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Abstract. There is a growing security concern on the increasing num-
ber of databases that are accessible through the Internet. Such databases
may contain sensitive information like credit card numbers and per-
sonal medical histories. Many e-service providers are reported to be
leaking customers’ information through their websites. The hackers ex-
ploited poorly coded programs that interface with backend databases us-
ing SQL injection techniques. We developed an architectural framework,
DIDAFIT (Detecting Intrusions in DAtabases through FIngerprinting
Transactions) [1], that can efficiently detect illegitimate database ac-
cesses. The system works by matching SQL statements against a known
set of legitimate database transaction fingerprints. In this paper, we ex-
plore the various issues that arise in the collation, representation and
summarization of this potentially huge set of legitimate transaction fin-
gerprints. We describe an algorithm that summarizes the raw transac-
tional SQL queries into compact regular expressions. This representation
can be used to match against incoming database transactions efficiently.
A set of heuristics is used during the summarization process to ensure
that the level of false negatives remains low. This algorithm also takes
into consideration incomplete logs and heuristically identifies “high risk”
transactions.

1 Introduction

Nowadays, most e-commerce sites offering some kind of online services have
a database at its backend. Applications accessing these databases support a large
variety of activities. Data found in these databases ranges from personal infor-
mation and banking transactions to medical records and commercial secrets.
Any breach of security to these databases can result in tarnished reputation for
the organization, loss of customers’ confidence and might even result in lawsuits.
Unfortunately, recent reports indicate that there is a large increase in the num-
ber of security breaches, which resulted in theft of transaction information and
financial fraud [2, 3, 4]. Clearly, it is important that the data in these databases
be protected from unauthorized access and modification.

One mechanism to safeguard the information in these databases is to use
intrusion detection systems (IDS). These systems aim to detect intrusions as
early as possible, so that any damage caused by the intrusions is minimized.
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They function as sentinels and ensure that any compromise on the integrity and
confidentiality of the data is detected and reported as soon as possible. Intrusion
detection research is not new and has been on going for many years. However,
previous efforts were focused on network-based intrusion detection and host-based
intrusion detection. Network-based intrusion detection typically works by mon-
itoring network traffic and host-based intrusion detection works by monitoring
log files in the hosts. Both network- and host-based intrusion detection systems
look for attack signatures, which are specific patterns that usually indicate ma-
licious or suspicious intent, to identify intrusions. There are numerous commer-
cial network- and host-based intrusion detection systems in the market today,
and the market leaders include RealSecure [5], NFR [6], Dragon [7], Cisco [8]
and Symantec [9]. There are also IDS that are free and highly acclaimed (e.g.
Snort [10]).

However, these intrusion detection systems do not work at the applica-
tion layer, which can potentially offer more accurate and precise detection for
the targeted application. The distinctive characteristics of database manage-
ment systems (DBMSes), together with their widespread use and the invaluable
data they hold, make it vital to detect any intrusion attempts made at the
databases. Therefore, intrusion detection models and techniques specially de-
signed for databases are becoming imperative needs. There are recent reports [4]
in which SQL injection techniques, which refer to the use of carefully crafted
and malicious SQL statements, were used by the intruders to pilfer sensitive
information. SQL injection will be further discussed in a later section. This re-
inforces the point that intrusion detection systems should not only be employed
at the network and hosts, but also at the database systems where the critical
information assets lie.

DIDAFIT (Detecting Intrusions in DAtabases through FIngerprinting Trans-
actions) is a system developed to perform database intrusion detection at the ap-
plication level. It works by fingerprinting access patterns of legitimate database
transactions, and using them to identify database intrusions. The framework
for DIDAFIT has been described in [1]. This paper describes how the finger-
prints for database transactions can be represented and presents an algorithm
to learn and summarize SQL statements into fingerprints. The main contribution
of this work is a technique to efficiently summarize SQL statements queries into
compact and effective regular expression fingerprints. The technique can han-
dle incomplete training data sets and uses heuristics to maintain false negatives
(missed attacks) at low levels.

The rest of the paper is as follows. Section 2 discusses two basic concepts
necessary for the understanding of subsequent sections. A brief introduction to
the DIDAFIT framework is given in Section 3. The issues that arise during
fingerprint learning and derivation are discussed in Section 4. In Section 5, our
algorithm for fingerprint learning is detailed together with a full example. We
survey the related works in Section 6, and conclude in Section 7.
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2 Preliminaries

In this section, we introduce SQL injection and SQL fingerprints which are
necessary for understanding the rest of the paper.

