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Abstract. In this paper, we introduce a bit-slice approach for auctions
and present a more efficient circuit than the normal approach for the
highest-price auction. Our circuit can be combined with any auction
protocol based on general circuit evaluation. Especially, if we combine
with the mix and match technique, then we can obtain a highest-price
auction protocol which is at least seven times faster. A second-price auc-
tion protocol is also easily constructed from our circuit.
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1 Introduction

1.1 Sealed-Bid Auction

Auctions are getting very popular in the Internet. They are now a major area
in the web electric commerce.

A sealed-bid auction consists of two phases, the bidding phase and the open-
ing phase. In the bidding phase, all the bidders submit their bidding prices to the
auctioneer. In the opening phase (of the highest-price auction), the auctioneer
announces the highest price and the identities of the winners.

In the second-price auction (also known as Vickrey auction), the highest
bidder wins, and the clearing price, the price that the winner has to pay, is
equal to the second highest bid. (It is closer to the real life auction than the
highest-price auction.)

Throughout the paper, we assume that:

– There are n servers.
– There are m bidders, denoted by A1, A2, . . . , Am.
– Each bidder Ai has a k-bit bid Bi = (b(k−1)

i , . . . , b
(0)
i )2.

In general, X = (x(k−1), . . . , x(0))2 denotes a k-bit integer, where x(k−1)

denotes the most significant bit and x(0) denotes the least significant bit.
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1.2 Auction Protocols Based on Circuit Evaluation

In the trivial scheme which assumes a single trusted auctioneer, the auctioneer
knows all the bidding prices. He may also tell a lie about the highest price and
the winners.

Hence we need a cryptographically secure auction protocol which satisfies
privacy and correctness. The correctness means that the announced highest price
and the identities of the winners are guaranteed to be correct. The privacy means
that no adversary can compute any other information.

In principle, it is known that any function can be computed securely by
using general multiparty protocols [25, 16, 5, 9, 17]. (They are also known as
general function evaluation protocols.) A problem is, however, that the cost of
each bidder is very large in their general forms. Therefore, several schemes have
been proposed to achieve efficient and secure auctions.

In the auction protocol of Naor, Pinkas and Sumner [22] which involves two
servers, a proxy oblivious transfer protocol was introduced and it was combined
with Yao’s garbled circuit technique [25]. Jakobsson and Juels pointed out a flaw
and it was fixed by Juels and Szydlo [21]. The fixed protocol is secure if the two
servers do not collude. The cost of each server is O(mkt), where t is a security
parameter.

Jakobsson and Juels introduced a new general multiparty protocol called
mix and match and showed its application to auctions [20]. The mix and match
technique avoids the use of verifiable secret sharing schemes (VSS) which is
intensively used in the other general multiparty protocols. In their auction pro-
tocol (JJ auction protocol), therefore, each bidder Ai has only to submit her
encrypted bidding price without executing a VSS. The cost of each server is
O(mnk) exponentiations.

Cramer, Damg̊ard and Nielsen introduced another general multiparty proto-
col which avoids VSS [10]. It can also be used for auctions. While the mix and
match protocol is based on the DDH assumption alone, it is not known if this
is possible for this protocol. On the other hand, the round complexity is O(d)
while it is O(n+ d) in the mix and match protocol, where d is the depth of the
circuit of a given function. The message complexities are the same.

Baudron and Stern showed an auction protocol which assumes a semi-trusted
auctioneer T [4]. In this protocol, T blindly and noninteractively evaluates a cir-
cuit whose output tells if Ai is a winner or not for each bidder Ai. Ai knows if
he is a winner by decrypting the output ciphertext of this circuit. T learns no
information if he does not collude with any bidder. The cost of T is Θ(mkm).
(This protocol is not based on general circuit evaluation. It uses some special
predicates and makes use of its special properties.)

1.3 Our Contribution

In general, a multiparty protocol for computing a function f(x1, . . . , xn) is de-
signed as follows. First we draw a Boolean circuit Cf which computes f . We
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next apply a general gate evaluation technique to each gate of Cf . Therefore,
the smaller the circuit size is, the more efficient the protocol is.

