

ports(HL) \ ({p∗L bit!, p
s∗
L bit!} ∪ {ps! | p�! ∈ S c

L} ∪ {masterL?})
= S c

L \ {p�! | p�! ∈ S c
L}

must hold, respectively.
For the remaining users Hi with i ∈ I ∪ {A}, i �∈ {H, L} we simply have to
leave out the special bit-ports, i.e., the equation

ports(Hi) \ ({ps! | p�! ∈ S c
i } ∪ {masteri?}) = S c

i \ {p�! | p�! ∈ S c
i }

Computational Probabilistic Non-interference 9

must hold. Essentially this means that an arbitrary user Hi must not have
any clock-out ports and its “usual” simple ports are connected exactly to
the simple ports of Si. The special ports pH bit?, p∗L bit!, p

s∗
L bit! and ports of

the form masteri?, ps! are excluded because they must be connected to the
master scheduler and to the machines BITH and OUTL.
If the adversary is one of the two emphasized users, i.e., A ∈ {H ,L}, we
have to leave out the term {ps! | p�! ∈ S c

H}, or {ps! | p�! ∈ S c
L}, respectively.

Alternatively, we can wlog. restrict our attention to those adversaries that
do not have such port names which can easily be achieved by consistent port
renaming.

c) The behaviour of the machine BITH is defined as follows. If BITH receives
an arbitrary input at masterBITH

?, it chooses a bit b ∈ {0, 1} at random,
outputs it at pH bit!, and schedules it.
The machine OUTL simply does nothing on inputs at p∗L bit?. It just “catches”
the inputs to close the collection. This ensures that runs and views of the
configuration are still defined without making any changes.

d) The behaviour of the machine Xn in is defined as follows. Internally, it main-
tains two flags start and fl over {0, 1}, both initialized with 0, and a counter
cnt over the finite index set I ∪ {A}. Without loss of generality we assume
I := {1, . . . , n}, so the counter is defined over {0, . . . , n}, initialized with 0
(identifying the number 0 with A). Additionally, it has a counter MaSc poly
if the machine is demanded to be polynomial time, furthermore, a polyno-
mial P must be given in this case that bounds the steps of Xn in. If Xn in is
scheduled, it behaves as follows:
Case 1: Start of the run. If start = 0: Set start := 1 and output 1 at
masterBITH

!, 1 at masterBITH
�!.

Case 2: Schedule users. If fl = 0 and start = 1: If Xn in has to be polynomial
time, it first checks cnt = n, increasing MaSc poly in this case and checking
whether MaSc poly < P (k) holds for the security parameter k, stopping at
failure. Now, it sets cnt := cnt+1 mod (n+1), and outputs 1 at mastercnt !, 1
at mastercnt

�!. If cnt �= 0, i.e., the clocked machine is an honest user, it
additionally sets fl := 1 to handle the scheduling demands of this user at its
next clocking.
Case 3: Handling scheduling demands. If fl = 1 and start = 1: In this case it
outputs 1 at every port ps�! with p�! ∈ S c

cnt (for cnt = L it also outputs 1 at
ps∗

L bit
�!) and tests whether it gets a non-empty input at exactly one input

port.3 If this does not hold, it sets fl := 0 and does nothing. Otherwise, let
ps? denote this port with non-empty input i. Xn in then outputs i at p�! and
sets fl := 0. This case corresponds to a valid scheduling demand of the user,
so the corresponding buffer is in fact scheduled.

3 More formally, it enumerate the ports and sends 1 at the first one. The buffer either
schedules a message to Xn in or it does nothing. In both cases Xn in is scheduled again,
so it can send 1 at the second clock-out port and so on. Every received message is
stored in an internal array so the test can easily be applied.

10 Michael Backes and Birgit Pfitzmann

We obtain a “rotating” clocking scheme on the set I ∪ {A}, so every user
and the adversary will be clocked equally often with respect to the special
master-ports.

Non-interference configurations are denoted by conf n in
H,L,I = (M̂ ,S ,U n in, A)n in

I
with U n in := U ∪ {BITH , OUTL, Xn in} but we will usually omit the index I.
conf n in

H,L is called polynomial-time if its underlying multi-party configuration
conf mp

H,L is polynomial-time. The set of all non-interference configurations of
a system Sys for fixed H , L, and I will be denoted by Confn in

H,L,I(Sys), and the
set of all polynomial-time non-interference configurations by Confn in

H,L,I,poly(Sys).
✸

Definition 5. (Non-Interference) Let a flow policy G = (∆, E) for a struc-
ture (M̂ ,S) be given. Given two arbitrary elements H, L ∈ I ∪ {A}, H �= L
with (SH ,SL) ∈�❀, we say that (M̂ ,S) fulfills the non-interference requirement
NIReqH,L,G

a) perfectly (written (M̂ ,S) |=perf NIReqH,L,G) iff for any non-interference
configuration conf n in

H,L ∈ Confn in
H,L,I(Sys) of this structure the inequality

P (b = b∗ | r ← runconf n in
H,L ,k; b := r�pH bit!; b

∗ := r�p∗
L bit?

