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Abstract. Resource security pertains to the prevention of unauthorized
usage of system resources that may not directly cause corruption or leak-
age of information. A common breach of resource security is the class of
attacks called DoS (Denial of Service) attacks. This paper proposes an
architecture called TINMAN whose goal is to efficiently and effectively
safeguard resource security for mobile source code written in C. We cou-
ple resource usage checks at the programming language level and at the
run-time system level. This is achieved by the generation of a resource
skeleton from source code. This resource skeleton abstracts the resource
consumption behavior of the program which is validated by means of
a resource usage certificate that is derived from proof generation. TIN-
MAN uses resource-usage checking tools to generate proof obligations
required of the resource usage certificate and provides full coverage by
monitoring any essential property not guaranteed by the certificates. We
shall describe the architecture of TINMAN and give some experimental
results of the preliminary TINMAN implementation.

1 Introduction

Mobile codes are becoming widely deployed to make wide-area networks exten-
sible and flexible by adding functionality and programmability into the nodes
of the network. Mobile code which is written on one computer and executed on
another, can be transmitted in the form of either binary or source code. The
former includes Java Applet, ActiveX, or executables for specific platforms. The
latter includes applications written in high-level languages like C, scripts such as
shell files or JavaScript embedded in HTML files and specific languages designed
for active network [1] such as PLAN [2] and Smart Packets [3].

Not surprisingly, there is increasing demand on host systems to provide se-
curity mechanisms for shielding users from the damages caused by executing
untrustworthy mobile code. One of the serious concerns of mobile code secu-
rity is resource bound security. Resource bound security pertains to resource
consumption limits and the prevention of unauthorized use or access to system
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resources that may not directly cause corruption or leakage of protected infor-
mation. Failure to properly delimit resource consumption by untrusted mobile
code may deny legitimate users access to system resources, as is in the case of
Denial Of Service (DoS) attacks.

In this paper, we propose TINMAN, a platform-independent architecture
whose goal is to efficiently and effectively perform resource bound security checks
on mobile code. Although the TINMAN architecture is not restricted to mobile
code developed in a particular language, we analyze mobile C code in our pro-
totype system since many mobile programs are written in C and lack security
checks. For example, a user might try to extend his system software with an
external software component, or download and install open source software and
applications that are often in the form of C source code, from both trusted and
untrusted sources. Thus, we want to validate the TINMAN architecture first for
C code; we believe that the TINMAN architecture should be applicable directly
to the mobile code in scripts and byte-code as well.

Most of the work on mobile code security has not addressed resource bound
security or is not effective when it is applied to a general-purpose languages
such as C. For example, Java Sandbox [5], Smart Packets [3] and PLAN for
PLANet strive to prevent abuse by mobile code at the programming language
level by limiting a user’s ability to gain access to system resources through
language design. This usually comes at the price of reduced expressiveness of
the programming language and may turn off programmers who are unwilling
to adopt a restrictive language just for their mobile applications. Also, these
approaches cannot guarantee the resource bound consumption which is essential
to the hosting systems; for instance, they cannot detect buggy or malicious code
that may fall into an infinite loop and use all the CPU cycles and possibly all
system memory. An alternative approach to attaining resource bound security is
to enforce certain security policies that restrict the resource utilization of mobile
code execution at the run-time system level. Run-time checking of resource usage
alleviates the drawback of strict reliance on language-level mechanisms but it is
costly, and certain methods of access control do not apply since mobile code is
not stored on the computer it is executed on. In addition, not all these systems
provide resource utilization prediction and thus resource-usage security policies
are difficult to enforce.