The normal approach for circuit design for auctions is to compare the bidding
prices one by one (in other words, to run a millionaire’s problem protocol in
order). To the authors’ knowledge, the smallest size circuit in this approach for
the highest-price auction requires 7mk logical gates and m Selectk gates, where
a logical gate has 2 input and 1 output bits, and a Selectk gate has 2k+ 1 input
and k output bits. (We present such a circuit in Sec. 2.)

In this paper, we introduce a bit-slice approach for auctions and present
a more efficient circuit than the normal approach for the highest-price auction.
The proposed circuit requires only 2mk logical gates while the normal approach
circuit requires 7mk logical gates and m Selectk gates as shown above.

Suppose that Bmax = (b(k−1)
max , . . . , b

(0)
max)2 is the highest bidding price,

where b(k−1)
max denotes the most significant bit and b(0)max denotes the least sig-

nificant bit. Then the proposed approach first determines b(k−1)
max by looking at

the most significant bits of all the bids. It next determines b(k−2)
max by looking at

the second most significant bits of all the bids, and so on.
Our circuit can be combined with any auction protocol based on general

circuit evaluation. Especially, if we combine our circuit with the mix and match
technique, then we can further reduce the number of gates just to mk by using
the homomorphic property of the encryption function. Hence we can obtain
a protocol which is at least seven times faster than JJ auction protocol.

We also show that a second-price auction protocol (which is closer to the
real-life auction than the highest-price auction) can be easily obtained from our
bit-slice circuit for the highest-price auction.

1.4 Other Related Works

There are many auction protocols which do not use circuit evaluation. However,
they have problems such as follows.

The first cryptographic auction scheme was proposed by Franklin and Re-
iter [14]. This scheme is not fully private, in the sense that it only ensures the
confidentiality of bids until the end of the protocol.

In the scheme of Cachin [6] which involves two servers, a partial order of bids
is leaked to one of the two servers. The cost of each bidder is O(mkt) and the
cost of each server is O(m2kt), where t is a security parameter.

In the scheme of Di Crescenzo [13] which involves a single server, a honest
but curious server does not learn any information under the quadratic residu-
osity assumption. However, nothing is known about the security if the server
is malicious. The cost of each bidder is O(m2k2) and the cost of server is also
O(m2k2).

Some other works require O(mn2k) cost for each server [18, 23]. In the scheme
of [3], the cost of a server is O(m2k) and the cost of each bidder is O(2k). Note
that these costs are much larger than the cost of auction protocols based on
circuit design such as [22, 20].
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1.5 Organization of the Paper

In Sec. 2, we present the normal approach for circuit design for auctions. In
Sec. 3, we propose a bit-slice circuit for the highest-price auction. In Sec. 4, we
briefly describe the mix and match technique. In Sec. 5, we show a new highest-
price auction protocol which is obtained by combining the bit slice circuit and
the mix and match technique. In Sec. 6, we present our second-price auction
protocol.

2 Normal Approach for Auction Circuit Design

The normal approach for circuit design for auctions is to compare the bidding
prices one by one (in other words, to run a millionaire’s problem protocol in
order). In this section, we present such a circuit which seems to be the most
efficient.

2.1 Primitive Gate

For two bits x and y, define Bigger1 and EQ1 by

Bigger1(x, y) =
{

1 if x > y
0 otherwise

EQ1(x, y) =
{

1 if x = y
0 otherwise

We next define a gate Selectκ which has 2κ+ 1 input bits and κ output bits
as follows.

Selectκ(b, x(κ−1), . . . , x(0), y(κ−1), . . . , y(0)) =
{

(x(κ−1), . . . , x(0)) if b = 1
(y(κ−1), . . . , y(0)) if b = 0

2.2 Boolean Circuit for the Millionaire’s Problem

For X = (x(k−1), . . . , x(0))2 and Y = (y(k−1), . . . , y(0))2, define

Biggerk(X,Y ) =
{

1 if X > Y
0 otherwise

Maxk(X,Y ) =
{
X if X > Y
Y otherwise

EQk(X,Y ) =
{

1 if X = Y
0 otherwise

We first show two circuits for the millionaire’s problem, Biggerk and Maxk, which
seem to be the most efficient.