) ≤ 1
2

holds.
b) statistically for a class SMALL ((M̂ ,S) |=SMALL NIReqH,L,G) iff for any

non-interference configuration conf n in
H,L ∈ Confn in

H,L,I(Sys) of this structure
there is a function s ∈ SMALL such that that the inequality

P (b = b∗ | r ← runconf n in
H,L ,k; b := r�pH bit!; b

∗ := r�p∗
L bit

?) ≤ 1
2
+ s(k)

holds. SMALL must be closed under addition and with a function g also
contain every function g′ ≤ g.

c) computationally ((M̂ ,S) |=poly NIReqH,L,G) iff for any polynomial-time
non-interference configuration conf n in

H,L ∈ Confn in
H,L,I,poly(Sys) the inequality

P (b = b∗ | r ← runconf n in
H,L ,k; b := r�pH bit!; b

∗ := r�p∗
L bit?

) ≤ 1
2
+

1
poly(k)

holds.
We write ”|=” if we want to treat all cases together.
If a structure fulfills all non-interference requirements NIReqH,L,G with
(SH ,SL) ∈�❀, we say it fulfills the (global) requirement NIReqG ((M̂ ,S)
|= NIReqG). A system Sys fulfills a flow policy φSys if every structure
(M̂ ,S) ∈ Sys fulfills its requirement NIReqφSys(M̂ ,S), and we consequently
write Sys |= NIReqφSys (M̂ ,S), or Sys |= φSys for short.

✸

Computational Probabilistic Non-interference 11

4 Preservation of Non-interference under Simulatability

Simulatability essentially means that whatever might happen to an honest user H
in a real system Sys real can also happen to the same honest user in an ideal sys-
tem Sys id. Formally speaking, for every configuration conf 1 of Sys real there is
a configuration conf 2 of Sys id with the same users yielding indistinguishable
views of H in both systems [21]. We abbreviate this by Sysreal ≥sec Sys id (Sys real

is “at least as secure as” Sys id), indistinguishability of the views of H is de-
noted by view conf 1

(H) ≈ view conf 2
(H). Usually only certain “corresponding”

structures (M̂1,S1) of Sys real and (M̂2,S2) of Sys id are compared. Structures are
called corresponding or validly mapped if their set of specified ports are equal. In
this section we show that our definition of non-interference behaves well under
simulatability. More precisely, we will show that the relation “at least as secure
as” will not change the non-interference relation between two arbitrary users
(one of them might also be the adversary). Usually, defining a cryptographic
system starts with an abstract specification of what the system actually should
do, possible implementations have to be proven to be at least as secure as this
specification. Such a specification usually consists of a monolithic idealized ma-
chine that neither contains any cryptographic details nor any probabilism. Thus,
it can be validated quite easily by formal proof systems, e.g., formal theorem
proving or even automatic model checking, at least if it is not to complex. Hence,
it would be of great use to also verify integrity and privacy properties for this
idealized machine that will automatically carry over to the real system.

Our theorem states that non-interference properties are in fact preserved un-
der the relation “at least as secure as”. In the proof of the preservation theorem,
the following lemma will be needed.

Lemma 1. The statistical distance ∆(φ(vark), φ(var′k)) for function φ of random
variables is at most ∆(vark, var′k). ✷

This is a well-known fact; a proof can be found in, e.g., [8].

Theorem 1. (Preservation of Non-Interference Properties) Let a flow policy
φSys2

for a system Sys2 be given, so that Sys2 |= φSys2
holds. Furthermore, let

a system Sys1 be given with Sys1 ≥f Sys2 for a mapping f with S1 = S2 whenever
(M̂2,S2) ∈ f(M̂1,S1). Then Sys1 |= φSys1

for all φSys1
with φSys1

(M̂1,S1) :=
φSys2

(M̂2,S2) for an arbitrary structure (M̂2,S2) ∈ f(M̂1,S1). This holds for the
perfect, statistical, and the computational case. ✷

Proof. We first show that φSys1
is a well-defined flow policy for Sys1 un-

der our preconditions. Let an arbitrary structure (M̂1,S1) ∈ Sys1 be given.
Simulatability implies that for every structure (M̂1,S1) ∈ Sys1, there exists
(M̂2,S2) ∈ f(M̂1,S1).

φSys2
is a flow policy for Sys2, so we have a flow policy G(M̂2,S2) = (∆, E) for

(M̂2,S2). Furthermore, we have S1 = S2 by precondition, so we can indeed build
the same set Γ of blocks on the specified ports and therefore the same partition

12 Michael Backes and Birgit Pfitzmann

∆ of the free ports of [M̂1].4 Hence, φSys1
(M̂1,S1) is defined on (M̂1,S1), so φSys1

is a well-defined flow policy for Sys1.
We now have show that Sys1 fulfills φSys1

. Let a structure (M̂1,S1) ∈ Sys1

and two elements H, L ∈ I ∪ {A}, H �= L with (SH ,SL) ∈�❀ (with respect to
the flow policy φSys1

(M̂1,S1)) be given. We have to show that (M̂1,S1) fulfills
the non-interference requirement NIReqH,L,G.

Let now a non-interference configuration conf n in
H,L,1 = (M̂1,S1,

U n in, A)n in ∈ Confn in
H,L,I(Sys1) be given. Because of Sys1 ≥f Sys2 there

is a configuration conf H,L,2 = (M̂2,S2,U n in, A′) ∈ Confn in
H,L,I(Sys2) for

(M̂2,S2) ∈ f(M̂1,S1) with view conf n in
H,L,1

(U n in) ≈ view conf H,L,2
(U n in). More-

over, the honest users U n in are unchanged by simulatability, so conf H,L,2 is
again a non-interference configuration; hence, we write conf n in

H,L,2 in the following
instead of conf H,L,2. As usual we distinguish between the perfect, statistical,
and the computational case. In the computational case, both configurations
must be polynomial-time.