2.1 SQL Injection

Application users do not usually communicate with the database server directly,
but through the application server. Although there is no direct interaction with
the database server, it is possible that unauthorized users can access the database
in ways unintended by the developer. This is made possible by carelessly designed
applications, database server holes, as well as application server exploits. One
technique of exploiting carelessly written database applications is SQL injection
[11, 12, 13]. SQL injection refers to crafting SQL statements using “string build-
ing” techniques to trick the application server into executing the intruder’s (often
malicious) code. Possible results of actions by the injected code include infor-
mation disclosure, unauthorised data modification, deletion of database or even
escalation of the intruder’s database privileges to that of the administrator’s.

As an illustration, consider the following Perl script:

...

my $passwd = $cgi->param(’passwd’);

my $name= $cgi->param(’name’);

$sql = "select * from cust where name=’$name’".

" and passwd=’$passwd’";

$sth = $dbh->prepare($sql);

$sth->execute;

if (!($sth->fetch)) {

report_illegal_user();

} ...

The script shown is a typical procedure for login checking. It is supposed to
verify if the user has supplied the user name and his/her password correctly.
However, this script is vulnerable to SQL injection attacks. A malicious user can
enter the following text into the password field of the submitted form:

x’ OR ’x’=’x

Assuming the user name is “alice” and the password is as above, the prepared
SQL statement becomes

select * from customer

where name=’alice’ and passwd=’x’

OR ’x’=’x’

The where clause of this statement will always be true since the intruder
has carefully injected a “ OR ’x’=’x’ ” clause into it. This makes the result
set of the query non-empty no matter what password is supplied. The malicious
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user can now log in as the user “alice” without knowing the password. The
main reason for this vulnerability is the carelessly written procedure. DIDAFIT
can detect such attacks on the database and other anomalous data accesses.
Conventional solutions to this vulnerability include the use of stored procedures
and checking user parameters before using them (e.g. dangerous characters such
as ’ should not be allowed in the input). While stored procedures tend to be
non-portable and require longer development time, methods to enforce good
programming practices are beyond the scope of this work.

2.2 SQL Fingerprints

For most applications with database services, the SQL statements submitted to
the database are typically generated by some server-side scripts/programs. These
statements are generated in a predictable manner and this regularity gives rise
to opportunities to characterize valid transactions with some sort of signatures.

For example, assume we have a delete order transaction that deletes from
the order table. Further assume that an order can only be deleted by specifying
its orderID. A typical valid SQL statement can be

delete from order where orderID=’12573’;

Now, suppose the database server receives the following SQL statement:

delete from order where custid=’eric’;

This SQL statement does not conform to the pattern of the SQL statements
for delete order transaction (i.e. it uses custid as the criteria for filtering
instead of orderID). This statement could be the result of an intruder.

We have presented the idea behind fingerprinting database transactions.
DIDAFIT uses a fingerprinting technique that derives signatures (which we call
fingerprints) to help identify illegitimate SQL statements. In DIDAFIT, each fin-
gerprint characterizes one set of SQL statements. Our fingerprints (as described
in [1]) uses regular expressions. A single fingerprint can precisely represent var-
ious variants of SQL statements that can result from a transaction.

For example, we have a transaction that can query the order table given
a customer ID (custid) and a range of values for the order amount (amt). The
code below shows how this service may be coded in Perl.

$sqlstm = "SELECT orderID, amt from order where ";

$sqlstm .= "custid=’$custid’ and ";

$sqlstm .= "amt>$min_amt and amt<$max_amt";

We list below some possible SQL statements generated from this code:

SELECT orderID, amt from order where custid=’3822’ and amt>20 and amt<100
SELECT orderID, amt from order where custid=’7312’ and amt>10 and amt<200

All variants of queries generated by the code above can be represented using
this regular expression:
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^SELECT orderID, amt from order where custid=’[^’]*’
and amt>[[:digit:]]+ and amt<[[:digit:]]+$

Notably,

1. The literal containing the value of custid has been replaced with the regular
expression ’[^’]*’, which represents a quoted string.

2. The numerical value of amt is represented by the regular expression
[[:digit:]]+, which represents an integer.

3. Finally, the whole expression begins with a ^ and ends with a $ to prevent
any additional clauses from being injected into the statement (such as using
the union clause to append another query).

3 DIDAFIT: An Overview

DIDAFIT is designed as a misuse detection system. It can be broadly classified
as a signature-based IDS with enhanced capabilities for learning and deducing
new signatures. The overall architecture for DIDAFIT is shown in Figure 1. The
meaning of the numbered flows in Figure 1 are as follows:

1. The application user issues a service request to the application server. This
transaction may or may not be legitimate.

2. The application server formulates the necessary SQL statements and issues
them to the database server through the database user.

3. The database user logs into the database. The database session is traced
and the SQL statements received from the application are channeled to the
misuse detection module.

4. In the misuse detection module, the received SQL statements are matched
with the set of fingerprints of legitimate database transactions.

