Confidentiality Policies and Their Enforcement
for Controlled Query Evaluation

Joachim Biskup! and Piero Bonatti?

! Fachbereich Informatik, Universitat Dortmund
D-44221 Dortmund, Germany
biskup@ls6.informatik.uni-dortmund.de
2 Dipartimento di Tecnologie dell’Informazione, Universita di Milano
1-26013 Crema, Italy
bonatti@dti.unimi.it

Abstract. An important goal of security in information systems is con-
fidentiality. A confidentiality policy specifies which users should be for-
bidden to acquire what kind of information, and a controlled query eval-
uation should enforce such a policy even if users are able to reason about
a priori knowledge and the answers to previous queries. We put the
following aspects into a unifying and comprehensive framework: formal
models of confidentiality policies based on potential secrets or secrecies,
user awareness of the policy instance, and enforcement methods apply-
ing either lying or refusal, or a combination of lying and refusal. Two
new evaluation methods are introduced. Different approaches are sys-
tematically compared and evaluated.

Keywords: Inference control; Controlled query evaluation; Confidential-
ity; Policy; Potential secret; Secrecy; Refusal; Lying; Combined refusal
and lying.

1 Introduction

An important goal of security in information systems is confidentiality, i.e., the
ability to hide specific information from certain users according to some confi-
dentiality policy. Roughly speaking, such a confidentiality policy specifies which
users should be forbidden to acquire what kind of information. Typically, a con-
fidentiality policy is expressed by the owner or a designated administrator of the
information to be hidden. Using a logic-oriented model of information systems,
including the relational model and Datalog, a controlled query evaluation has to
enforce such a policy, even if users are able to infer more information than what
is explicitly returned as an answer to their queries.

In this paper, we deal with the theoretical foundations of controlled query
evaluation. Our work is based on a simple but powerful logic-oriented data model
which considers an instance of an information system as a structure (interpre-
tation) in the sense of logic, a query as a sentence, and the ordinary answer as
the truth value of the query w.r.t. the instance.

D. Gollmann et al. (Eds.): ESORICS 2002, LNCS 2502, pp. 39-55, 2002.
© Springer-Verlag Berlin Heidelberg 2002

40 Joachim Biskup and Piero Bonatti

This theoretical model is nonetheless relevant for practical and static ap-
proaches to information flow control and inference control [6, 5], including discre-
tionary and mandatory access control, and data customization such as statistical
perturbation and polyinstantiation.

Previous work on controlled query evaluation [1, 2, 3, 4, 9] has identified
three important aspects:

1. Formal models of confidentiality policies: potential secrets versus secrecies.

Under the model of secrecies, a confidentiality policy requires that, given
a set of sentences that constitute the policy instance, a user should not
be able to infer the truth value of those sentences in the current instance
of the information system. Whereas under the model of potential secrets,
a confidentiality policy requires that, for a given set of sentences, if any of
these sentences is true in the current instance of the information system then
the user should not be able to infer that fact. However, users are allowed to
believe the opposite truth value. Thus under the former model, query answers
should not suggest any truth value at all for the given set of sentences, while
under the latter model, a predetermined alternative of the truth values can
be suggested.
Clearly, the goal of confidentiality has to be complemented by availability. In
this paper, like in previous work, we deal with availability only by observing
the following informal heuristic. A controlled query evaluation should be as
cooperative to the user as possible, i.e., it should return a distorted answer
(i.e., a refusal or a lie) only if necessary for achieving confidentiality.

2. User awareness of the policy instance: unknown versus known.

A user who knows the policy instance might use such knowledge to infer
hidden information, say, by the following kind of reasoning: “I received a dis-
torted answer. The system did so only because otherwise the correct answer
together with previously observed data would logically imply a specific sen-
tence ¥ contained in the policy instance. So, observing the distortion, I con-
clude that ¥ is valid indeed.” Even if the actual policy instance is unknown
to him, the user might base a similar reasoning solely on his awareness of
the model of the policy. Surely, any enforcement method should make such
arguments impossible.

3. Enforcement method: lying versus refusal, and combined lying and refusal.
(Uniform) refusal returns a mum, i.e., it refuses to return the truth value of
the query, if the correct answer lets the user infer (either directly or indi-
rectly) one of the sentences of the policy instance. Under similar conditions,
(uniform) lying returns a lie, i.e., the negation of the correct answer. Com-
bined methods are allowed to protect the sentences of the policy instance by
both kinds of answer distortion.