In the perfect case, we have view conf n in
H,L,1

(U n in) = view conf n in
H,L,2

(U n in) be-

cause of Sys1 ≥f
perf Sys2. Now, both b := r�pH bit! and b∗ := r�p∗

L bit
? are part

of the view of U n in because BITH and OUTL are elements of U n in, so we
obtain the same probabilities in both configurations. Our precondition (M̂2,S2)
|=perf NIReqH,L,G and our arbitrary choice of conf n in

H,L,1 implies that (M̂1,S1)
also fulfills NIReqH,L,G .

We will treat the statistical and the computational case together. In
the statistical (computational) case we have view conf n in

H,L,1
(U n in) ≈SMALL

view conf n in
H,L,2

(U n in) (view conf n in
H,L,1

(U n in) ≈poly view conf n in
H,L,2

(U n in)). We as-

sume for contradiction that (M̂1,S1) does not fulfill the non-interference re-
quirement NIReqH,L,G , so the probability p(k) of a correct guess for b = b∗ is
not smaller than 1

2+s(k) for any s ∈ SMALL in the statistical case (or p(k)− 1
2 is

not negligible in the computational case). Thus, the advantage ε(k) := p(k)− 1
2

of the adversary is not contained in SMALL (or ε(k) is not negligible). (M̂2,S2)
fulfills the non-interference requirement, so in this configuration, the advantage
ε′(k) for a correct guess is a function of SMALL in the statistical or negligible
in the computational case.

We can then define a distinguisher D as follows. Given the views of U n in

in both configurations it explicitly knows the views of BITH and OUTL. Now D
outputs 1 if b = b∗ and 0 otherwise. Its advantage in distinguishing is

|P (D(1k, view conf n in
H,L,1,k(U

n in)) = 1)− P (D(1k, view conf n in
H,L,2,k(U

n in)) = 1)|

= |1
2
+ ε(k)− (

1
2
+ ε′(k))| = ε(k)− ε′(k).

4 More, precisely the block S̄1 is identified with S̄2. The ports of both sets may be
different, but this does not matter because our definition of flow policies only uses
whole blocks, so the different ports do not cause any trouble.

Computational Probabilistic Non-interference 13

For the polynomial case, this immediately contradicts our assumption Sys1 ≥f
poly

Sys2 because ε(k) − ε′(k) is not negligible. For the statistical case, the distin-
guisher D can be seen as a function on the random variables, so Lemma 1 implies

∆(view conf n in
H,L,1,k(U

n in), view conf n in
H,L,2,k(U

n in))

≥ |P (D(1k, view conf n in
H,L,1,k(U

n in)) = 1)− P (D(1k, view conf n in
H,L,2,k(U

n in)) = 1)|
= ε(k)− ε′(k).

But ε(k) − ε′(k) �∈ SMALL must hold, because ε′(k) ∈ SMALL and SMALL is
closed under addition. Thus, ∆(view conf n in

H,L,1,k(U n in), view conf n in
H,L,2,k(U n in)) �∈

SMALL because SMALL is closed under making functions smaller which yields
the desired contradiction. (SH ,SL) ∈�❀ and (M̂1,S1) have been chosen arbitrary
so (M̂1,S1) |= NIReqG and finally Sys1 |= φSys1

which finishes the proof.

5 A Cryptographic Firewall

In the following we present an example of a system that allows authenticated
communications between two users and furthermore ensures that these two users
cannot be affected by their environment. This yields a flow policy our system
has to (and indeed will) fulfill.

5.1 Some Preliminaries

We start with a brief review on standard cryptographic systems and composition,
cf. [18] for more details. In cryptographic protocols every user u usually has
exactly one machine Mu and its machine is correct if and only if the user is
honest.

The machine Mu of user u has special ports inu? and outu ! for connecting
to user u. A standard cryptographic system Sys can now be derived by a trust
model. The trust model consists of an access structure ACC and a channel model
χ. ACC is a set of subsets H of {1, . . . , n} and denotes the possible sets of
correct machines. For each set H there will be exactly one structure built by the
machines belonging to the setH. The channel model classifies every connection as
either secure (private and authentic), authenticated or insecure. In the considered
model these changes can easily be achieved via port renaming (see [18]).

For a fixed set H and a fixed channel model we obtain modified machines
for every machine Mu which we refer to as Mu,H. We denote their combina-
tion by M̂H (i.e., M̂H := {Mu,H | u ∈ H}), so real systems are given by
Sys real = {(M̂H,SH) | H ∈ ACC}. Ideal systems typically are of the form
Sys id = {({THH},SH) | H ∈ ACC} with the same sets SH as in the corre-
sponding real system Sys real.

We now briefly review what has already been proven about composition of
reactive systems. What we actually want is the relation “at least as secure as”
to be consistent with the composition of systems. Assume that we have already

14 Michael Backes and Birgit Pfitzmann

≥����	 �
��	 �

��	
 �

��	 �
��	�

≥��

≥��

≥�

��	 �

��	�

Fig. 4. Composition of systems

proven that a system Sys0 is at least as secure as another system Sys ′0. Typically,
Sys0 is a real system whereas Sys ′0 is an ideal specification of the real system. If
we now consider larger protocols that use Sys ′0 as an ideal primitive we would
like to be able to securely replace it with Sys0. In practice this means that we
replace the specification of a system with its implementation.