5. Anomalies or intrusions are then channeled to the reaction modules for the
appropriate action to be taken. Actions that can be taken include alerting
the administrators, sounding the alarm on the console and paging the duty
personnel.

6. Output is returned to the application user (if applicable).

Fingerprint
Monitor and
Anomaly Detection
Module

Signature
Database

Database Server

3

4 Actions to
be taken

Database
User

6

2

5

Application User

6

Transaction

1

Application
Server

Fig. 1. Architecture for DIDAFIT
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DIDAFIT involves three components:

1. An utility to log all the SQL statements submitted to the database server.
We need to capture the submitted SQL statements for the database trans-
actions in order to compare them with those in the “legitimate” fingerprint
database. Different database systems offer different ways to capture the SQL
statements. For example, Oracle provides the sql trace [14] utility that can
be used to trace all database operations in a database session of an user. The
trace results are logged to a file, but we can channel the data to a monitor-
ing and misuse detection module. Note that the sql_trace utility is not
designed for this purpose. Rather, its intended use was to aid in the process
of optimizing database performance. However, we make use of its capability
to log SQL statements executed by the database engine. A concern with us-
ing the trace facility of database systems is its impact on the performance of
the databases. Our experiments in [1] show that the impact on performance
is extremely small.

2. A process to derive the fingerprints for SQL statements of legitimate
database transactions.
We propose the use of regular expressions to represent the derived finger-
prints as described in Section 2.2.

3. A database of “legitimate” fingerprints to be used for database intrusion
detection.
To make use of the fingerprints, every submitted SQL statement is matched
with the set of legitimate fingerprints. If the SQL statement cannot match
any of the fingerprints, then an intrusion may have occurred.
As an illustration, consider the example of order table queries (Section 2.2).
Suppose our database server receives the following SQL statement.

select orderID, amt from order;
This statement does not match our legitimate fingerprint shown previously.
This is caused by the missing custid input, which is mandatory by our
signature. Hence, this anomalous statement is detected.
There are many software packages and utilities that can process regular
expressions. The standard Unix tool egrep is one such software that can
handle the matching of our fingerprints efficiently.

4 Issues in Automated Fingerprints Learning and
Derivation

One obvious method of generating the complete set of fingerprints for all
database transactions is to do a code-walkthrough. However, this may not be
feasible for several reasons. The code may contain sensitive business logic and
not available for the walkthrough for some applications. The code base for many
applications are also large and changes frequently. Maintaining the consistency
and keeping the set of finerprints updated will require a lot of effort. Hence, it
is important that the fingerprints be automatically learnt and deduced as much
as possible.
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In this section, we first discuss the problems and challenges that arise when
we automate the learning and derivation of the fingerprints for the database
transactions. We propose possible solutions after that.

4.1 Problems and Challenges

An obvious method to “learn” fingerprints is to use each legitimate SQL state-
ment in the training log as a fingerprint. However, it suffers from the following
problems:

1. The set of SQL statements collected is a very large set. If each unprocessed
SQL statement forms a fingerprint, the size of the fingerprint database be-
comes unmanageable. We need a way to automatically summarize the SQL
statements. Consider the following SQL statements:

delete from order where orderID=’13245’;
delete from order where orderID=’45718’;

Although the orderIDs are different, they serve the same function, which
is to remove a particular order based on the orderID and hence, can be
summarized to a single fingerprint:

delete from order where orderID=#$ORDERID;

where #$ORDERID is a meta-constant to denote a string literal in the domain
of orderID. However, we need to avoid over-summarization. For example,

delete from order where orderType=’UNDELIVERABLE’;
delete from order where orderType=’NORMAL’;

should not be summarized to a single fingerprint. The first SQL statement
may be a typical statement used during maintenance. However, it is pos-
sible that the second statement originated from a malicious attack (why
should anyone delete all “normal” orders?). Over-summarization may cause
DIDAFIT to miss such illegitimate statements. Thus, our learning algorithm
must be able to group similar SQL statements into fingerprints, but yet does
not increase the probability of missing attacks.

2. The SQL transactions in the training trace log may contain illegitimate state-
ments from past intrusion activities. We do not assume that all the SQL
statements in the training log to be legitimate. Our learning algorithm must
be able to detect potentially invalid SQL statements, even within the training
set of SQL statements.