Let ak = 1. For i = k − 1 to 1, do

ai = ai+1 ∧ EQ1(x(i), y(i)).
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Then

Biggerk(X,Y ) = Bigger1(x(k−1), y(k−1))
∨(Bigger1(x(k−2), y(k−2)) ∧ ak−1)

...
∨(Bigger1(x(0), y(0)) ∧ a1).

Maxk(X,Y ) = Selectk(Biggerk(X,Y ), X, Y ).

2.3 Boolean Circuit for Auction

We next present two circuits for the highest-price auction, Highest and Winner.
Highest outputs the highest bidding price of m bids, B1, . . . , Bm. It is ob-

tained by implementing the following algorithm by a circuit. Let Bmax = 0. For
i = 1, . . . ,m, do

Bmax := Maxk(Bmax, Bi).

It is clear that the final Bmax is the highest bidding price.
Winner is a circuit which outputs the winners. That is,

Winner(B1, . . . , Bm) = (w1, . . . , wm),

where

wi =
{

1 if Bi = Bmax

0 otherwise

Each wi is obtained as follows.

wi = EQk(Bi, Bmax).

The sizes of these circuits will be given in Sec. 3.3.

3 Bit-Slice Approach

In this section, we present a more efficient circuit than the normal approach by
using a bit-slice approach for the highest-price auction. Suppose that Bmax =
(b(k−1)

max , . . . , b
(0)
max)2 is the highest bidding price. Then the proposed circuit first

determines b(k−1)
max by looking at the most significant bits of all the bids. It next

determines b(k−2)
max by looking at the second most significant bits of all the bids,

and so on.
For twom-dimensional binary vectors X=(x1, . . . , xm) and Y=(y1, . . . , ym),

define
X ∧ Y = (x1 ∧ y1, . . . , xm ∧ ym).



Bit-Slice Auction Circuit 29

3.1 Proposed Circuit for Auction

Our idea is as follows. Let Dj be the highest price when considering the upper j
bits of the bids. That is,

D1 = (b(k−1)
max , 0 · · · , 0)2,

D2 = (b(k−1)
max , b(k−2)

max , 0 · · · , 0)2,

etc,
Dk = (b(k−1)

max , . . . , b(0)max)2 = Bmax.

In the first round, we find b(k−1)
max and then eliminate all the bidders Ai such

that Bi < D1. In the second round, we find b(k−2)
max and then eliminate all the

bidders Ai such that Bi < D2, and so on. At the end, the remained bidders are
the winners. For that purpose, we update W = (w1, . . . , wm) such that

wi =
{

1 if Bi ≥ Dj

0 otherwise

for j = 1 to k.
Our circuit is obtained by implementing the following algorithm. For givenm

bids, B1, . . . , Bm, define Vj as

Vj = (b(j)1 , . . . , b
(j)
m )

for j = 0, . . . , k− 1. That is, Vj is the vector consisting of the j+ 1th lowest bit
of each bid.

Let W = (1, . . . , 1). For j = k − 1 to 0, do;

(Step 1) For W = (w1, . . . , wm), let

Sj = W ∧Vj

= (w1 ∧ b(j)1 , . . . , wm ∧ b(j)m ), (1)

b(j)max = (w1 ∧ b(j)1 ) ∨ · · · ∨ (wm ∧ b(j)m ). (2)

(Step 2) If b(j)max = 1, then let W = Sj .

Then the highest price is obtained as Bmax = (b(k−1)
max , . . . , b

(0)
max)2. Let the final

W be (w1, . . . , wm). Then Ai is a winner if and only if wi = 1.
We record this as the following theorem.

Theorem 1. In the above algorithm,

– Bmax is the highest bidding price.
– For the final W = (w1, . . . , wm), Ai is a winner if and only if wi = 1.

The size of our circuit will be given in Sec. 3.3.
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3.2 Example

Suppose that m = 4, k = 5 and each bid is

B1 = 20 = (1, 0, 1, 0, 0)2,
B2 = 17 = (0, 1, 1, 1, 1)2,
B3 = 18 = (1, 0, 0, 1, 0)2,
B4 = 29 = (1, 1, 1, 0, 1)2.