Sicherman/de Jonge/van de Riet [9] introduce the topic of controlled query
evaluation and discuss refusal for unknown and known secrecies. Bonatti/Kraus/
Subrahmanian [4] pioneer lying for known potential secrets. Biskup [1] defines
a common framework for studying and comparing enforcement methods dealing

Confidentiality Policies and Their Enforcement 41

Table 1. Aspects for controlled query evaluation and contributions of previous
work

confidentiality policy

potential secrets secrecies
e lying [1] “not applicable” |[1, section 5]
IE [2, section 4]
o refusal [2, section 3] [9] [9]
¢ I, Section 4.2] |[1, section 4.1]
e combined [3, section 3] 3, section 4]
e unknown known unknown
? user awareness

with lying and refusal for unknown and known secrecies. A main conclusion is
that “for unknown secrecies refusal is better than lying”. Biskup/Bonatti [2]
adapt that framework in order to treat lying and refusal for known potential
secrets. They show that in this context lying and refusal are incomparable in
general, but functionally equivalent under some natural restriction (i.e., the pol-
icy instance should be closed under disjunction). Finally, Biskup/Bonatti [3]
suggest a combination of refusal and lying for known policies, including both
potential secrets and secrecies. The combined methods avoid the drawbacks of
the uniform methods (the mandatory protection of disjunctions for lying, and,
for refusal, the independence from the actual instance of the information system).

Table 1 gives a structured overview of all these works, highlighting the com-
binations of the three major aspects that have not yet been investigated. In
this paper, we try to fill in the table’s gaps, and provide a unifying view of
all these approaches, including a general analysis of their mutual relationships.
More precisely, the structure and the contributions of the paper are as follows.

— In Section 2 we introduce a uniform reformulation of the existing approaches,

including a unified notion of confidentiality, parametric w.r.t the three clas-
sification dimensions.
Furthermore, this section points out the mutual relationships between the
existing approaches for known policies and their counterparts for unknown
policies, and the relationships between the methods based on secrecies and
their counterparts for potential secrets. In the latter case, we observe that
each method based on a policy instance presented as a set of secrecies

secr = {{¥y, -1 },... {Wk, ~P}} (1)

is equivalent to the corresponding method based on potential secrets, applied
to the policy instance

pot_sec(secr) := {Wy,—¥, ..., Uy, ¥} . (2)

— In Section 3, we fill in the two table slots corresponding to lies and refusal for
unknown potential secrets. The new methods are derived from their coun-

42 Joachim Biskup and Piero Bonatti

terparts for unknown secrecies by analogy with the reduction of secrecies to
potential secrets illustrated in (2).

Then, in the same section, we try to derive a combined method for unknown
potential secrets from the corresponding method for known potential secrets,
by analogy with the relationships observed in Section 2. Surprisingly, all the
natural attempts along this direction fail to preserve confidentiality.

— In Section 4 we prove some general results that explain the relationships
empirically observed in Section 2. As a byproduct, we identify some gen-
eral properties of the controlled query evaluation methods under which the
reduction of secrecies to potential secrets based on (2) preserves confidential-
ity. These results have a potential practical impact on the design of uniform
access control mechanisms that support simultaneously both of the policy
models (and combinations thereof).

The paper is closed by a section with a discussion of the results and some con-
clusions. Proofs will be omitted due to space limitations, with the exception of
the proof of Theorem 4.

2 A Unified Formal Model for Confidentiality Policies

2.1 Ordinary Query Evaluation

An information system maintains two kinds of data: A schema DS captures the
universe of discourse for the intended application and is formally defined as the
set of all allowed instances. An instance db is a structure which interprets the
symbols of some logic, i.e. of the universe of discourse (see e.g. [3, 7]). We only
consider the most elementary kind of query, namely a sentence in the language of
the logic. Given a structure db (stored as an instance) and a sentence ¢ (issued
as a query), @ is either true (valid) or false in db, or in other words, the structure
is either a model of the sentence or not. When a user issues a query ¢ against the
schema DS, the (ordinary) query evaluation eval(®) determines the pertinent
case for the current instance db. Thus we formally define

eval(P) : DS — {true, false} with eval(®)(db) := db model of P, (3)

where the boolean operator model_of is assumed to be appropriately specified
for the logic under consideration.! We also use an equivalent formalization where
either the queried sentence or its negation is returned:

eval™ (@) : DS — {P,~P} with
eval*(9)(db) := if db model_ of ¢ then & else —P. (4)

! This abstract formulation makes our approach compatible with a variety of database
models. To get a more concrete understanding of our framework, the reader may
instantiate model_of with standard first-order satisfaction.

Confidentiality Policies and Their Enforcement 43

The symbols of the logic comprise both the negation symbol (as implicitely
assumed above) and disjunction. We assume that both connectives have their
classical semantics . Our definition trivially implies that for all instances db and
for all queries @ we have db model of eval™(P)(db).

We also define the semantic relationship = for logical implication in a stan-
dard way: @ = W iff for every structure db such that db model_of & we also have
db model_of ¥. The complementary relationship is denoted with .