Usually, replacing means we have another system Sys1 using Sys ′0; we call this
combination Sys∗. We now want to replace Sys ′0 with Sys0 inside of Sys∗ which
gives a combination Sys#. Typically, Sys# is a completely real system whereas
Sys∗ is at least partly ideal. This fact is illustrated in the left and middle part of
Figure 4. The composition theorem now states that this replacement maintains
security, i.e., Sys# is at least as secure as Sys∗ (see [18] for further details).

After this brief review we can turn our attention to the cryptographic fire-
wall. The construction of both our ideal and our real system can be explained
using Figure 4. Our ideal specification is based on an ideal specification for se-
cure message transmission with ordered channels introduced in [2] which we will
slightly modify to fit our requests. Mainly, we have to model reliable channels
to avoid denial of service attacks. We will denote this modified ideal system by
Sys ′0 following the notation of Figure 4. Furthermore, a possible implementa-
tion has also been presented in [2] which we have to modify similar to the ideal
specification to maintain the at least as secure as relation.

Our cryptographic firewall will then be derived by defining a new system Sys1

so that combination with Sys ′0 yields the ideal system, replacing Sys ′0 with Sys0

finally yields a possible implementation. Sys1 will be designed to filter messages
sent by “wrong” senders that should not be allowed to influence the special users
according to the flow policy shown in Figure 5. According to Figure 4, we denote
our ideal system as Sys∗ and our real implementation as Sys#.

We start with a brief review of the ideal system for secure message trans-
mission with ordered channels and present our modifications of the system af-
terwards which will be essential for achieving non-interference. After that, we
introduce our system Sys1, and briefly sketch the concrete implementation.
We then prove that our ideal system Sys∗ fulfills its non-interference require-
ments. Finally, we apply our preservation theorem 1 and conclude that these
non-interference requirements carry over to the concrete implementation, which
successfully finishes our attempt to design a real example that fits our non-
interference definition.

Computational Probabilistic Non-interference 15

�
	
�
�

Fig. 5. Sketch of the flow policy of our system. Only one non-emphasized user
S1 is considered and some edges of the graph are omitted. Missing edges are of
the form “❀”

5.2 The Ideal System

Let n denote the number of participants, I := {1, . . . , n} the set of indices of the
considered participants, and IA := I ∪ {A} the set of participants including the
adversary. In the following we will identify these indices with their corresponding
user. Intuitively, we want a system that fulfills the flow policy shown in Figure 5.
We consider two distinguished users a and b with {a, b} ∈ I. We now have
two blocks of specified ports Sa and Sb, so that information must not flow to
one of these ports from the outside. More precisely, we have non-interference
requirements NIReqi1,i2,G for every pair (i1, i2) with i1 ∈ IA \ {a, b}, i2 ∈ {a, b}.

We start with a brief description of the ideal specification for secure mes-
sage transmission with ordered channels. The specification is of the typical form
Sys ′0 = {({THH},SH)|H ⊆ M}, i.e., there is one structure for every subset of
the machines, denoting the honest users.

The ideal machine THH models initialization, sending and receiving of mes-
sages. A user u can initialize communications with other users by inputting
a command of the form (snd init) to the port inu? of THH. In real systems, initial-
ization corresponds to key generation and authenticated key exchange. Sending
of messages to a user v is triggered by a command (send, m, v). If v is honest, the
message is stored in an internal array deliver spec

u,v of THH together with a counter
indicating the number of the message. After that, a command (send blindly, i, l, v)
is output to the adversary, l and i denote the length of the message m and its po-
sition in the array, respectively. This models that the adversary will notice in the
real world that a message has been sent and he might also be able to know the
length of that message. We speak of tolerable imperfections that are explicitly
given to the adversary. Because of the underlying asynchronous timing model,
THH has to wait for a special term (receive blindly, v, i) or (rec init, u) sent by
the adversary, signaling, that the message stored at the ith position of deliver spec

u,v

should be delivered to v , or that a connection between u and v should be ini-
tialized. In the first case, THH reads (m, j) := deliver spec

u,v [i] and checks whether
msg out spec

u,v ≤ j holds for a message counter msg out spec
u,v . If the test is successful

the message is delivered and the counter is set to j + 1, otherwise THH outputs
nothing. The condition msg out spec

u,v ≤ j ensures that messages can only be de-
livered in the order they have been received by THH, i.e., neither replay attacks

16 Michael Backes and Birgit Pfitzmann

�	
��
���

��
�
���

��	

���
�	� !��� !�	�

�"��
�"	� !�"�� !�"	�

Fig. 6. Sketch of system Sys1

nor reordering messages is possible for the adversary; cf. [2] for details. The user
will receive inputs of the form (receive, u, m) and (rec init, u), respectively. If v is
dishonest, THH will simply output (send, m, v) to the adversary. Finally, the ad-
versary can send a message m to a user u by sending a command (receive, v, m)
to the port from advu? of THH for a corrupted user v, and he can also stop the
machine of any user by sending a command (stop) to a corresponding port of
THH, which corresponds to exceeding the machine’s runtime bound in the real
world.