Then V4 = (1, 0, 1, 1), V3 = (0, 1, 0, 1) and etc. Let W = (1, 1, 1, 1). Now

1. S4 = W ∧V4 = (1, 0, 1, 1), b(4)max = 1 and W := S4 = (1, 0, 1, 1).
2. S3 = W ∧V3 = (0, 0, 0, 1), b(3)max = 1 and W := S3 = (0, 0, 0, 1).
3. S2 = W ∧V2 = (0, 0, 0, 1), b(2)max = 1 and W := S2 = (0, 0, 0, 1).
4. S1 = W ∧V1 = (0, 0, 0, 0), b(1)max = 0.
5. S0 = W ∧V0 = (0, 0, 0, 1), b(0)max = 1 and W := S0 = (0, 0, 0, 1).

Therefore, we obtain that the highest bidding price is (b(4)max, . . . , b
(0)
max)2 =

(1, 1, 1, 0, 1)2 = 29 and A4 is the winner.

3.3 Comparison of Circuit Size

In this subsection, we compare the size of the normal circuit shown in Sec. 2 and
that of our bit-slice circuit for the highest-price auction. See Table 1.

First the size of the normal circuit is given as follows. The circuit Biggerk

requires k Bigger1 gates, 2(k − 1) AND gates, k − 1 OR gates and k − 1 EQ1

gates. The circuit Maxk requires one Selectk gate and one Biggerk circuit. The
circuit Highest is obtained by implementing m Maxk circuits. In addition, the
circuit Winner requires m EQk gates, where an EQk gate is implemented by k
EQ1 gates and (k − 1) AND gates.

Therefore, the normal circuits for the highest-price auction, Highest and
Winner, require mk Bigger1 gates, 3m(k − 1) AND gates, m(k − 1) OR gates,
m(2k − 1) EQ1 gates and m Selectk gates in total.

Next our bit slice circuit is given by implementing Eq.(1) and Eq.(2) k times.
Therefore, it requires mk AND gates and (m− 1)k OR gates.

Hence roughly speaking, the proposed circuit requires only 2mk logical gates
while the normal circuit requires 7mk logical gates and m Selectk gates.

Table 1. Comparison of circuit sizes

AND OR Bigger1 EQ1 Selectk
Normal circuit 3m(k − 1) m(k − 1) mk m(2k − 1) m

Bit-slice circuit mk (m − 1)k 0 0 0
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4 MIX and Match Protocol

4.1 Overview

In this section, we briefly describe the mix and match technique introduced by
Jakobsson and Juels [20]. It is a general multiparty protocol which does not use
VSS. Instead, it uses a homomorphic encryption scheme (for example, ElGamal)
and a MIX net [8, 1, 2].

This model involves n players, denoted by P1, P2, . . . , Pn and assumes that
there exists a public board. We consider an adversary who may corrupt up to t
players, where n ≥ 2t+ 1.

The players agree in advance on a representation of the target function f as
a circuit Cf . Suppose that Cf consists of N gates, G1, . . . , GN . Let the input
of Pi be a k-bit integer Bi. The aim of the protocol is for players to compute
f(B1, . . . , Bn) without revealing any additional information. It goes as follows.

Input stage: Each Pi computes ciphertexts of the bits of Bi and broadcasts
them. She proves that each ciphertext represents 0 or 1 in zero-knowledge
by using the technique of [11].

Mix and Match stage: The players blindly evaluates each gate Gj in order.
Output stage: After evaluating the last gate GN , the players obtain oN , a ci-

phertext encrypting f(B1, . . . , Bn). They jointly decrypt this ciphertext
value to reveal the output of the function f .

This protocol meets the security requirements formalized by Canetti [7] for
secure multiparty protocols [20, page 171]. The cost of each player is O(nN)
exponentiations and the overall message complexity is also O(nN) (see [20, page
172]).

The details of the protocol are described in the following subsections.

4.2 Requirements for the Encryption Function

Let E be a public-key probabilistic encryption function. We denote by E(m)
the set of encryptions for a plaintext m and by e ∈ E(m) a particular encryp-
tion of m. We say that e is a standard encryption if it is encrypted with no
randomness.
E must satisfy the following properties.