2.2 Controlled Query Evaluation

Controlled query evaluation consists of two steps. First, the correct answer is
judged by some censor and then, depending on the output of the censor, some
modificator is applied. In order to assist the censor, the system maintains a user
log, denoted by log, which represents the explicit part of the user’s assumed
knowledge. Formally, log is declared to be a set of sentences. The log is meant to
contain all the sentences that the user is assumed to hold true in the instance,
in particular publicly known semantic constraints. Additionally, the log records
the sentences returned as answers to previous queries.

Formally we will describe an approach to controlled query evaluation by
a family of (possibly) partial functions control_eval(Q, log,), each of which has
two parameters: a (possibly infinite) query sequence Q = (®1,Pa,...,D;,...),
and an initial user log log,. The inputs to any such function are “admissible”
pairs (db, policy) where db is an instance of the information system, and policy
is an instance of a suitably formalized confidentiality policy. The admissibil-
ity of an argument pair (db, policy) is determined by some formal precondition
associated with the function. Throughout the paper we suppose that for each
function, the policies in its admissible pairs all belong to exactly one of the policy
models. The function returns an answer sequence to the user, and updates the
user log as a side effect. For any specific function, we indicate the underlying
choices w.r.t. the three aspects—model of policy, user awareness, enforcement
method—Dby a superscript p, a, e with p € {sec,ps}, a € {unknown, known}, and
e € {L(ying), R(efusal),C(ombined)}. In symbols,

control _eval?”*(Q, log,)(db, policy) =
((ansy,logy), (ansa, logs), ..., (ans;, log;),...),
where the side effect on the user log is described by
log; = if ans; =mum then log, ; else log; U {ans;},

and a censor?®¢ is formally described by a truth function (or two truth
functions for combined methods) with arguments of the form (&, log, db, policy).
The censor returns true iff the modification e is required.

2.3 Confidentiality Requirements

The syntactical appearance of an instance of a confidentiality policy depends on
the model: Either a policy instance is given by a finite set secr of complementary

44 Joachim Biskup and Piero Bonatti

pairs of sentences, secr = {{¥Wy, W1 },...,{W, ¥ }}, where each pair is called
a secrecy. Or a policy instance is given by a finite set pot_sec of sentences,
pot_sec = {W1,..., ¥}, where each sentence is called a potential secret.

The original motivations for the two models of confidentiality policies are
quite different (see [1, 2] for a detailed exposition).

— A secrecy {¥,—¥} specifies the following: A user, seeing only the apriori
knowledge log, and the returned answer sequence, should not be able to
distinguish whether ¥ or =¥ is true in the actual instance of the information
system, or speaking otherwise, both cases should be possible for him. More
formally, the controlled query evaluation must be “nowhere injective with
respect to the secrecy {¥,—¥}”.

— A potential secret ¥ specifies the following: Such a user should not be able
to exclude that =¥ is true in the actual instance of the information system,
or speaking otherwise, this case should be possible for him. More formally,
the controlled query evaluation must have a “surjective restriction on the
false potential secret, i.e. on =",

The intended semantics is formalized as follows.

Definition 1. Let control_eval”*¢(Q, log,) describe a specific controlled query
evaluation with precond as associated precondition for “admissible” arguments,
and policyy be a policy instance.

1. control_eval™*“(Q, log,) is defined to preserve confidentiality” with respect
to policyy iff
for all finite prefizes Q' of Q,
for all instances dby of the information system such that (dby,policy) sat-
isfies precond,
and for all © € policy;,
there exists dba and policys such that (dbs, policys) also satisfies precond
and such that the following properties hold:

(a) [same answers]

control_eval®**(Q’, logy)(dby, policyr) = control_eval®*“(Q’, log,)(dba,
policys) ;
(b) [different secrets/false potential secrets]

if p=sec,ie., O={¥, -V} is a secrecy: {eval*(¥)(dby), eval™ (¥)(dbs)} =
{Q/, —\Q/})

if p=ps,ie., ©® =W is a potential secret: eval™(¥)(dbs) = —V¥ ;
(¢) [awareness| if @ = known : policy; = policys .

2. More generally, control_eval(Q, logy)P**€ is defined to preserve confidential-
ity iff it preserves confidentiality with respect to all “admissible” policy in-
stances.

2 Or to be secure, as a shorthand used in previous work

Confidentiality Policies and Their Enforcement 45

The above definition generalizes and encompasses all the notions of con-
fidentiality introduced in previous works on controlled query evaluation. Some
assumptions are implicit in the definition: (i) the user may know the algorithm of
the controlled evaluation function, (ii) the user is rational, i.e., he derives nothing
besides what is implied by his knowledge and the behavior of the database.