Necessary modifications of the abstract scheme for secure ordered channels. We
want our system to fulfill our flow policy shown in Figure 5, so especially the
non-interference requirement NIReqA,a,G must hold. If we explicitly allow the
adversary to schedule the communication between Ha and Hb he can obviously
achieve two distinguishable behaviours by denial of service attacks as follows.
On the one hand, he directly schedules every message sent from Hb to Ha in one
behaviour, on the other hand he does not schedule any message sent from Hb to
Ha. This problem cannot be solved by the filtering system Sys1 if scheduling of
the communication channel is done by the adversary.5 In practice, this means
that two persons will not be able to communicate without being interfered from
outside if the channel they use can be cut off by the adversary. A possible solu-
tion for the problem is to define reliable, non-authenticated channels between a
and b, so messages sent between two participants are not only output to the
adversary but also output to the recipient and directly scheduled. Obviously,
channels which are reliable and authenticated could be used as well for sending
of messages, but in this case, we would no longer need the underlying cryp-
tography (e.g., authentication). Therefore, we only consider these authenticated
channels for key exchange as usual, but sending of messages is still performed
over non-authenticated channels. The modifications carry over to the trusted
host THH as follows:

– If THH receives an input (snd init) from Ha, it implicitly initializes a com-
munication with Hb and outputs (snd init) to the adversary, (rec init, a) to
Hb and schedules the second output.

5 Sys1 can only sort out messages from “wrong” senders, the messages mentioned are
sent by the “valid” user Hb, so they have to be delivered because Sys1 has no internal
clock to check for denial of service attacks.

Computational Probabilistic Non-interference 17

���

###

�������

�

�	
��
�

###
�

�
 ���� ��###

��
��
�

���

��	

$��

$��

$��

Fig. 7. Ideal system for non-interfered communication

– If THH receives an input (send, m, b) from Ha, it outputs (send blindly, i, l, b)
to the adversary, (receive, m, a) to Hb scheduling the second output.

These modifications are also done for switched variables a and b. We will omit
a more detailed description of the machine THH due to lack of space and refer the
reader to the long version of this paper. After this brief review and modification
of Sys ′0 we can turn our attention to the system Sys1. The system Sys1 is built
by additional machines Mn in

u for u ∈ {a, b}. These machines will be inserted
between the users and the trusted host THH, see Figure 7. Formally, we obtain
the following scheme:

Scheme 1 (Sys1) Let n ∈ N and polynomials L, s, s′ ∈ N[x] be given. Here n
denotes the number of intended participants, L(k) bounds the message length
and s(k), s′(k) bound the number of messages each user can send and receive
respectively for a security parameter k. Let I := {1, . . . , n} denote the set of
possible users again and a, b ∈ I the special users that should not be influenced
from outside. Then

Sys1 := {(M̂ ,S)}
with M̂ = {Mn in

a , Mn in
b } and S c := {outu?, inu !, inu

�! | u ∈ {a, b}} ∪
{in′u?, out′u !, out′u

�! | u ∈ {a, b}}. Without loss of generality we just describe
the ports and the behaviour of machine Mn in

a . The machine Mn in
b is defined

analogously by exchanging the variables a and b. The ports of machine Mn in
a are

{ina?, outa !, outa
�!} ∪ {out′a?, in′a !, in′a

�!} ∪ {pMb
?, pMa !, pMa

�!}, cf. Figure 6.
Internally, Mn in

a maintains a counter sa ∈ {0, . . . , s(k)} and an array
(s′a,u)u∈I over {0, . . . , s′(k)} bounding the number of messages Ha can send
and receive, respectively, and a variable stoppeda ∈ {0, 1} all initialized with 0
everywhere. The state-transition function of Mn in

a is defined by the following
rules, written in a simple pseudo-code language.

18 Michael Backes and Birgit Pfitzmann

Initialization.

– Send initialization: On input (snd init) at ina?: If sa < s(k) it sets sa :=
sa + 1, otherwise it stops. If stoppeda = 0 it outputs (snd init) at in′a !, 1 at
in′a

�!, otherwise it outputs (snd init) at pMa !, 1 at pMa
�!.

– Receive initialization: On input (rec init, u) at out′a?: It first checks
whether s′a,u < s′(k) hold. In this case it sets s′a,u = s′a,u + 1, otherwise it
stops. If stoppeda = 0 it checks u = b. If this also holds it outputs (rec init, b)
at outa ! and 1 at outa

�!. On input (rec init, b) at pMb
?, it outputs (rec init, b)

at outa ! and 1 at outa
�!.

Sending and receiving messages.

– Send: On input (send, m, v) at ina? with m ∈ Σ+ and len(m) ≤ L(k) it
checks whether sa < s(k). If this holds it sets sa := sa+1, otherwise it stops.
If stoppeda = 0 holds, it outputs (send, m, v) at in′a !, 1 at in′a

�!. Otherwise
it first checks v = b. After a successful test it outputs (receive, a, m) at pMa !
and 1 at pMa

�!.
– Receive: On input (receive, u, m) at out′a? it first checks whether s′a,u <

s′(k). If this holds it sets s′a,u := s′a,u + 1, otherwise it stops. If u = b holds
it outputs (receive, b, m) at outa ! and 1 at outa

�!. On input (receive, b, m) at
pMb

? it outputs (receive, b, m) at outa ! and 1 at outa
�!.

– Stop: On input (stop) at out′a? or pMb
?: If stoppeda = 0, it sets stoppeda = 1

and outputs (stop) at pMa ! and 1 at pMa
�!.