We believe that in order to ensure resource bound security for mobile source
code, every hosting system should be endowed with a capability to accept us-
age specification (via policy-based resource bounds) and to monitor (via policy
enforcement) the execution of untrusted mobile programs. This policy specifi-
cation to enforcement linkage should be established in a way that cannot be
spoofed, or else the system should not be trusted to transport mobile code. Our
approach is to endow mobile source code with a verifiable certificate that spec-
ifies its resource consumption behavior. The key idea underlying the TINMAN
architecture, however, is the recognition that exact resource usage cannot in gen-
eral be derived a priori by compile-time static analysis (unless, say, the halting
problem is decidable, which it is not) and that a combination of compile-time
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(off-line) and run-time (on-line) techniques is needed to link policy specification
to enforcement. The real hard issue is to determine the relative roles of off-line
vs. on-line analysis. To answer this question, we adopt the following principle:

“Check the verifiable. Monitor the unverifiable.”
TINMAN applies the above principle. Resource bound is analyzed and verified
off-line from user-supplied information and security policy, to the extent that it is
practical to do so, and security enforcement is performed by coupling language-
level and run-time system mechanisms to monitor what cannot be established by
off-line analysis. The off-line and run-time mechanisms together provide complete
coverage and guarantee resource bound security. TINMAN advances the state of
the art by pushing the limit in the automation of fine-grain resource consumption
security checks, by deploying a suite of tools for resource utilization prediction,
certificate generation and validation, and run-time event matching.

In this paper, we focus on the system design and implementation of the
TINMAN architecture. The next section describes the methodology of system
design. The architecture of TINMAN is given in Section 3, followed by some
details of the off-line checker and on-line checker. Some experimental results are
given in Section 7. Section 8 compares TINMAN with related work. Concluding
remarks and future work are in Section 9.

2 Methodology

As noted in the previous section, there are two aspects to the resource security
problem: policy and enforcement. Resource security policy establishes resource
usage constraints that mobile programs must satisfy. In TINMAN, the security
policy to be satisfied by mobile program is given by a specification in three
parts: (1) resource usage for each service that may be called by a program and
provided by a hosting system; (2) resource limit for each program; (3) a proof
system consisting of axioms and inference rules for the interpretation of the
specification.

Resource security enforcement prevents a mobile program from violating the
resource security policy. It pertains to the authorization of resource usage and the
limitation of actual resource usage by a program. Enforcement may be performed
dynamically, by monitoring the real-time resource utilization of a mobile program
at run time. Complete reliance on dynamic enforcement may be too expensive
in general as to be practical. An alternative way to perform enforcement is to
check the certification of resource bounds for a certified program, similar to Proof
Carrying Code (PCC) [6] and Typed Assembly Language (TAL) [7].

Ideally, if certification is trustworthy, the code is considered resource usage
safe. The system may then grant resources to the program to complete its ex-
ecution, and there is no run-time checking (as in PCC). This is in general not
possible for resource bound security since exact resource usage is usually de-
termined dynamically and cannot in general be derived by compile-time static
analysis. Our approach is to a combine off-line verification and on-line monitor-
ing.
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TINMAN deploys an off-line analysis tool that attempts to derive tight re-
source usage bounds for user-supplied codes that may be loaded and run on
hosting systems. In an ideal world, the off-line analyzer would be able to de-
rive an exact resource usage bound and output a correctness proof of the bound
which constitutes the usage certificate. Short of getting an exact bound, a tight
bound may be obtained interactively with the programmer giving help in the
form of assertions about the program’s behavior.

An on-line analysis tool resides on the code recipient where the code is run.
We note that if verification is possible at compile-time, all the on-line analyzer
needs to do is to check the usage certificate, and dispense with monitoring. Since
checking a proof or validating a usage certificate via, say, a trusted certification
authority is in general much easier than deriving the proof from scratch (just as it
may take exponential time to solve an NP-complete problem but only polynomial
time to check the correctness of a solution), the run-time overhead is relatively
small. In the case not all verification conditions can be verified at compile-time
or if programmer input is required, the off-line analyzer also outputs all the
assertions, and the on-line checker will automatically monitor the validity of the
assertions at run time. In this way, a network node determines with certainty
that a piece of mobile code is compliant with the resource security policy.

3 System Architecture of TINMAN

Figure 1 shows the TINMAN architecture and the dependencies among the sys-
tem’s components. We now give a high-level description of each component and
explain how they fit together to perform resource security check for mobile code.