2.4 Existing Methods for Known Policies

Table 2 sketches the censors of the enforcement methods for known policies
reported previously (i.e., columns 2 and 3 of Table 1) together with the pertinent
preconditions in the sense of the new Definition 1. The original definitions are
reformulated using the function pot_sec(.) (cf. (2)).

Proposition 1 (confidentiality). The (suitably formalized versions of) previ-
ously reported enforcement methods for known policies preserve confidentiality
in the sense of Definition 1.

A careful comparison of the different methods summarized in Table 2 shows
an interesting relationship between the treatment of potential secrets and secre-
cies. Each method for secrecies is equivalent to the corresponding method for
potential secrets applied to the policy pot_sec(secr) (where secr is the original
policy). This is not immediately obvious for refusal, but it can be proved easily.

Proposition 2 (correspondence). Each (suitably formalized versions of a)
previously reported enforcement method for known secrecies using a policy in-
stance secr is equivalent to the corresponding method for known potential secrets
using the policy instance pot_sec(secr).

2.5 Existing Methods for Unknown Policies

For unknown policies, only methods based on secrecies have been introduced
so far. The existing methods for unknown secrecies (i.e., column 4 of Table 1)
are summarized in the rightmost column of Table 3. Extending Proposition 1,
we note that they also satisfy the generalized notion of confidentiality (Defini-
tion 1). The left column of Table 3 provides equivalent reformulations of the
corresponding methods for known secrecies.

A crucial difference between a method for known policies and the correspond-
ing method for unknown policies is the following: in the former case the pertinent
censor takes care about all sentences in pot_sec or pot_sec(secr), respectively,
whereas in the latter case only sentences that are true in the current instance of
the information system are considered. This property makes the censors instance
dependent, whereas the censors for known policies depend only on the query, the
log and the policy.

46 Joachim Biskup and Piero Bonatti

Table 2. Correspondences between enforcement methods for known policies: for
each method we indicate the pertinent censor as given in previous work and the
precondition as requested by Definition 1. For combined methods, we make the
simplifying assumption that policy # () in order to avoid explicit consistency

checks for the log

potential secrets
pot_sec = {W1,..., ¥}

secrecies
secr = {{W1, W1}, ..., {W, ¥}}
pot_sec(secr) = {1, ~¥1,..., ¥, ¥}

lying [4], [2, section 4]:

censor?® oL,

log U {eval™ (P)(db)} | pot_sec_disj ,

where pot_sec_disj :=\/

preconditionP® o™ L,
log, W= pot_sec_disj

Y Epot_sec

)

lying [1, section 5]:

sec,known, L ,

censor “not applicable”

precondition®®® o

logO |7'é \/lpepot_sec(secr) v

refusal [2, section 3]:

censor®smom: .

(exists ¥ € pot_sec)

[log U {eval™(P)(db)} = ¥ or
log U {—eval™(®)(db)} = ¥] ;
precondition?s o=,

db model_of log, and
(for all ¥ € pot_sec) [log, = V]

refusal [9], [1, section 4.2]:

Censorsec,knowm,R:

(exists ¥ € pot_sec(secr))

[db model_of ¥ and

[log U {eval*(P)(db)} =¥ or
log U {=eval™ (®)(db)} E ¥ or
log U {~eval" (@) (db)} = —]] ;

o ki
preconditione® ™o E,

db model_of log, and
(for all ¥ € pot_sec(secr))[log, = V|

combined [3, section 3]:

refusalcensor® ™o C.

(exists W1 € pot_sec)

[log U {eval*(®)(db)} E ¥1]
and (exists W2 € pot_sec)

[log U {—eval* (&) (db)} = U5] ;

lyingcensorPsmomC.

(exists W1 € pot_sec)

[log U {eval™(P)(db)} = ¥]
and (for all W5 € pot_sec)

[log U {—eval*(D)(db)} [~ P2] ;

precondition?® ™o C
(for all W € pot_sec) [logy V']

combined [3, section 4]:

ki
refusalcensor®®mom:C.

(exists W1 € pot_sec(secr))

[log U {eval*(®)(db)} = ¥]
and (exists W € pot_sec(secr))
[log U{—eval®(®)(db)} = W2] ;

lyingcensor=esmom.C,

(exists W1 € pot_sec(secr))

[log U {eval™(®)(db)} = ¥1]
and (for all W5 € pot_sec(secr))
[log U {—eval™(P)(db)} P2] ;

precondition®®® ™o C

(for all ¥ € pot_sec(secr)) [log, = W]