3. The trace log may not be complete. Some legitimate transactions may not be
executed during the period of monitoring. With incomplete input for train-
ing, DIDAFIT may treat unseen, but legitimate statements as illegitimate.
This may give rise to a large number of false positives. Thus, our learning
algorithm should be able to deduce a set of possibly legitimate fingerprints
with an associated level of confidence, that are missing from the training
data. The legitimacy of these deduced fingerprints can be ascertained by the
DBA.
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L1 select orderID, Amt from order where custID=’2317’;
L2 select orderID, Amt from order where custID=’1920’;
L3 select orderID from order where custID=’3571’ and amt>100 and amt<300;
L4 select prod_desc from product where prodID=’X3175’;
L5 select orderID from order where custID=’’ or TRUE or custID=’’;
L6 select comment from prod_comment where prodID=’X3175’ and conf=’PUBLIC’;
L7 select orderID, Amt from order where custID=’8256’;
L8 select orderID from order where custID=’1354’ and odate=’1-Jan-1999’ and amt>500;
L9 select comment from prod_comment where prodID=’X0507’ and conf=’PRIVATE’;
L10 select prod_desc from product where prodID=’X1754’;
L11 select orderID from order where custID=’1028’ and odate=’1-Jan-1999’ and amt<1000;
L12 select orderID, Amt from order where custID=’1754’;
L13 select comment from prod_comment where prodID=’X1754’ and conf=’PUBLIC’;
L14 select comment from prod_comment where prodID=’X0507’ and conf=’PUBLIC’;
L15 select comment from prod_comment where prodID=’X3075’ and conf=’PUBLIC’;
L16 select prod_desc from product where prodID=’X0675’;
L17 select orderID, Amt from order where custID=’8317’;

Fig. 2. A snapshot of the SQL trace log for an E-mall

Before we present our solutions to these three challenges, we consider an
online E-mall application with the following business rules:

– Users can create and delete their own orders.
– Users can perform searches on their own orders and limit the search by

specifying the order ID (orderID), product ID (prodID), the range of the
order’s value (amt), and/or the date of order (odate).

– Users can see the description of the products (prod desc).
– Users can only see the public comments on the product (conf=’PUBLIC’),

but not internal comments, which are reserved only for the staff of the E-
mall.

A snapshot of the SQL trace log is shown in Figure 2. This example will be
used in the examples for the rest of this work.

4.2 Selective Summarization of Literals

Observe from the logs in Figure 2 that L1 differs from L2 only by the value of the
custID parameter. They query the same attributes for a given customer ID. Our
learning algorithm can group these SQL statements under the same fingerprint.
This can be done by first replacing each literal by a meta-constant. In this case,
each string literal that represents the value of a custID attribute is replaced by
the token #$CUSTID. The summarized fingerprint for L1 and L2 is

F1 select orderID, Amt from order where custID=#$CUSTID;

Likewise, the next three log records (L3,L4,L5) give the following three fin-
gerprints:
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F2 select orderID from order where custID=#$CUSTID and amt>#%AMT and amt<#%AMT;
F3 select prod_desc from product where prodID=#$PRODID;
F4 select orderID from order where custID=#$CUSTID or TRUE or custID=#$CUSTID;

However, as mentioned previously, replacing all literals to wild-card tokens
indiscriminately may cause some malicious SQL statements to go undetected.
Consider L6, L9, L13, L14 and L15 , the first attribute in the WHERE-clause
(product ID prodID), can take any value, but the second attribute, (confidential-
ity conf), takes only the value “PUBLIC”. This corresponds well to the “business
rule” that customers can see only the public comments but not otherwise. Thus,
we should only replace the literals of the prodID with the wild-card token and
let the literals of the conf attribute remain unchanged, i.e.

select comment from prod_comment
where prodID=#$PRODID and conf=’PUBLIC’;

The difference between the two treatments lies on the fact that prodID is not
from a small set of pre-specified values. This value carries no other implication,
except to identify a product. On the other hand, the valid values of conf is
restricted to a small list of pre-determined values. Values such as “PUBLIC”,
“PRIVATE” and “SECRET” are not only used to identify tuples in the database,
but also carry implications for the operations and sensitivity of the tuples. Hence,
it is not advisable to summarize these literals into one token.

In view of this, our algorithm will replace a literal with a token only when the
literal corresponds to a domain that carries no implicit meaning for operations
and data sensitivity. Such domains can be determined by consulting the DBA.
However, in the event that this information is unavailable, we can assume that if
the range of values in the domain is very large (or unbounded), then it is unlikely
that such value has an implicit meaning. To test if the domain is unbounded,
we test the growth rate of the number of unique values for the attribute as the
size of the sample increases. If the domain is unbounded, the growth rate will
be constant. That is to say:

Number of distinct literals found ∝ s

where s is the number of the samples in the observation. On the other hand,
if the domain contains only a few fixed constants, then the number of distinct
values will be similar to the standard diminishing growth curve,

Number of distinct literals = N0(1 − e−λs)

This behavior can be easily tested with many statistical methods such as the
non-parametric one-sample Komoglov-Smirnov’s D Statistics test (KS-test). For
example, consider the set of trace L6, L9, L13, L14, L15 from Figure 2. The
prodID attribute employs four literals: ’X3175’, ’X0507’, ’X1754’ and ’X3075’
in the first conjunction in the WHERE-clause.