3.1 Off-Line Checker

The goals of the off-line checker are to provide programmers with a tool for
resource bound prediction and usage certificate generation for their mobile pro-
gram. As shown in Figure 2, resource usage prediction involves timing analysis
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Fig. 1. TINMAN Architecture
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and live-memory demand analysis. The output is a set of annotations and as-
sertions we call a resource skeleton. The resource skeleton is parameterized such
that the exact values of the bounds can be determined at the code recipient
site. A resource specification generation component automatically translates the
resource skeleton into a specification consisting of a group of predicates that will
be verified by a proof generation module to produce a usage certificate.

Once mobile code is analyzed by the off-line checker, it is ready to be sent to
the recipient site.

3.2 On-Line Checker

The on-line checker validates the annotations inserted by the off-line checker,
and detects any violation against the security policy by the imported mobile
code before or during its execution. A typical on-line checker session involves
resource usage bound calculation, resource skeleton verification, usage certifi-
cate validation and run-time assertion monitoring. The on-line checker will be
discussed further in Section 6.

3.3 Network Traffic Analyzer

Unlike the CPU and memory, network resource abuse in general may affect
entities outside of a host executing the mobile code and as such cannot be read-
ily detected by checking resource usage limits on the system where the mobile
programs run. It is difficult to statically check exact network bandwidth usage
at the language level because of the dependency on protocol implementation.
TINMAN instead prevents such attacks at the sender by performing run-time
network traffic analysis in addition to static checks on network-related service
routines. Run-time network resource checking is not the subject of focus in this
paper, and interested readers are referred to [8] for more details.

4 Resource Bound Prediction

Resource bound prediction is done at the source code level. The off-line checker
modifies the Broadway Compiler [9], a source-to-source translator for ANSI C,
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to parse the source code and output flow information to resource analysis mod-
ules. To strengthen the resource prediction results, the off-line checker performs
type-checking to assure type safety. We make the following assumptions about
the mobile code discussed throughout this paper: No cast, pointer arithmetic,
address operation and recursive calls are used. All variables must be declared
with types. Variables including structure fields must be initialized before being
used. In addition, all array subscripting operations are checked for bound viola-
tion. The type-checking is done statically. A failed type-check will result in the
termination of the off-line checker in which case no resource skeleton and usage
certificate will be generated. We shall formalize the semantics of this subset of
ANSI C in section 5.

4.1 Timing Analysis

Timing analysis attempts to determine the worst-case execution time (WCET)
of a program. Prediction of WCETs is an extensive research area, and substantial
progress has been made over the last decade. Most practical WCET techniques,
however, cannot be directly applied here since they are tied to particular target
architectures and do not take mobile code into consideration. The off-line checker
addresses this issue by combining a source level timing schema approach with
a policy-based, parameterized WCET computation method.

The basic idea of the timing schema approach [10] is that the execution time
is determined by basic blocks and control structures of a program. For example,
the execution time of the assignment statement A : a = b− c; can be computed
as T (A) = T (b)+T (−)+T (c)+T (a)+T (=), where T(X) denotes the execution
time of the item X, referred to as an atomic block, i.e., basic component in the
abstract syntax tree of a program. The execution time for the control statements
is computed similarly,

T(if(exp0) S1; else S2 ) = T(exp0) + T(if) + max(T(S1), T(S2)).
T( for(i = 0; i < N ; i + +) stmt;) = T(i) + T(=) + (N + 1) · (T(i) + T(<)

+ N · (T(stmt) + T(for) + T(i) + T(++)).
assuming i is not changed in the loop’s stmt. The timing of compound statement
is calculated recursively based on the simple statements.

We note that the above approach fails when a program contains loops whose
iteration bounds cannot be directly obtained, or when system service calls are
invoked; the latter is common for a mobile application. The off-line checker uses
a number of techniques to alleviate these problems.

Loops

For loops, a pre-compiling analysis of the source code discovers constant loop
bounds or handles dependencies between loop iteration variables of the nested
loops. For example, consider the loop
while(m < n) {S1; n = n + I0; S2}

If both m and n are constants at the entry point, the increment/decrement of n
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(i.e. I0) is a constant and dominates the next loop iteration, and the number of
loop iterations can be statically determined. Therefore, the accurate loop bound
can be calculated using constant propagation and the dominance relationship1

analysis. For a nested loop where the number of iterations in the inner loop
depends on the value of the index in the outer loop, we rely on techniques
similar to [12] to give a tight prediction on loop iterations.