Confidentiality Policies and Their Enforcement 47

Table 3. Correspondences between enforcement methods depending on the user
awareness of the policy instance: For each method we indicate the suitably re-
formulated pertinent censor and the precondition as requested by Definition 1

known unknown

lying under secrecies [1, section 5]: lying under secrecies [1, section 5]:

sec,known, L , sec,unknown, L,

“not applicable” censor censor

log U {eval™(P)(db)} E le/Gpot_sec(secr) U |log U {eval™(P)(db)} E

v

pTCCOnditiOnsec’known’Li W pot_sec(secr) and db model_of ¥

sy sec,unknown, L,
log, W= \/Wepm_sec(sew) 114 precondition e :

lOgO bé le/Gpot_sec(secr) and db model_of ¥ v

refusal under secrecies [9], [1, sect. 4.2]:|refusal under secrecies [9], [1, sect. 4.1]:
Censorsec,known,R: Censorsec,unknown,R:
(exists ¥ € pot_sec(secr)) (exists ¥ € pot_sec(secr))
[log U {eval™(P)(db)} E ¥ or [db model_of ¥ and
log U {=eval*(P)(db)} EV¥] ; log U {eval™(P)(db)} = ¥] ;
precondition® ™ precondition®®e wknem R,
db model_of log, and db model_of log, and
(for all ¥ € pot_sec(secr))[log, = V| (for all ¥ € pot_sec(secr))

[if db model_of ¥ then log, [~ V]

3 Filling in the Gaps

In this section, we shall try to fill in the gaps of Table 1 by analogy with the rela-
tionships between the existing methods observed in Section 2.4 and Section 2.5.
In the next subsection, we shall derive secure controlled query evaluations for
unknown potential secrets from their counterparts for unknown secrecies (Ta-
ble 3), by analogy with the relationships observed in Table 2. In the second
subsection, we shall try to adapt to unknown policies the combined methods
for known policies, by analogy with the observations on Table 3. Unfortunately,
it will turn out that all the obvious attempts in this direction fail to preserve
confidentiality.

3.1 Lies and Refusal for Unknown Potential Secrets

In the case of known potential secrets, the controlled query evaluation based on
lies uses a censor that protects the disjunction of all potential secrets. In the case
of unknown potential secrets, we can take a less restrictive disjunction. Now it is
sufficient to take care of only those potential secrets that are valid in the current
instance of the information system. Note that in this case the censor actually
depends on the current instance, in contrast to the case for known policies.

48 Joachim Biskup and Piero Bonatti

Formally we define the wniform Ilying method as follows. The
censorPsumknovn.L ig oiven by

log U {eval™ (P)(db)} | true_pot_sec_disj (5)

with true_pot_sec_disj := \/J,epot_sec and db mode1of w ¥ » and the precondition
preconditionPs kv L s oiven by

logy W true_pot_sec_disj . (6)

Theorem 1 (confidentiality). Uniform lying for unknown potential secrets
preserves confidentiality in the sense of Definition 1.

Next, we introduce a uniform refusal method for unknown potential secrets
by following the same ideas adopted above. Formally, the method is defined as
follows. The censorP®umknov i js oiven by

(exists ¥ € pot_sec)| db model_of ¥ and log U {eval™(P)(db)} = ¥], (7)
and the preconditionPs mknovn, It 1y

db model_of log, and (for all ¥ € pot_sec)| if db model_of ¥ then log, ~ ¥].
(8)
Theorem 2 (confidentiality). Uniform refusal for unknown potential secrets
preserves confidentiality in the sense of Definition 1.

3.2 Combined Methods for Unknown Policies

We try to adapt the combined method for known potential secrets to unknown
such policies, by restricting the censor tests to true secrets only. Due to this
restriction, we have to explicitly ensure log consistency. The returned answers
are:

ans; ==
if [log,_, U{eval™(®;)(db)} is inconsistent or
(exists ¥y € pot_sec)[db model_of ¥y and log;, ; U {eval™(®;)(db)} E ¥1]]
then
if [log; 4 U{—eval™(P;)(db)} is inconsistent or
(exists Wy € pot_sec)| db model of Wy and log, U{—eval™ (P;)(db)} =¥s]]
then mum
else —eval™(P;)(db)
else cval™(P;)(db)

Thus the censor for refusals, re fusalcensor?® mom.C ooks like

[log U {eval™(®)(db)} is inconsistent or

(exists W7 € pot_sec)[db model of Wy and log U {eval™(®)(db)} E V1]

and 9)
[log U {—eval™ (P)(db)} is inconsistent or

(exists Wy € pot_sec)| db model_of Wy and log U {—eval™ (®)(db)} = ¥a]];

Confidentiality Policies and Their Enforcement 49

and the censor for lies, lyingcensorP® ™™known.C ooks like

[log U {eval™(®)(db)} is inconsistent or
(exists Wy € pot_sec)[db model of Wy and log U {eval™(®)(db)} E ¥1]]
and
[log U {—eval™(®)(db)} is consistent and
(for all ¥ € pot_sec)| if db model_of Wy then log U {—eval™(P)(db)} [~ Pa]].
(10)
Furthermore, the precondition?"ow.C (_log \(db, pot_sec) is specified by

log, is consistent and (11)
(for all ¥ € pot_sec) [if db model_of ¥ then log, & ¥].