Using the one-sample KS-test, the D-statistic for testing the linear growth
can be computed as follows:

D =
√

5 max{|1
4
− 1

5
|, |2

4
− 2

5
|, |3

4
− 3

5
|, |3

4
− 4

5
|} = 0.15
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Table 1. Distribution of the prodID Literal

Number of statements 1 2 3 4 5
sampled (L6) (L6,L9) (L6,L9,L13) (L6,L9,L13,L14) (L6,L9,L13,L14,L15)
Total no. of unique 1 2 3 3 4
literals observed
Cumulative distribution 1/4 2/4 3/4 3/4 4/4
Expected uniform distribution 1/5 2/5 3/5 4/5 5/5

At α=90% significance level, this value should be at most 0.563. Thus, we accept
the hypothesis that the domain of prodID is unbounded.

On the other hand, the conf attribute has 2 unique literals in the 5-statement
sample: ’PUBLIC’ and ’PRIVATE’. The D-statistic is computed likewise as:

D =
√

5 max{|1
2
− 1

5
|, |2

2
− 2

5
|, |2

2
− 3

5
|, |2

2
− 4

5
|} = 0.6

It exceeds 0.563. Thus, we reject the hypothesis that the domain of conf is
unbounded. Hence, we should retain all the constants related with conf when
generating the fingerprints.

4.3 Detection of High-Risk Transactions

It is obvious that L5 is an instance of SQL injection. It is caused by injecting
the string “’ or TRUE or custID=’” into the custID parameter. We consider
this fingerprint to be rare. A fingerprint is rare if its frequency is statistically
below a small threshold. The occurrence of a rare fingerprint warns of a possible
malicious SQL statement.

In our algorithm, we tabulate the frequency of each fingerprint learnt. If
a fingerprint occurs frequently, then it is safe to include it in the fingerprint
database. For instance, consider the four fingerprints, F1, F2, F3 and F4 (in
Section 4.2).

Fingerprint F1 matches 5 statements in the trace of size 17 (Figure 2). A z-
test can conclude that the frequency is not close to 0. Similarly, fingerprint F3
can be considered safe based on its frequency. On the other hand, fingerprints F2
and F4 matches only one statement each in the trace. Statistically, at 95% con-
fidence level, we cannot deny that their frequency is 0. In other words, they may
correspond to potentially malicious statements and require further investigation.

To further refine our decision to ascertain the legitimacy of F2, we observe
that F2 differs from F1 as follows:

1. F2 has a more restrictive WHERE-clause compared to F1. It specifies more
conditions using the “AND” operator in the WHERE-clause than F1.

2. F2 selects fewer attributes than F1.

Thus, we can consider F2 to be safe because for any SQL statement that
matches F2, the set of returned tuples is a subset of the tuples returned by
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some SQL statement matching F1 (which is a legitimate fingerprint). Thus,
even if some SQL statements that match F2 is malicious, it cannot reveal more
information than some legitimate query that is allowed by F1.

On the other hand, F4 cannot be considered safe. F4’s WHERE-conditions
are joined using the “OR” operator. Thus, it is possible that a query that matches
F4 can reveal more tuples than what is allowed by the legitimate fingerprints.

Thus, our learning algorithm decides that an rare fingerprint F is legitimate
if there exists another legitimate fingerprint F ′, such that F differs from F ′ only
by

1. any extra conditions in the WHERE-clause of F that is missing from F ′ is
joined with the “AND” operator; and

2. F selects an equal number of or fewer columns than F ′.

4.4 Deduction of Missing Fingerprints.

As mentioned previously, some legitimate fingerprints might not appear in the
trace log due to incomplete training data. This incompleteness can cause many
false alarms during the actual operation. To reduce this problem, we propose an
algorithm to deduce a set of possible missing fingerprints. This set of missing
fingerprints will then be presented to the DBA for confirmation to be included
in the legitimate fingerprint set.

Consider the transaction set L3, L8, L11 of the log in Figure 2. These logs
can be captured by the following three fingerprints:

P1 select orderID from order where custID=#$CUSTID and amt>#%AMT and amt<#%AMT;
P2 select orderID from order where custID=#$CUSTID and odate=#$ODATE and amt>#%AMT;
P3 select orderID from order where custID=#$CUSTID and odate=#$ODATE and amt<#%AMT;

The three fingerprints share the following properties:

1. Except for the conditions at the WHERE-clause, they are identical.
2. The WHERE-clause of each pattern uses three out of the following four

conjuncts:
“custID=#$CUSTID”, “odate=#$ODATE”, “amt>#%AMT” and “amt<#%AMT”.