The special communication ports pMa and pMb
are just included to prevent denial

of service attacks. We already briefly stated in our review of Sys ′0 that a mighty
attacker could simply overpower the machine of an honest user by sending too
many messages, i.e., to exceed its runtime bound in the real world. In the ideal
system this is modeled by letting the adversary stop arbitrary machines any
time he likes. If we now consider an adversary that stops the machine of user a
at the very start of the run and another one that never stops this machine, we
would certainly obtain different views for this user. This problem cannot really
be avoided if we do not provide additional channels for communication that
guarantee availability. In practice this would correspond to a connection that
contains trash all the time sent by the adversary, so the users (their machines
in our case) would certainly look for a new way to communicate. Furthermore,
this problem is much weaker in practice than in theory because it ought to be
impossible (or at least very difficult) for an adversary to overpower a machine
(the machine would surely be able to take countermeasures). If we did not con-
sider these sorts of attacks the ports pMa and pMb

could as well be omitted.
Finally, a stopped machine Mn in

a would want the machine Mn in
b also to use the

special communication ports, so it will stop the machine as soon it has been
stopped itself. Before we now build the combination of both systems to obtain
our complete system Sys∗, we rename the ports inu?, outu ! and outu

�! of Sys ′0
into in′u?, out′u ! and out′u

�!, respectively, for u ∈ {a, b} such that Sys ′0 and Sys1

are connected in the desired way. Furthermore, we restrict the structures of

Computational Probabilistic Non-interference 19

Sys ′0 to all sets H with {a, b} ⊆ H. Combination now means that we combine
every structure of Sys ′0 with the (only) structure of Sys1. The resulting system
Sys∗ = {(M̂H,SH) | {a, b} ⊆ H ⊆ I} is shown in Figure 7.

Remark 2. It is quite obvious how to modify the system Sys1 to an arbitrary
set of users (instead of {a, b}) that have to be guarded by the firewall. Moreover
we can easily consider multiple disjoint sets of users so that a user can com-
municate with other users of its own set without being interfered from outside.
This corresponds to multiple firewalls and can easily be achieved by modifying
the filtering system Sys1, so our specification carries over to arbitrary transitive
flow policies.

5.3 The Real System

The real system Sys# is derived by replacing the ideal system Sys ′0 with its
concrete implementation Sys0. For our purpose, it is sufficient to give an informal
review of the system Sys0. The system is a standard cryptographic system of
the form Sys0 = {(M̂H,SH) | H ⊆ M}, i.e., any subset of participants may be
dishonest. It uses asymmetric encryption and digital signatures as cryptographic
primitives. A user u can let his machine create signature and encryption keys
that are sent to other users over authenticated channels autu,v . Furthermore,
messages sent from user u to user v will be signed and encrypted by Mu and
sent to Mv over an insecure channel netu,v , representing the net in the real
world. Similar to THH each machine maintains internal counters which are used
for discarded messages that are out of order. The adversary is able to schedule
the communication between the users, and he can furthermore send arbitrary
messages m to arbitrary users u for a dishonest sender v.

We now have to implement the modification of the ideal system in our
concrete implementation. This can simply be achieved by changing the chan-
nel type of the (formerly insecure) channels between a and b to reliable, non-
authenticated. This channel type is not comprised by the original model of [18],
but it can be defined quite easily, cf. [1]. Moreover, by inspection of the proof
of [2] and [18], it is easy to see that the “at least as secure as” relation still holds
for these modified systems Sys0 and Sys1 with only slight changes in the proof.
Therefore, and due to lack of space, we omit the proof here and refer the reader
to the long version again.

5.4 Non-interference Proof

In the following we will show that our abstract system Sys∗ (cf. Figure 7) fulfills
its non-interference requirements given by the following flow policy. For two
given elements i1, i2 ∈ I ∪{A}, we define (Si1 ,Si2) ∈�❀ iff i1 ∈ (H\{a, b})∪{A}
and i2 ∈ {a, b}. The flow policy is sketched in Figure 5.

Theorem 2. (Non-Interference Properties of Sys∗) Let an arbitrary structure
({THH, Mn in

a , Mn in
b },SH) ∈ Sys∗ be given. For the sake of readability, we set

M̂H := {THH, Mn in
a , Mn in

b } in the following. Let a function φSys∗ be given

20 Michael Backes and Birgit Pfitzmann

that maps the structures (M̂H,SH) of Sys∗ to the flow policy G(M̂H,SH) =
(∆(M̂H,SH), E(M̂H,SH)) as defined above. The partition ∆(M̂H,SH) of SH is de-
fined by ∆(M̂H,SH) := {Si | i ∈ H} ∪ {S̄} with S c

i := {outi?, ini !, ini
�!} for i ∈ H

and SA := S̄ = free([M̂H]) \ (
⋃

i∈H Si). Then Sys∗ fulfills φSys∗ perfectly. ✷

Before we turn our attention to the proof of Theorem 2, we present the following
lemma.

Lemma 2. By definition of the system, the following invariants hold for all
possible runs of the configuration.

1. The collection {Mn in
a , Mn in

b }, i.e., the system Sys1, is polynomial-time.
2. If Ha receives an input at outa?, it is of the form (rec init, b) or (receive, b, m)

for an arbitrary m ∈ Σ+. If Ha receives an input at mastera?, it is sent by
the master scheduler and is of the form 1.