For loops where loop bounds are difficult to deduce automatically (or even
do not exist as in an infinite loop) but are straightforward for a programmer
to deduce, our tool will ask the programmer to input the asserted loop bound
which will be monitored.

System Service Calls

The execution time of system service calls in a program is not known without
information of the remote system where the program runs. Our approach is
to specify the resource usage of a service call in a policy rule in the form of
pre and post conditions defined in a formal logic (to be described in detail in
section 5). The resource consumed by a service is parameterized given the ranges
of its arguments. Exact values are determined at the remote site. This approach
is flexible since the policy is configurable for a specific platform and run-time
environment. As a result, only parameter information and the system call itself
are need in the resource skeleton by the off-line checker.

4.2 Live Memory Demand Analysis

Accurate memory allocation prediction is a non-trivial task, and usually re-
quires considerable cost [13]. The memory used by a mobile code consists of
three spaces: stack space, dynamically-loaded code, and heap space. Stack space
consumption is largely due to recursive calls which are currently prohibited in the
current prototype of TINMAN. On the other hand, the size of a piece of mobile
code is generally small and it is relatively trivial to compute the heap memory
size of the mobile code. The heap space, however, is exploited by dangling point-
ers and may be allocated by malicious programmers. TINMAN analyzes the
heap space allocation, referred to as the live memory demand at the language
level. Considering the possible actions of malicious codes on memory, our efforts
are focused on memory allocation requests in a program.

Consider for example, the memory demand of an assignment statement S:
head = (Node∗)malloc(sizeof(Node) ∗ exp);

is M(S) = sizeof(Node) * Value(exp). The sizeof(Node) can be determined at the
entry point of S, while exp may not. In addition, the memory demand computa-
tion may be complicated if the malloc() statement is in a loop, and/or the paired
free statement is not properly given. Taking all these into account, we adopt
a general approach for live memory demand prediction in the following steps:
(1) Analysis of memory allocation statements: All memory allocation statements

1 A dominates B iff all paths from the start node to B intersects A [11].
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are identified such as malloc(), calloc(), memalign(). The size (in bytes) of max-
imum memory request is either calculated automatically using flow analysis or
provided by the programmer if it cannot be statically bounded, for example, the
value of exp in S depends on program input data. (2) Path analysis of mem-
ory freed: The live memory demand may be overestimated if we simply sum all
memory allocation requests. We check the dominance relationship between pairs
of memory allocation and free statements, and within the same basic blocks or
compound statements to tighten the live memory bound (3) Call chain analysis:
The demanded memory size is increased throughout the call chain. Therefore,
we compute recursively the memory demand at the points of interest, such as
loops and procedure calls.

4.3 Resource Skeleton

The timing and memory bound information obtained by either automatic anal-
ysis or from programmer input need to be maintained for further use. We use
a resource skeleton to annotate the information to help bound the resources.
Basically, a resource skeleton can be viewed as an abstraction of a program in
regard to its resource consumption. The resource skeleton of a program also
makes it possible for the on-line checker which is invoked by the code recipient
to detect violations against the resource security policy.

The Resource skeleton is created along with the construction of the flow graph
of a program derived from its syntax tree. A node in a flow graph is called a
task. Task types include basic blocks, conditional statements, loops, user-defined
procedure calls and system service calls. The tasks of basic blocks and service
calls are primitive tasks. The flow graph is hierarchical which means a program
is a sequence of tasks, and each task (except primitive tasks) can be expended
into a flow graph. To reduce unnecessary annotations and proof generation based
on these annotations, a sequence of primitive tasks are combined in the same
resource skeleton. We illustrate the construction of resource skeleton with an
example, shown in Figure 3.

          n = getrecord(group, sender);

          if (m−>nodes != NULL){

             for (i = 0; i < m−>length; i++)

          }
          else {

          m−>time = n.time − 10;

          } 

          m = &n;

 C2:   /* must find it to continue */

 L3:      /* send a copy every way */

 B4:          routefornode(&n, m−>nodes[i]);