It is possible that there is another fingerprint, that uses all four conjuncts:

P4 select orderID from order where custID=#$CUSTID and odate=$#ODATE
and amt>$%AMT and amt<$%AMT;

P4 compacts all the nine conjuncts used in P1, P2 and P3 into only four
conjuncts. Indeed, this scenario can be generated by the following Perl script:

$sqlstm = "select orderID from order where custID=’$custID’";

if !($odate eq "") {

$sqlstm .= " and odate=’$odate’";

}

if ($min_amt > 0) {

$sqlstm .= " and amt>$min_amt";
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}

if ($max_amt > 0) {

$sqlstm .= " and amt<$max_amt";

}

In general, a fingerprint F is a derived fingerprint from fingerprints
F1, . . . ,Fm with compactness η if

1. Each pair of fingerprints Fi,Fj (1 ≤ i, j ≤ m), as well as F ,Fi (1 ≤ i ≤ m),
differs only by some missing conjuncts in their WHERE-clauses.

2. The condition in the WHERE-clause of F subsumes every condition in the
WHERE-clause of each Fj (1 ≤ j ≤ m).

3. Each conjunct in the WHERE-clause of F appears in at least the WHERE-
clause of at least one Fj (1 ≤ j ≤ m).

4. Furthermore, η (η ≥ 1) is the ratio of the total number of possibly identical
conjuncts in F1, . . . ,Fm over the number of conjuncts in F .

In our derived fingerprint P4, the number of conjuncts used in the WHERE-
clause is 4. The total number of conjuncts used in the three fingerprints
(P1,P2,P3) is 9. Hence, P4’s compactness is 9

4 . High compactness gives higher
confidence that the fingerprints F1, . . . ,Fm are closely related. For example,
consider the following case,

P1’ select orderID from order where custID=#$CUSTID;
P2’ select orderID from order where odate=#$ODATE;
P3’ select orderID from order where itemid=#$ITEMID;

These three fingerprints can derive the following:

P4’ select orderID from order where custID=#$CUSTID and odate=#$ODATE and itemid=#$ITEMID;

of compactness 1. The three fingerprints (P1’,P2’,P3’) are likely generated
by different functions. If this is the case, the derived fingerprint (P4’) will never
appear in the trace log.

To search for derived fingerprints with a high degree of compactness, we
perform the following steps,

1. Group all the legitimate fingerprints into equivalent classes such that each
pair of fingerprint Fi, Fj in the same class differs only by some missing con-
juncts in their WHERE-clauses.

2. For each equivalent class, conjunct all the conditions in the WHERE-clauses
of all fingerprints, removing duplicate conjuncts if necessary, into a condi-
tion C. Construct F0 such that it is identical as F1 except that the WHERE-
clause is replaced with C.

Note that the legitimacy of this derived fingerprint should be confirmed with
the DBA, before including it in the set of legitimate fingerprints.
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5 Algorithm for Fingerprint Learning and Derivation

In this section, we summarize the discussion in the previous sections by present-
ing the algorithm to automatically generate the set of fingerprints. We illustrate
the algorithm with a complete example.

The algorithm is shown in Algorithm 1. After that is a detailed walkthrough
of the algorithm using the trace log shown in Figure 2.

Algorithm 1: Algorithm for Fingerprint Learning and Derivation
Given trace log LOG, and a set of attributes A that carries some implicit mean-
ing optionally specified by the DBA, we perform the following steps:

1. For each attribute in the WHERE-clauses of LOG that is not found in A,
scan LOG to compute the Kolmogorov-Smirnov’s D statistic to test for linear
growth of the number of unique literals.

2. If the number of unique literals of any attribute does not statistically support
a linear growth, put it into the set A′.

3. Generate a set of unique fingerprints by replacing all the literals of attributes
in the WHERE-clause that are neither in A nor A′, with meta-constants.
(a) replace all the string literals of the expression attr=’literal’ in the

WHERE-clause with attr=#$attr.
(b) replace all the numeric literals of the expression attr=numeric_literal

in the WHERE-clause with attr=#%attr.
Let F1, . . . ,Fm be the fingerprints generated.

4. Count the number of occurrences for each fingerprint. Label the fingerprint
“safe” if the number of occurrences is not statistically 0.

5. For each unclassified fingerprint F , label it “safe” if there exists another
“safe” fingerprint F ′, such that F differs from F ′ by only
(a) any extra condition in the WHERE-clause of F that is missing from F ′

is joined with the “AND” operator; and
(b) F selects an equal number of or fewer columns than F ′.
The remaining fingerprints are labelled “unsafe”.

6. Compute the set of derived fingerprints from the set of “safe” fingerprints.
Mark these derived fingerprints as “derived”.

7. Present all the “unsafe” and “derived” fingerprints to the DBA. Each “un-
safe” or “derived” fingerprint that is approved by the DBA will be marked
as “safe”. If there remains any “unsafe” fingerprints, then an intrusion has
occurred in LOG.