– homomorphic property
There exists a polynomial time computable operations, −1 and ⊗, as follows
for a large prime q.
1. If e ∈ E(m), then e−1 ∈ E(−m mod q).
2. If e1 ∈ E(m1) and e2 ∈ E(m2), then e1 ⊗ e2 ∈ E(m1 +m2 mod q).

For a positive integer a, define

a · e = e⊗ e⊗ · · · ⊗ e︸ ︷︷ ︸
a

.
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– random re-encryptability
Given e ∈ E(m), there is a probabilistic re-encryption algorithm that outputs
e′ ∈ E(m), where e′ is uniformly distributed over E(m).

– threshold decryption
For a given ciphertext e ∈ E(m), any t out of n players can decrypt e along
with a zero-knowledge proof of the correctness. However, any t− 1 out of n
players cannot decrypt e.

Such E(·) can be obtained by slightly modifying ElGamal encryption scheme
over a group G of order |G| = q, where q is a large prime. G can be constructed
as a subgroup of Z∗

p , where p is a prime such that q | p − 1. It can also be
obtained from elliptic curves.

Let g be a generator of G, i.e. G = 〈g〉. The secret key x is randomly chosen
from Zq and the public key is y = gx. An encryption of m is given by

(gr, gmyr) ∈ E(m),

where r ∈ Zq is a random element. For ciphertexts, define −1 and ⊗ as

(u, v)−1 = (u−1, v−1).

(u1, v1) ⊗ (u2, v2) = (u1u2, v1v2).

Then it is easy to see that the homomorphic property is satisfied. A re-encryption
of (u, v) ∈ E(m) is given by (u′, v′) = (gr′

u, yr′
v) for a random element r′ ∈ Zq.

For threshold decryption, each player obtains a private share xi of x in
Shamir’s (t + 1, n)-threshold secret-sharing scheme [24]. Each gxi is published.
For details, see [12, 15]. Each player needs to broadcast O(1) messages and
compute O(n) exponentiations in threshold decryption.

4.3 MIX Protocol

A MIX protocol takes a list of ciphertexts (ξ1, . . . , ξL) and outputs a permuted
and re-encrypted list of the ciphertexts (ξ′1, . . . , ξ′L) without revealing the re-
lationship between (ξ1, . . . , ξL) and (ξ′1, . . . , ξ

′
L), where ξi or ξ′i can be a single

ciphertext e, or a list of l ciphertexts, (e1, . . . , el), for some l > 1. We further
require that anybody (even an outsider) can verify the validity of (ξ′1, . . . , ξ′L)
(public verifiability).

For small L, a MIX protocol is efficiently implemented as shown in [1, 2, 19].
In this protocol, each player needs to compute O(nlL logL) exponentiations and
broadcast O(nlL logL) messages.

4.4 Plaintext Equality Test

Given two ciphertexts e1 ∈ E(m1) and e2 ∈ E(m2), this protocol checks if m1 =
m2. Let e0 = e1 ⊗ e−1

2 .
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Table 2. Logical Table of AND

x1 x2 x1 ∧ x2

a1 ∈ E(0) b1 ∈ E(0) c1 ∈ E(0)
a2 ∈ E(0) b2 ∈ E(1) c2 ∈ E(0)
a3 ∈ E(1) b3 ∈ E(0) c3 ∈ E(0)
a4 ∈ E(1) b4 ∈ E(1) c4 ∈ E(1)

(Step 1) For each player Pi (where i = 1, . . . , n):
Pi chooses a random element ai ∈ Zq and computes zi = ai · e0. He broad-
casts zi and proves the validity of zi in zero-knowledge.

(Step 2) Let z = z1 ⊗ z2 ⊗ · · · ⊗ zn. The players jointly decrypt z by threshold
verifiable decryption and obtain the plaintext m.

Then it holds that

m =
{

0 if m1 = m2,
random otherwise (3)

This protocol is minimal knowledge under the DDH assumption (see [20,
page 169]). The cost of each player is O(n) exponentiations.

4.5 Mix and Match Stage

For each logical gate G(x1, x2) of a given circuit, n players jointly computes
E(G(x1, x2)) from e1 ∈ E(x1) and e2 ∈ E(x2) keeping x1 and x2 secret. For
simplicity, we show a mix and match stage for AND.