Unfortunately, the controlled evaluation method for combined lying and re-
fusal for unknown potential secrets do not preserve confidentiality in the sense
of Definition 1.

Ezample 1. Let Q = {pV q), logy = 0, pot_sec = {pV q,~q} and db = {p}. Then
ans; = mum. Now consider any pair (db’, pot_sec’) satisfying the precondition (11)
and returning the same answers as (db, pot_sec). By definition, since ans; = mum,
pVq entails a potential secret ¥ such that db’ model_of ¥. Since the vocabulary is
{p, ¢} and three out of the four possible interpretations satisfy pVgq, there are two
possibilities: either ¥ = pV q or ¥ is a tautology. The latter case is not possible
because it violates the precondition. It follows that for all the allowed pairs
(d, pot_sec’) that return ans; = mum, db’ model_of p V ¢, and hence conditions
(a) and (b) of Definition 1 cannot be simultaneously satisfied. This proves that
the above combined method does not preserve confidentiality.

There are at least two obvious alternative definitions for ans;, where only
U or Wy (respectively) must be satisfied by db. It can be shown that these two
alternatives do not preserve confidentiality, either.

In the light of these negative results, we can assess different methods for
unknown policies w.r.t. the given state of the art. First, for unknown policies—
be they secrecies (see [1]) or potential secrets (see Section 3.1)—the censor for
uniform refusal is weaker than the censor for uniform lying. Consequently, we
can state a “longest honeymoon lemma” in the sense of [3]. Informally speaking,
the lemma says that the method based on uniform refusal does never modify
a correct answer before the corresponding method based on uniform lies. Of
course, this result holds for input pairs that are admissible for both methods. In
general, the two preconditions are incomparable.

Second, the censors for uniform refusal should not be further weakened: If we
allowed log = ¥, for some ¥ occurring in the policy such that db model_of ¥,
then we could not prevent users from getting a view (given by log) that entails
an actual secret. Surely we do not want such a situation. Hence uniform re-
fusal cannot be improved unless some refusals are replaced by lies. However, as
shown above, the current attempts at designing combined methods for unknown
potential secrets fail to preserve confidentiality.

50 Joachim Biskup and Piero Bonatti

We conclude that in the framework of unknown policies, the methods based
on uniform refusals are currently the best choice from the point of view of the
longest honeymoon lemma, and that there are difficulties in improving them.

4 A Systematic View of Controlled Query Evaluation

In this section we develop a more general analysis of the relationships between
different policy models and different awareness assumptions. The results of this
section justify the recurrent patterns observed in the previous sections.

4.1 Known Policies vs. Unknown Policies

We start with a simple and intuitive result, stating that unknown policies are
easier to handle than known policies.

Proposition 3. If control_eval preserves confidentiality w.r.t. known policies,
then control_eval preserves confidentiality w.r.t. unknown policies. The converse
15 not true.

The converse of the first part of Proposition 3 holds if the censor of
control_eval is instance independent, that is, for all db and db’,

censor (¥, log, db, policy) = censor (¥, log, db', policy) .

Theorem 3. If control_eval has an instance independent censor and preserves
confidentiality w.r.t. unknown policies, then control_eval preserves confidential-
ity w.r.t. known policies.

In other words, if the censor is instance independent, then control_eval pre-
serves confidentiality w.r.t. known policies iff it preserves confidentiality w.r.t.
unknown policies. Intuitively, this means that in order to take really advantage
of the extra degrees of freedom permitted by unknown policies (as suggested by
Proposition 3), the censor must be instance dependent.

On one hand, this result justifies the difference between the existing censors
for known policies and those for unknown policies. On the other hand, this re-
sult tells us that even if the instance dependent attempts at defining a secure
combined method for unknown policies failed (Section 3.2), nonetheless any sig-
nificant future approach should keep on searching for an instance dependent
censor.

4.2 Potential Secrets vs. Secrecies

In this section we study some general conditions under which the transforma-
tion of secrecies into potential secrets (function pot_sec(.)) yields a secure query
evaluation method. First, the transformation is formalized.

Confidentiality Policies and Their Enforcement 51

Definition 2. Let control_eval?>*® be any controlled query evaluation based on
potential secrets. The mnaive reduction of secrecies to control_eval®®*° is the
Junction naive_red(control _eval?**¢) :=

AQ, logy, db, secr. control _eval®®“°(Q, log,)(db, pot _sec(secr)) .