8. For each “safe” fingerprint, replace the meta-constant by the regular ex-
pressions. This legitimate fingerprint database can now be used to detect
intrusions for the database application.

1. Assuming A is an empty set, we first scan the log to compute the
Kolmogorov-Smirnov’s D statistic for discrete data against linear growth
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Table 2. Occurrence count of the fingerprints

Fingerprint F1 F2 F3 F4 F5 F6 F7 F8

Frequency 5 1 3 1 4 1 1 1

of the number of unique values for each attribute in the WHERE-clause (i.e.
custid, amt, prodid, conf, odate). For example, (as calculated in the pre-
vious section) the prodid has a D statistic of 0.15, while the conf has a D
statistic of 0.6.

2. After step 2, we have A′ = {conf}.
3. The next step is to generate the initial fingerprint set by replacing the literals

of each attribute not in A nor A′ with its corresponding meta-constant. We
obtain the following fingerprints:

F1 select orderID, Amt from order where custid=#$CUSTID;
F2 select orderID from order where custid=#$CUSTID and amt>#%AMT and amt<#%AMT;
F3 select prod_desc from product where prodid=#$PRODID;
F4 select orderID from order where custid=#$CUSTID or TRUE or custid=#$CUSTID;
F5 select comment from prod_comment where prodid=#$PRODID and conf=’PUBLIC’;
F6 select comment from prod_comment where prodid=#$PRODID and conf=’PRIVATE’;
F7 select orderID from order where custid=#$CUSTID and odate=#$ODATE and amt>#%AMT;
F8 select orderID from order where custid=#$CUSTID and odate=#$ODATE and amt<#%AMT;

4. We count the number of occurrences for each fingerprint next. The results
are tabulated in Table 2.
F1, F3 and F5 occurs frequently enough for us to infer that they are “safe”.
On the other hand, F2, F4, F6, F7 and F8, occurs only once each in the
trace log. These fingerprints need to be looked into.

5. Upon inspection, F2, F7 and F8 can be classified as “safe” as they can be
subsumed by F1. F4 and F6, however, are marked “unsafe”. They should be
highlighted to the DBA.

6. The next step involves finding derived fingerprints of high compactness. In
this example, we set the degree of compactness to be at least 2. The following
new fingerprint marked “derived” is found,
F9 select orderID from order where custid=#$CUSTID and odate=#$ODATE

and amt>#%AMT and amt<#%AMT;

7. Assume the DBA approves the “derived” fingerprint F9, but does not ap-
prove all the other “unsafe” fingerprints. The legitimate fingerprints are F1,
F2, F3, F5, F7, F8 and F9. The meta-constants are replaced by the appro-
priate regular expressions. The final fingerprints set of legitimate fingerprints
for this database application consists of:
F1 select orderID, Amt from order where custid=’[^’]*’;
F2 select orderID from order where custid=’[^’]*’ and amt>[0-9]+ and amt<[0-9]+;
F3 select prod_desc from product where prodid=’[^’]*’;
F5 select comment from prod_comment where prodid=’[^’]*’ and conf=’PUBLIC’;
F7 select orderID from order where custid=’[^’]*’ and odate=’[^’]*’ and amt>[0-9]+;
F8 select orderID from order where custid=’[^’]*’ and odate=’[^’]*’ and amt<[0-9]+;
F9 select orderID from order where custid=’[^’]*’ and odate=’[^’]*’ and amt>[0-9]+

and amt<[0-9]+;
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6 Related Work

As far as the authors know, this is the only work using SQL transaction fin-
gerprints or signatures to detect database intrusions. Closest to our work is [15]
which profiles users and roles in a relational database system. It generates the
profiles from the “working scopes” of the users which are defined as the sets
of attributes that are usually referenced together with some values. This pro-
file describes typical user behaviour and is used to detect misuse. This method
assumes that the legitimate users show some level of consistency in using the
database system. If this assumption does not hold, or if the threshold for incon-
sistency is not set properly, the result will be a high level of false positives. This
method also faces the attribute selection problem when it chooses the “features”
to consider when building the working scopes.

Classification algorithms (e.g. C4.5 [16]) seem to be applicable to our problem
of identifying the instances of SQL statements that constitute an intrusion. How-
ever, this will lead to the “feature selection” problem in which we have to decide
on the feature set of the SQL statements to be used in the classifier. The entire
training set will also have to be tagged as either legitimate or illegitimate which
may be infeasible for large training sets. Text summarization techniques [17, 18]
cannot be applied to our problem of SQL transaction summarization as unlike
text collections, our logs consist of largely independent SQL transactions and
lack the dependency (style, theme) among linguistic units (phrase, clause, etc)
in text collections.