             /* or deliver to application */
              delivertoapp(&n, dpt);

 B5:       m−>node = (Node*)malloc(sizeof(Node)*10);

 B1:   /* look up forwarding record */

B1

C2 L3 B4

B5

 

/*@ Exit: T[T[C2] M[MC2] */

/*@ Entry: T[t0] M[m0] */

/*@ B1:T[T[Entry]+Tgetrecord+13]   M[M[Entry]+Mgetrecord]*/

M[M[B1]+L3_li*Mroutefornode] */

M[M[B1]+50+Mdellivertoapp] */

/*@ C2: T[Max[T[L3], T[B5]]   M[Max[M[L3], M[B5]] */

/*@ B4:T[T[B1]+6+L3_li*(7+Troutefornode)]

/*@ B5: T[T[B1]+4+Tmalloc+Tdelivertoapp]

M[M[B1]+64*Mroutefornode]*/
/*@ L3: L3_lb = 64 T[T[B1]+472+64*Troutefornode]

Fig. 3. Example of Resource Skeleton
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The task in the flow graph is labeled with its type (e.g. L = Loop task)
followed by a global counter value. The solid line marks the execution sequence
of related tasks while a broken line means a task expansion. Resource annotation
for each task is enclosed in “/∗@ . . . ∗/” which can be identified by the on-line
checker and be ignored by a standard compiler. T[exp] and M[exp] represent the
time and memory-demand bounds of the corresponding task.

For example, the execution time of C2 is the maximum execution time of
T[L3] and T[B5], where T[L3] and T[B5] can be recursively computed from
the resource annotations for L3 and B5. The loop bound for L3 is provided
by the programmer. We note that, for example, the CPU and memory usage
bound for B1 are given only with the name of the service call (Tgetrecord). The
actual bound value calculation is performed at the remote site with instantiated
resource security policies.

5 Generating Usage Certificate

The mobile program is transported with a usage certificate since a code recipient
cannot trust the resource skeleton which may be corrupted. Our basic strategy
to establish the correctness of certificates is to use an assertional programming
logic such as Hoare Logic. Our approach is to translate the resource skeleton
into a resource safety specification in a formal logic, and generate a certificate
by checking for compliance with security policy. In this section, we first intro-
duce the resource specification, using extended Hoare triples. Next, we present
a proof system by formulating the formal semantics of a subset of the C lan-
guage (mentioned in section 4) in terms of a set of axioms and inference rules.
The program correctness on satisfying a specification can be proved within the
proof system.

5.1 Resource Specification

For a task T, a resource specification for T is an extended Hoare triple {P} T
{Q}, where assertion P is the precondition, and assertion Q is the postcondition
which holds if P is true and T terminates. An assertion is a first-order logic
formula which is typically a conjunction of predicates over program variables,
time and memory usage and terminational judgment. In order to translate a re-
source skeleton annotation for task T into an assertion, we first define the type
T ime to be the nonnegative reals and Memory to be the nonnegative integers
as respectively domains of time and memory size values. Three special variables:
now of type T ime, mem of type Memory, and terminate of type boolean are
introduced. These variables denote the moment, the allocated memory and the
termination before, if they are in P, or after, if in Q, the execution of T, respec-
tively. The initial value of now is t0, and mem m0. With this terminology, the
resource skeleton can be represented as logical specifications. For example, the
specification for task B1 in Figure 3 is
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{now = t0 ∧ mem = m0 ∧ terminate}
B1

{now <= t0 + Tgetrecord+ 13∧
mem <= m0 + Mgetrecord ∧ terminate}
And the specification for loop task L3 is as follows. Note that L3 lb is the user-
provided loop bound.
{L3 lb = 64∧now <= t0+Tgetrecord+17∧ mem <= m0+Mgetrecord∧terminate}

L3

{now <= t0 + Tgetrecord+ 472 + 64 · Troutefornode∧
mem <= m0 + Mgetrecord + 64 · Mroutefornode ∧ terminate}
It should be pointed out that the specification for a service call contains a pre-
condition, if any, over the ranges of its arguments and expressions of its running
time and memory usage. It is published as part of the security policy.