3. No output of Xn in at mastera ! depends on inputs from other machines. Each
machine is clocked equally often using a rotating clocking scheme. Further-
more, each output at a port p�! for p�! ∈ S c

a and the scheduled message does
only depend on prior outputs of Ha at port ps! and p!.

4. If Ha receives a term of the form (rec init, b) at outa?, it is a direct conse-
quence of the input (snd init) sent by Hb (i.e., the scheduling sequence must
have been Hb, X

n in, Mn in
b , THH, Mn in

a , Ha or Hb, X
n in, Mn in

b , Mn in
a , Ha). This

also implies that initializing a communication between Ha and Hb is not
possible for the adversary, so there cannot be any replay attacks with initial-
ization commands because they will be sorted out by THH.

5. If Ha receives a term of the form (receive, b, m) at outa?, it is a direct
consequence (in the sense of Point 4) of the message (send, a, m) sent by
Hb, so the scheduling sequence has been Hb, X

n in, Mn in
b , THH, Mn in

a , Ha or
Hb, X

n in, Mn in
b , Mn in

a , Ha. Thus, it is not possible for the adversary to pretend
to be user Hb and furthermore the number of received messages of this form
equals the number of messages sent by Hb to Ha. Therefore, the adversary
can neither replay these messages nor throw them away.

The invariants also hold if we exchange the variables a and b. ✷

The proof is omitted due to lack of space. It will be contained in the long version.

Proof (Theorem 2). We have to show that Sys∗ fulfills the non-interference re-
quirement φSys∗ . Let an arbitrary structure (M̂H,SH) ∈ Sys∗ be given so we
have a flow policy G(M̂H,SH) = (∆(M̂H,SH), E(M̂H,SH)) for this structure. Let now
two arbitrary blocks Si1 ,Si2 ∈ ∆(M̂H,SH) with i1 ∈ (H\{a, b})∪{A}, i2 ∈ {a, b}
be given, so (Si1 ,Si2) ∈�❀ must hold. By definition of non-interference showing
(M̂H,SH) |=perf NIReqi1,i2,G is sufficient for proving Sys∗ |=perf φSys∗ .

Let a non-interference configuration conf n in
i1,i2 = (M̂H,SH,U n in, A)n in for

this structure be given. Without loss of generality we can assume i2 = a because
of the symmetry of the flow policy. Depending on the choice of the bit b we denote
the two families of views of Ha by view conf n in

i1,a ,0(Ha) and view conf n in
i1,a ,1(Ha).

Computational Probabilistic Non-interference 21

Assume for contradiction that the probability of a correct guess b = b∗ is greater
than 1

2 , which implies view conf n in
i1,a ,0({Ha, Hb}) �= view conf n in

i1,a ,1({Ha, Hb}). First
of all, we can exclude denial of service attacks applying Part 3 of the above
lemma, so there has to be a first input at {Ha, Hb} with different probability in
both cases because Part 3 ensures that scheduling of messages sent by a user
only depends on its own prior behaviour. We will now use the previous lemma
to show that this cannot happen.

By Part 2 of Lemma 2 this input can only be of the form (rec init, u),
(receive, u, m) at outu?, or 1 at masteru? for u ∈ {a, b}. We will in the fol-
lowing write ū for the other emphasized user (i.e., ū ∈ {a, b} \ {u}). Assume
this input to be of the first form. Now Part 4 implies that this input is a direct
consequence of an input (snd init) sent by the other emphasized user Hū. Hence,
there had to be an input of Hū with different probability in both cases which
contradicts our assumption of the first different input, so there cannot be any
influence from outside Sys1. Thus, we obtain identical probability distributions
for possible inputs of Ha in both cases yielding the desired contradiction.

Now assume this input to be of the form (receive, u, m). By Part 5 the corre-
sponding input (send, ū, m) must have been sent directly by Hu with exactly the
same message m. Furthermore, the underlying system for secure ordered chan-
nels ensures that the message has been sent exactly that often as Ha receives
this input, so there cannot be any influence from outside because of the same
reason as in the first case.

Finally, assume this input to be at port masteru?. This input does not depend
on arbitrary behaviours of other machines by Part 3 so we obtain identical
probability distributions again. Therefore, the views must in fact be identical in
both cases so the probability of a correct guess b = b∗ is exactly 1

2 . Thus, we
have Sys∗ |=perf φSys∗ .

After proving the non-interference property for the ideal specification, we now
concentrate on the concrete implementation.

Theorem 3. (Non-Interference Properties of Sys#) The real system Sys# ful-
fills the non-interference property φSys# computationally, with ϕSys# given as in
theorem 1. In formulas, Sys# |=poly φSys# . ✷

Proof. Putting it all together, we know that the original and also the modified
real implementation of secure message transmission with ordered channels is
computationally at least as secure as its (modified) specification. Using Part 1
of Lemma 2 we know that the system Sys1 is polynomial-time, which is an es-
sential precondition for applying the composition theorem in the computational
case, so we have Sys# ≥poly Sys∗. Since perfect fulfillment of non-interference
requirements implies computational fulfillment, we have Sys# |=poly φSys# using
theorem 1.