Let the precondition of the naive reduction be satisfied by (Q, log,, db, secr) iff
the precondition of control_eval®®“* is satisfied by (Q, log,, db, pot_sec(secr)).

The main theorem needs the following definition.

Definition 3. Let censor?®®¢ and precondP®*° denote the censor and the pre-
condition (respectively) of control_eval?>*°. We say that control_eval®>*° is
insensitive to false potential secrets iff for all Q), log,, db, pot_sec, and for all
sets of sentences S whose members are all false in db,

censor®$¢(Q, log,, db, pot_sec) = censor?>*¢(Q, log,, db, pot_sec U S)
precond®®¢(Q, log,, db, pot_sec) = precond®®*(Q, log,, db, pot_sec U S) .

Note that all the methods for unknown policies introduced so far are insensitive
to false potential secrets (this property causes instance dependence, discussed in
the previous subsection). Now we are ready to state the main theorem of this
subsection.

Theorem 4. naive_red(control_eval?®“°) preserves confidentiality —(w.r.t.
sec, a and e, cf. Definition 1) whenever control_eval?>*° satisfies any of the
following conditions:

[P*%€ preserves confidentiality (w.r.t. ps, a

1. a = known and control_eva
and e).

2. e = L (lies), the logs are always consistent and entail no potential secrets,
all answers are true in the absence of secrets, and all pairs with an empty
policy are admissible.

3. a = unknown, control_eval®®*° preserves confidentiality and is insensitive

to false potential secrets.

Proof. Part 1 Let precondP® denote the precondition of control_eval®>*¢. Con-
sider arbitrary @, log,, db; and secr, satisfying the corresponding precondition
of naive_red(control_eval®>**). Let Q" be any finite prefix of @, and consider
O ={U,-V} € secry.

Then, by the definitions, (dby, pot_sec(secry)) satisfies precond?® and

U* = eval®(W)(dby) € pot_sec(secry). (12)

Since, by assumption, confidentiality is preserved for known potential secrets,
there exists dbs such that the following holds:

— (dba, pot_sec(secry)) satisfies precondP®, and thus also (dbs, secry) satisfies
precond®ec.

52 Joachim Biskup and Piero Bonatti

— (dby, pot_sec(secry)) and (dba, pot_sec(secri)) produce the same answers,
and hence so do (dby, secr1) and (dba, secry).
— eval” (¥*)(dbz) = —¥*, and thus also

eval™ (W) (dbs) = —W*. (13)
From (12) and (13) we conclude that
{eval* (¥)(dby), eval™ (¥)(dba)} = {¥*, ~W*} = {¥, W}

Hence confidentiality is preserved for known secrecies. This concludes Part 1.
Part 2 Given Q, log,, db; and secry, let ¥ € pot_sec(secri) and Q' be any
finite prefix of (). By assumption, there exists always an instance db, that satisfies
the last log of control_eval?>**(Q’, log,)(dby, pot_sec(secry)) and falsifies . Tt
can be verified by a straightforward induction that this evaluation sequence
equals
control_eval®***(Q', log,) (dba, pot _sec(())

(because all answers must be true by assumption and dbs is a model of the orig-
inal answers by construction). Moreover, the pair (dba, pot_sec(f))) is admissible
by assumption. It follows that the naive reduction preserves confidentiality. This
completes Part 2.

Part 3 (Sketch) It suffices to show that for all finite sequences of queries @',
for all log,, for all admissible pairs (dbs, pot_sec(secr1)) for control_eval?>* ¢, and
for all ¥ € pot_sec(secry), there exists an admissible pair (dbs, pot_sec(secrs))
satisfying conditions (a) and (b) of Definition 1, with policy,; = pot_sec(secr1)),
policy, = pot_sec(secrs)), and p = ps.

By assumption, control_eval®®®* preserves confidentiality, therefore there ex-
ists an admissible pair (dby, pot_secy) satisfying conditions (a) and (b) of Defi-
nition 1. Since control_eval?®>*¢ is insensitive to false potential secrets, we can
assume, without loss of generality, that all the sentences in pot_sec, are satisfied
by dbs.

Now let secro = {{¥,~W¥} | ¥ € pot_sec,}. By construction, the sentences
in pot_sec(secry) \ pot_sec, are all false in dby, and hence (by assumption)
control _eval(Q', log,)(dba, pot_sec,) = control_eval(Q’, log,)(dba, pot_sec(secrs))
and (dba, pot_sec(secrs)) is admissible. Then (dba, pot_sec(secrs)) is an admissi-
ble pair that satisfies (a) and (b) of Definition 1, as required. O

It is interesting to note that all the existing methods fall into the three cases
of the above theorem.
From Theorem 3 and Theorem 4.(1) we immediately get the following result.