5.2 Proof System

Similar to Jozef Hooman’s framework [14] for sequential programs, we construct
a proof system for resource specification by formalizing programming constructs,
or tasks in our cases. The tasks are axiomatized by inference rules and axioms.
The rules in the framework are proved independently and published as part of
security resource policies as well.

Clearly, the formalization of resource specification and the proof system re-
quires mechanical support. TINMAN uses the Prototype Verification System
(PVS) [15] to implement its logical framework. In order to formulate resource
specification into the PVS specification language, our approach is to identify
programs with their semantics, i.e., the relations on states. A state contains
a mapping of program variables to values, current time, allocated memory, and
termination indicator. We developed an extended and modified version of con-
struction rules defined in [14]. All tasks are defined with regard to their resource
specifications. For example, the task B1 in the previous example is defined in
PVS as follows,

P0 : [State->bool] =

((LAMBDA s : state) : now(s) = t0

AND mem(s) = m0 AND terminate(s) )

srvc1: program = SRVC(Tgetrecord, Mgetrecord)

bb1 : program = BB(13);

B1 : program = seq(srvc1, bb1);

Q0 : [State->bool] = (LAMBDA s :

now(s) = t0 + Tgetrecord + 13 AND

mem(s) = m0 + Mgetrecord AND

terminate(s))

{P0}B1{Q0} : THEOREM

((FORALL s0, s1 : state):

P0(s0) AND B1(s0, s1) IMPLIES Q0(s1))

The complete set of axioms and inferences rules and program constructs defini-
tion can be found in [8].
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5.3 Proof Generation

A PVS specification for resource skeleton is obtained by applying the program
construction rules. To prove the specifications, one would like to construct proofs
interactively using the PVS prover system. For a mobile program, however, we
aim at generating a proof or certificate as automatically as possible. PVS pro-
vides a mechanism for automatic theorem proving by composing proof steps into
proof strategies. We note that the specification for a different type of program
constructs may require different proof strategies.

For primitive constructs like basic block tasks and service call tasks, we
have defined a strategy that performs a sequence of built-in proof steps. In
this strategy, the theory definition including the task definitions and assertions
is expended by automatic rewrite rules, and then Skolemization and Decision
procedure are invoked repeatedly until the theory is proved. For example, the
theorem {P0}B1{Q0} in the previous example is proved using this strategy by
first auto-rewriting P0, Q0, B1, seq, srvc1, and bb1, and then repeatedly invoking
prover commands ASSERT and SKOSIMP* until the theorem is proved.

The proof strategy for proving a choice task specification, say {P}if b then T1

else T2 {Q}, is more complicated than the primitive tasks. The Rule 2 for choice
tasks in the proof system illustrates the general steps of the strategy. Briefly,
we need first to prove the two corollaries, {P ∧ b} COND(tb, mb); T1 {Q}, and
{P∧¬b} COND(tb, mb); T2 {Q} by applying some other strategies and then invoke
the prover command LEMMA Rule 2 and the quantifier rule. The construction of
those strategies and other proof steps in the strategy for choice tasks are non-
trivial, and will not be discussed any further here.

The strategy for sequential tasks and loop tasks are constructed similarly
in consideration of the corresponding rules in proof system. The strategy for
loop task, however, involves a loop invariant and an assertion that holds if the
loop terminates. In order to generate them automatically, we simplify a loop
invariant by introducing an auxiliary loop index, say li for a loop L, where li ∈
[0, loopboundL] and is increased by 1 in each loop iteration. The loop invariant
is constructed with li and the specification (precondition and postcondition) of
task L, since we only need to assure the correctness of the resource bound, not
what the program actually does.

Using these proof strategies, the resource specification for an annotated pro-
gram is proved automatically. PVS outputs the proof onto a text file which
constitutes the usage certificate for the program. However, due to the large size
of the proofs written in the built-in PVS specification logic, we further shorten
the detailed usage certificate by only keeping the strategies and related param-
eters required to produce the proof. We refer the shortened usage certificate as
a certificate skeleton. Finally, the annotated mobile program only requires the
certificate skeleton to be transferred to the remote site.
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6 On-Line Checker

The on-line checker performs limited static verification by validating the sup-
plied resource skeleton and usage certificate, and it detects any violation against
security policy on resource utilization limits.