7 Conclusion

DIDAFIT is a database intrusion detection system that identifies anomalous
database accesses by matching database transactions with a set of legitimate
transaction fingerprints. This work addresses the problem of learning the set
of legitimate fingerprints from the database trace logs that contain the SQL
statements. We developed an algorithm that can:

1. selectively and effectively summarize SQL statements into fingerprints.
2. detect “high-risk” (possibly malicious) SQL statements even in the training

set of SQL statements.
3. derive possibly legitimate fingerprints that are missing from the SQL state-

ments in the training set.

Currently, the algorithm works mostly at the syntactic-level. We are look-
ing into how domain knowledge can contribute to form a semantically-richer
intrusion detection mechanism. Further research is also done to study how the
algorithm can be extended to support incremental learning.

Acknowledgment

The authors would like to thank the anonymous reviewers for their useful com-
ments.



Learning Fingerprints for a Database Intrusion Detection System 279

References

[1] Low, W.L., Lee, S.Y., Teoh, P.: DIDAFIT: Detecting Intrusions in Databases
Through Fingerprinting Transactions. In: Proceedings of the 4th International
Conference on Enterprise Information Systems (ICEIS). (2002) 264, 265, 267,
269

[2] Atanasov, M.: The truth about internet fraud. In: Ziff Davis Smart Business,
Available at URL http://techupdate.zdnet.com/techupdate/stories/main/

0,14179,2688776-11,00.html (2001) 264
[3] Hatcher, T.: Survey: Costs of computer security breaches soar. In: CNN.com,

Available at URL
http://www.cnn.com/2001/TECH/internet/03/12/ csi.fbi.hacking.report/

(2001) 264
[4] Poulsen, K.: Guesswork Plagues Web Hole Reporting. In: SecurityFocus, Available

at URL http://online.securityfocus.com/news/346 (2002) 264, 265
[5] Internet Security Systems: RealSecure Intrusion Detection Solution, Available at

URL http://www.iss.net (2001) 265
[6] NFR Security: NFR network intrusion detection, Available at URL

http://www.nfr.com/products/NID/ (2001) 265
[7] Enterasys Networks, Inc.: The Dragon IDS, Available at URL

http://www.enterasys.com/ids/dragonids.html (2001) 265
[8] Cisco Systems, Inc.: Cisco Intrusion Detection, Available at URL

http://www.cisco.com/warp/public/cc/pd/sqsw/sqidsz/ (2001) 265
[9] Symantec Corporation: Enterprise Solutions, Available at URL

http://enterprisesecurity.symantec.com/ (2001) 265
[10] Roesch, M.: Snort: Lighweight intrusion detection for networks. In: Proceedings of

the 13th Conference on Systems Administration (LISA-99), USENIX Association
(1999) 229–238 265

[11] Andrews, C.: SQL injection FAQ, Available at URL
http://www.sqlsecurity.com (2001) 266

[12] Anley, C.: Advanced SQL Injection In SQL Server Applications, Next Generation
Security Software Ltd, Available at URL http://www.nextgenss.com/papers/

advanced sql injection.pdf (2002) 266
[13] Anley, C.: (more) Advanced SQL Injection, Next Generation Security Software

Ltd, Available at URL http://www.nextgenss.com/papers/

more advanced sql injection.pdf (2002) 266
[14] Oracle: Oracle, 2001, Available at URL http://www.oracle.com (2001) 269
[15] Chung, C.Y., Gertz, M., Levitt, K.: Misuse detection in database systems through

user profiling. In: Web Proceedings of the 2nd International Workshop on the
Recent Advances in Intrusion Detection (RAID). (1999) 278

[16] Quinlan, J. R.: Induction of decision trees. In Shavlik, J.W., Dietterich, T.G.,
eds.: Readings in Machine Learning. Morgan Kaufmann (1990) Originally pub-
lished in Machine Learning 1:81–106, 1986. 278

[17] Hovy, E., Lin, C. Y.: Automated Text Summarization in SUMMARIST. In: Pro-
ceedings of ACL/EACL Workshop on Intelligent Scalable Text Summarization.
(1997) Madrid, Spain. 278

[18] Boguraev, B., Bellamy, R.: Dynamic Presentation of Phrasally-Based Document
Abstractions. In: Proceedings of Thirty-second Annual Hawaii International Con-
ference on System Sciences (HICSS). (1998) 278


	Learning Fingerprints for a Database Intrusion Detection System
	Introduction
	Preliminaries
	SQL Injection
	SQL Fingerprints

	DIDAFIT: An Overview
	Issues in Automated Fingerprints Learning and Derivation
	Problems and Challenges
	Selective Summarization of Literals
	Detection of High-Risk Transactions
	Deduction of Missing Fingerprints.

	Algorithm for Fingerprint Learning and Derivation
	Related Work
	Conclusion