22 Michael Backes and Birgit Pfitzmann

6 Conclusion

We have presented the first general definition of probabilistic non-interference
in reactive systems which includes a computational case (Section 3). Our ap-
proach is mainly motivated by the concept of simulatability which is funda-
mental for modern cryptography, and it might help to build a bridge between
prior research in the field of information flow and designing systems involv-
ing real cryptographic primitives. We have shown that our definition behaves
well under simulatability (Section 4), which enables modular proofs and step-
wise refinement without destroying the non-interference properties. This is not
only important for the development process of cryptographic protocols but also
because non-interference properties of ideal systems not containing any crypto-
graphic details can often easily be validated by formal proof tools whereas real
systems are usually much more difficult to validate. As an example, we have pre-
sented an abstract specification of a cryptographic firewall guarding two honest
users from their environment (Section 5). Moreover, we have presented a con-
crete implementation that also fits our definition, which we have shown using
our preservation theorem.

Acknowledgments

We thank Heiko Mantel, Matthias Schunter, and Michael Waidner for interesting
discussions.

References

[1] M. Backes. Cryptographically sound analysis of security protocols. Ph.D
thesis, Computer Science Department, Saarland University, 2002. Available at
http://www-krypt.cs.uni-sb.de/∼mbackes/diss.ps. 19

[2] M. Backes, C. Jacobi, and B. Pfitzmann. Deriving cryptographically sound
implementations using composition and formally verified bisimulation. In Pro-
ceedings of Formal Methods Europe 2002 (FME’02), Copenhagen, 2002. 14, 16,
19

[3] D. Bell and L. LaPadula. Secure computer systems: Unified exposition and mul-
tics interpretation. Technical Report ESD-TR-75-306, The Mitre Corporation,
Bedford MA, USA, March 1976. 1

[4] D. Clark, C. Hankin, S. Hunt, and R. Nagarajan. Possibilistic information flow
is safe for probabilistic non-interference. Workshop on Issues in the Theory of
Security (WITS’00), available at www.doc.ic.ac.uk/ clh/Papers/witscnh.ps.gz.
1

[5] D. E. Denning. A lattice model of secure information flow. Communications of
the ACM 19/5 (1976) 236-243. 1

[6] J. A. Goguen and J. Meseguer. Security policies and security models. IEEE
Symposium on Security and Privacy, IEEE Computer Society Press, Washington
1982, 11-20. 1

[7] J. A. Goguen and J. Meseguer. Unwinding and inference control. IEEE Sym-
posium on Security and Privacy, IEEE Computer Society Press, Oakland 1984,
75-86. 1

Computational Probabilistic Non-interference 23

[8] O. Goldreich. Foundations of cryptography: Basic tools. Cambridge University
Press, 2001. 11

[9] J. W. Gray III. Probabilistic interference. IEEE Symposium on Security and
Privacy, IEEE Computer Society Press, Los Alamitos 1990, 170-179. 1

[10] J. W. Gray III. Toward a mathematical foundation for information flow security.
Journal of Computer Security, Vol.1, no.3,4, 1992, 255-295. 1

[11] C. A. R. Hoare. Communicating sequential processes. International Series in
Computer Science, Prentice Hall, Hemel Hempstead 1985. 3

[12] P. Laud. Semantics and program analysis of computationally secure information
flow. 10th European Symposium On Programming (ESOP 2001), LNCS 2028,
Springer-Verlag, Berlin 2001, 77-91. 2

[13] N. Lynch. Distributed algorithms. Morgan Kaufmann Publishers, San Francisco
1996. 3

[14] H. Mantel. Unwinding possibilistic security properties. 6th European Sympo-
sium on Research in Computer Security (ESORICS’00), Toulouse 2000, 238-254.
1

[15] D. McCullough. Specifications for multi-level security and a hook-up property.
IEEE Symposium on Security and Privacy, IEEE Computer Society Press, Oak-
land 1987, 161-166. 1

[16] J. McLean. Security models. in: John Marciniak (ed.): Encyclopedia of Software
Engineering; Wiley Press, 1994. 1

[17] J. McLean. Security models and information flow. IEEE Symposium on Security
and Privacy, IEEE Computer Society Press, Los Alamitos 1990, 180-187. 1

[18] B. Pfitzmann and M. Waidner. A model for asynchronous reactive systems and
its application to secure message transmission. IEEE Symposium on Security
and Privacy, Oakland, May 2001, 184-201. 2, 3, 13, 14, 19

[19] D. Sutherland. A model of information. 9th National Computer Security Con-
ference; National Bureau of Standards, National Computer Security Center,
September 1986, 175-183. 1

[20] J. T. Wittbold and D. M. Johnson. Information flow in nondeterministic systems.
IEEE Symposium on Security and Privacy, IEEE Computer Society Press, Los
Alamitos 1990, 144-161. 1

[21] A. C. Yao. Protocols for secure computations. 23rd Symposium on Foundations
of Computer Science (FOCS) 1982, IEEE Computer Society, 1982, 160-164. 11

[22] A. Zakinthinos and E. S. Lee. A general theory of security properties. IEEE
Symposium on Security and Privacy, IEEE Computer Society Press, Washington
1997, 94-102. 1

	Computational Probabilistic Non-interference
	Introduction
	General System Model for Reactive Systems
	Expressing Non-interference and Multi-party Configurations
	Multi-party Configurations
	Flow Policies
	Definition of Non-interference

	Preservation of Non-interference under Simulatability
	A Cryptographic Firewall
	Some Preliminaries
	The Ideal System
	The Real System
	Non-interference Proof

	Conclusion