Figure 4 shows the major steps of static on-line verification. We note that the
calculation of actual resource bound, given instantiated policies on service calls
is performed before the validation of the resource skeleton. It enables detection
of any violation against a resource usage limit at an early stage since if there is
a violation, the mobile program will not be trusted, and no further verification
is warranted.

The purpose of the resource skeleton validation is to check for consistency
between the source code and the resource skeleton. Annotations are inserted at
the appropriate points. Specifically, the tasks, programmer-provided information
if necessary for loop bound, memory allocations and service call arguments are
annotated, and there are no further manually inserted annotations.

The resource specification generation is the same as that in the off-line
checker. It outputs a specification consisting of predicates on the resource skele-
ton. The full usage certificate is restored from the certificate skeleton. The proof
checker verifies the supplied usage certificate to conform with the specifications
within the PVS system. In our implementation, the proof checking is as simple
as a validation run of PVS in a batch mode which automatically reruns all proofs
in the usage certificate. An invalid usage certificate will generate errors which
can be caught by the proof checker by examining the run log file.

After the verification of the resource skeleton and validation of usage certifi-
cate, the only untrusted part are the user-provided assertions on loop bounds
and the ranges of function arguments. The on-line checker needs to monitor
these values at run-time. In order to do this, the on-line checker translates them
into related assertions for checking the range of the values of untrusted data.
A run-time exception will be raised if any violation of policy is detected. Dy-
namic resource utilization monitoring is a tried concept used by much previous

Resource Bound Calculation

Resource Skeleton Validation

Handling
Exception

Run−time Events Insertion
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Fig. 4. Structure of Static On-line Verification
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work. Our approach avoids much of the dynamic resource utilization monitoring
since the resource bound safety is guaranteed by static verification, and run-time
checking is required only on a few programmer-provided annotations.

7 Experimental Results

In this section, we present some experimental results obtained by using our tools.
We have translated the following two mobile programs used by other research
groups [1, 4] into C. The multicast subscribe installs forwarding pointers in each
router (member of a group) it traverses so it can receive messages sent to the
group. It has six services calls, one loop and six tasks. The multicast data simply
routes itself along a distribution tree, and it has five services calls, two loops and
eight tasks.

We first measured the code size augments due to insertion of annotations
and the usage certificate. The results are shown in Table 1. We note that the
increased size depends on the number of tasks in a program, but is not directly
related to the size of the program. This is because, for example, multicast data
has more complicated control structure and more tasks. It also explains the
reason that multicast data has a larger usage certificate. We also observed that
the certificate size is significantly decreased by up to 94.3% by using a certificate
skeleton.

Table 2 shows the cost of off-line certificate generation and on-line annotation
verification and certificate checking. The certificates of both example programs
are generated completely automatically. However, off-line certificate validation
and on-line certificate check result in an order of magnitude slower than cer-

Table 1. Code Size with Annotations (in bytes)

Program
multicast
subscribe

multicast
data

Original Size 1508 1113

Resource Skeleton 316 462

Certificate Skeleton 569 1087

Full Certificate 9963 14595

Increase(%) 58.7 139.2

Table 2. Cost of off-line checker and on-line checker

Program multicast subscribe multicast data
Specification Generation 36.5ms 58.5ms

Off-line Cert. Construction + Validation 0.83s + 11.06s 1.45s + 23.85s

On-line Anno. Verification 62.9ms 51.1ms

On-line Cert. Check 11.09s 22.72s
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Table 3. Resource Utilization Measurement

Program
Predicted
WCET

Observed
WCET
(w/o ann.)

Observed
WCET
(w/ ann.)

Pess.
Predicted
Mem(B)

Actual
Mem(B)

Pess.

multicast subscribe 74.08ms 57.56ms 81.73ms 29.8% 932 804 15.9%

multicast data 1456ms 1363ms 1503ms 6.8% 12800 8192 56.3%

tificate construction. The overhead is two-fold. First, a certificate consists of
PVS rules that are interpreted by the PVS prover interactively. Second, current
proof strategy for loops and compound choice tasks involves catch-all prover
commands like GRIND which is timing consuming. Table 2 also indicates that an-
notation verification time (e.g resource usage calculation and annotation check)
is quite small and negligible compared with certificate check time.