1. n players first consider the standard encryption of each entry of Table 2.
2. By applying a MIX protocol to the four rows of Table 2, n players jointly

compute blinded and permuted rows of Table 2. Let the ith row be (a′i, b
′
i, c

′
i)

for i = 1, . . . , 4.
3. n players next jointly find the row i such that the plaintext of e1 is equal to

that of a′i and the plaintext of e2 is equal to that of b′i by using the plaintext
equality test protocol.

4. For this i, it holds that c′i ∈ E(x1 ∧ x2).

5 Bit-Slice Circuit and Mix-Match Protocol

5.1 Overview

We can obtain a highest-price auction protocol by combining the proposed circuit
of Sec. 3.1 with any general multiparty protocol. Then a more efficient protocol
is obtained because the bit-slice circuit is more efficient than the normal circuit
as shown in Table 1.
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In this section, we show a combination with the mix and match technique, as
an example. In this case, we can further improve the efficiency. That is, we can
remove all the OR computations of Eq.(2) by using the homomorphic property
of the encryption function as follows. Let

hj = (x1 ∧ b(j)1 ) + · · · + (xm ∧ b(j)m ).

Then it is easy to see that hj = 0 if and only if b(j)max = 0. Therefore, n servers
have only to execute a plaintext equality test protocol for checking if hj = 0
to decide if b(j)max = 0. Note that each server can compute summation locally by
using the homomorphic property of the encryption scheme. Hence we can replace
(m− 1)k OR computations with only k plaintext equality tests.

5.2 Bidding Phase

Each bidder Ai computes a ciphertext of her bidding price Bi as

ENCi = (ei,k−1, . . . , ei,0),

where ei,j ∈ E(b(j)i ), and submits ENCi. She also proves in zero-knowledge
that b(j)i = 0 or 1 by using the technique of [11]. (This submission may be also
digitally signed by Ai.)

5.3 Opening Phase

Suppose that e1 ∈ E(bi) and e2 ∈ E(b2), where b1 and b2 are binary. Let
Mul(e1, e2) denote a protocol which outputs

e ∈ E(b1 ∧ b2)

by applying a mix and match protocol for AND.
Let W̃ = (w̃1, . . . , w̃m), where each w̃j ∈ E(1) is the standard encryption.

(Step 1) For j = k − 1 to 0, do:
(Step 1-a) For W̃ = (w̃1, . . . , w̃m), n servers jointly compute

S̃j = (Mul(w̃1, e1,j), . . . ,Mul(w̃m, em,j)).

(Step 1-b) Each server locally computes

hj = Mul(w̃1, e1,j) ⊗ · · · ⊗ Mul(w̃m, em,j).

(Step 1-c) n servers jointly check if hj ∈ E(0) by using a plaintext equality
test. Let

b(j)max =
{

0 if hj ∈ E(0)
1 otherwise

(Step 1-d) If b(j)max = 1, then let W̃ = S̃j .
(Step 2) For the final W̃ = (w̃1, . . . , w̃m), n servers jointly decrypt each w̃i by

threshold verifiable decryption and obtain the plaintext wi.

The highest price is obtained as Bmax = (b(k−1)
max , . . . , b

(0)
max)2. Ai is a winner

if and only if wi = 1.
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Table 3. Comparison of the highest-price auction protocols

AND OR Bigger1 EQ1 Selectk
JJ [20] 3m(k − 1) m(k − 1) mk m(2k − 1) m

Proposed mk 0 0 0 0

5.4 Comparison

If we combine the normal circuit with the mix and match technique, then JJ
auction protocol is obtained [20]. Table 3 shows the comparison between JJ
auction protocol and proposed protocol.

In our protocol, we can replace (m − 1)k OR computations of Table 1 with
only k plaintext equality tests as shown in Sec. 5.1. Therefore, our protocol
requires mk AND computations and k plaintext equality tests.

We omit the cost of k plaintext equality tests in this table because it is much
smaller than the cost for each logical gate. For example, an AND computation
requires 8 plaintext equality tests and a MIX protocol of four items if we im-
plement the protocol of Sec. 4.5. Hence mk AND computations requires 8mk
plaintext equality tests and mk MIX protocols of four items. This is much larger
than the cost of k plaintext equality tests.