Table 3 shows the timing and memory analysis results of the programs. The
loop bounds of multicast data are automatically calculated while the bound of
multicast subscribe are given by a programmer. The pessimism of multicast data
is only 6.8% because we have obtained a tight loop bound. On the contrary, the
actual loop counts in multicast subscribe depend on the conditions of inner break
statements. Therefore, it is very conservative and is off by 29.8%. The overhead
of running a mobile program with annotations comes from run-time monitoring
of programmer-provided information and the communication between the anno-
tated program and the on-line checker during the execution. All of them have
small monitoring overheads.

The pessimism of memory analysis is caused by the actual execution path
that affects memory allocation statements. For example, in multicast data, the
malloc() inside a loop is only executed upon satisfaction of some condition, and
its total execution time is also decided by the loop bound. The experiments
show, however, the actual memory allocated does not exceed the predicted live
memory demand that is essential to our goal of resource security.

8 Related Work

Previous resource usage safety efforts for mobile code usually enforce the security
policy in the run-time system to limit the resource utilization of mobile code.
Smart Packets [3] checks the CPU and memory usage of active packets written
in Sprocket and enforces limits on the number of instructions executed, amount
of memory used, and access to MIB variables. The KeyNote in PLANet has
a similar mechanism [16]. These active network systems do not provide tools
to do source-code-level checking concerning resource usage, and have significant
restrictions on languages features and thus limit the expressiveness of mobile
code. Some researchers have developed extensions for more expressive security
policies. For instance, Naccio [17] specifies security policies for Java and Win32
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using a specification language. Java programs are transformed to call wrapper
functions instead of the original library code in order to enforce safety policies.

In PCC, a code producer creates a formal safety proof to prove adherence to
the safety rules that guarantee safe behavior of programs. A remote host depends
on proof validation techniques to check that the proof is valid so that the foreign
code is safe to execute. The difficulty of generating proofs for large programs
and more interesting policies are the difficulties in the application of PCC. In
practice, PCC has been used to verify low-level safety properties, and it does
not address the resource bound security problems in terms of resource behavior
prediction and program termination. Unlike PCC, TINMAN concentrates on
resource security assurance in high-level to prevent DoS-like attacks and buggy
or malicious codes with infinite loops or improper arguments to services calls
that are not addressed by previous work. The resource security policy is flexible
and configurable at code recipient site. In addition, the proof system constructed
using the PVS system makes it easier for proof construction and validation for
more complicated mobile applications.

9 Conclusions

In this paper we have presented TINMAN, a resource bound security checking
system for mobile code. The system detects malicious mobile source code that,
once installed and executed, may consume inordinate amounts of resources such
as CPU, memory and network bandwidth, as is common in DoS (Denial-Of-
Service) attacks.

TINMAN provides multiple levels of protection on resource security at both
compile time and run time, at both the source-code level as well as run-time
system level. It has been implemented by a set of tools that support resource
bound prediction and certificate generation and validation. TINMAN exploits
programmer input but does not depend on it for ensuring resource security; in-
correct programmer input about resource bounds will be checked and detected
against the resource skeleton associated with the mobile code, and the usage cer-
tificate is validated against given resource security policies. An on-line checker
tool is used to detect malicious modification of resource bound annotations and
certificate validation. This enables any violation of resource utilization with re-
spect to security policy to be detected as early as possible before the execution
of the mobile code. Together, the off-line and on-line checkers provide complete
coverage, following the guideline of proving what can be verified and monitoring
what cannot be verified.

In this paper, we consider mobile programs written in C with active network
benchmarks. However, our framework is extensible and applicable, in an even
simpler style, for other programming languages for mobile applications such as
Javascript of which source codes are usually embedded in a HTML file. By
gaining experience in TINMAN, we shall hopefully be able to customize the
framework for some version of byte-code for C. Our plan is to use the script
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from the verifier session as the usage certificate so that the proof can be checked
on-line efficiently.
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