Now roughly speaking, our protocol requiresmk logical gates while JJ auction
protocol requires 7mk logical gates andm Selectk circuit. Therefore, our protocol
is at least seven times faster than JJ auction protocol.

5.5 Discussion

We can slightly improve the opening phase by letting the initial value of W̃ be

W̃ = (e1,k−1, · · · , em,k−1).

The efficiency is further improved if each bid is only k′ < k bits long. (Of course,
this fact is not known in advance.) The smaller k′ is, the faster the modified
version is. For example, if Bi = (0, . . . , 0, b(0)i ) for all i, then no mix and match
for AND is required. If Bi = (0, . . . , 0, b(1)i , b

(0)
i ) for all i, then the mix and match

for AND is executed only once, and so on.
Such speed-up is impossible in JJ auction protocol.

6 Second-Price Auction

In the second-price auction (also known as Vickrey auction), the highest bidder
wins, and the clearing price, the price that the winner has to pay, is equal to
the second highest bid. Therefore, Vickrey auctions are much closer to the real
life auction than the highest-price auctions. A cryptographically secure second-
price auction scheme should reveal only the identities of the winners (the highest
bidders) and the second-highest bid.
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In this section, we show that a second-price auction protocol is easily obtained
from our bit-slice circuit for the highest-price auction.

6.1 Normal Approach Circuit

If we use the normal approach, we can obtain a second-price auction circuit by
keeping track of the two highest bids found so far, Bfirst and Bsecond, as follows.

Let Bfirst = Bsecond = 0. For i = 1, . . . ,m, do

X := Selectk(Biggerk(Bsecond, Bi), Bsecond, Bi).
Bsecond := Selectk(Biggerk(Bfirst, X), X,Bfirst).
Bfirst := Selectk(Biggerk(Bfirst, X), Bfirst, X).

It is easy to see that the final Bfirst is the highest bidding price and Bsecond is
the second-highest price. The identities of the winners are obtained similarly to
Sec. 2.3.

6.2 Bit-Slice-Type Second-Price Auction

We define two types of highest-price auction schemes, a winner-only scheme and
a price-only scheme. A winner-only scheme reveals only the identities of the
winners, but not the highest price. A price-only scheme reveals only the highest
bid, but not the identities of the winners.

Now suppose that there is a winner-only scheme Q1 and a price-only
scheme Q2. Then we can obtain a second-price auction scheme as follows:

Step 1. Run Q1.
Step 2. Delete the winners of Q1 from the set of bidders.
Step 3. Run Q2 for the rest of the bidders.

Indeed, the above scheme reveals only the identities of the winners of Q1,
and the highest bidding price of Q2 which is the second highest price among the
bidders.

Such protocols Q1 and Q2 are easily obtained from our bit-slice circuit for
the highest-price auction as follows.

– Apply any multiparty protocol to the circuit of Sec. 3.1 and decrypt
only b(k−1)

max , . . . , b
(0)
max (but not W) in the output stage. Then we obtain

a price-only scheme.
– In the circuit of Sec. 3.1, replace Step 2 with

W = Selectm(b(j)max,Sj ,W).

Then apply any multiparty protocol to the above circuit and decrypt only W
(but not b(k−1)

max , . . . , b
(0)
max) in the output stage. We now obtain a winner-only

scheme.
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Table 4. Comparison of the second-price auction protocols

AND OR Bigger1 EQ1 Selectk Selectm
Normal 5m(k − 1) 2m(k − 1) 2mk m(2k − 1) 3m 0

Bit slice (2m − 1)k (m − 1)k 0 0 0 k

6.3 Comparison

Suppose that we use the mix and match technique as a general multiparty proto-
col. In this case, the price-only scheme is obtained by deleting Step 2 of Sec. 5.3.

Then roughly speaking, our second-price auction protocol requires 3mk log-
ical gates and k Selectm gates. On the other hand, the second-price auction
protocol obtained by combining the normal circuit and the mix and match tech-
nique requires 11mk logical gates and 3m Selectk gates.

We show a comparison in Table 4.
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