Corollary 1. If the censor of control_eval?®*° is instance independent and
control_eval preserves confidentiality w.r.t. ps, a and e, then the naive reduction
naive_red (control _eval®®“®) preserves confidentiality w.r.t. both sec,known,e,
and sec,unknown,e.

Confidentiality Policies and Their Enforcement 53

Remark 1. The above results subsume neither Theorem 1 nor Theorem 2. In
fact, in this section we show how methods for potential secrets can be adapted
to secrecies (not viceversa), while the gaps of Table 1 concerned only potential
secrets.

The naive reduction does not always preserve confidentiality, even if the
underlying control_eval?>*° does.

Ezample 2. Suppose that the vocabulary is {p, ¢}, and control_eval®®** returns

always mum for all possible combinations of @, log,, db and pot_sec, with two
exceptions, where log, =), and either

— pot_sec = {pV =¢,~(pV ~q)}, db = {q}, or
— pot_sec = {=(pV q)}, db = 0.

In these two cases, let ans; := eval™(¥;)(db) if (i) log,_, U ans; does not entail
any potential secret, and (ii) both {q} and) are models of log; _; U ans;. If these
conditions are not simultaneously satisfied, let ans; := mum.

Finally, the only admissible instances (in all cases) are those that satisfy logo.

It can be verified that this method preserves confidentiality (hint: the two
special cases return the same answers for all query sequences; the other cases
are obviously indistinguishable). Now, given @ = (—p, q), the answers returned
for the admissible pair ({¢},{pV —¢,~(p V —¢q)}) are (—p,mum). The only other
instance that returns these answers is () under the policy {=(pV q)}, which is not
closed under negation, i.e., it does not correspond to any set of secrecies. Then
the naive reduction does not preserve confidentiality w.r.t. p = sec.]

Note that the above example makes use of a controlled evaluation where (i)
the logs are always satisfied by the current instance, and (ii) the answers depend
on the false potential secret p V —¢. Then the critical assumptions in Theo-
rem 4.(2) (uniform lies) and Theorem 4.(3) (independence from false potential
secrets) cannot be simply dropped, because this example would then become
a counterexample.

5 Summary and Conclusions

The many works on controlled query evaluation have been given a uniform view
in Table 2 and Table 3, and the different notions of confidentiality have been
unified by Definition 1. Moreover, we have extended the picture of Table 1 by
introducing two new controlled evaluation methods based on lies and refusals
for unknown potential secrets (Section 3.1).

Surprisingly, all the attempts at designing secure combined methods for un-
known policies failed. The attempts were based on instance dependent censors,
by analogy with the existing methods for unknown policies. The general results
of Section 4.1 tell us that this is the right direction if the extra degree of freedom
allowed by unknown policies is to be exploited effectively.

54 Joachim Biskup and Piero Bonatti

We have introduced a so-called naive reduction of secrecies to potential se-
crets. The naive reduction does not always preserve confidentiality, but we proved
in Theorem 4 that confidentiality is guaranteed under fairly natural assumptions.
All the known controlled evaluation methods fall into the three points of this
theorem, so Table 1 could be entirely reconstructed from the methods based
on potential secrets (including the new methods). This fact provides a formal
justification of the relationships between different methods empirically observed
in Section 2. Thus we achieve a deeper and systematic view of the many forms
of controlled query evaluation proposed so far. Moreover, our results show how
administrators may freely choose the preferred policy model (secrecies or po-
tential secrets) if the adopted evaluation method is based on potential secrets
and fits into one of the cases of Theorem 4. Finer-grained confidentiality require-
ments can be obtained by mixing secrecies and potential secrets. For each pair of
complementary sentences the administrator may decide whether both sentences
should be protected, or only one of them should be protected, or none of them
needs protection.

We are planning to relate our theoretical studies to the existing approaches to
confidentiality, (e.g., polyinstantiation and statistical database perturbation), in
order to investigate the practical consequences of our theoretical results. Further
future work includes availability policies. Thereby, we hope to get a deeper un-
derstanding about the minimality of censors (see for instance [4] or [2], Prop. 4)
and the various roles of the user log.

Acknowledgements

We are grateful to the anonymous referees for their careful and cooperative
comments and suggestions.

References

[1] Biskup, J.: For unknown secrecies refusal is better than lying, Data and Knowl-
edge Engineering, 33 (2000), pp. 1-23. 40, 41, 44, 46, 47, 49

[2] Biskup, J., Bonatti, P. A. : Lying versus refusal for known potential secrets, Data
and Knowledge Engineering, 38 (2001), pp. 199-222. 40, 41, 44, 46, 54

[3] Biskup, J., Bonatti, P. A. : Controlled query evaluation for known policies by
combining lying and refusal, Proceedings 2nd Int. Symp. on th Foundations of
Information and Knowledge Systems, FolKS 02, Lecture Notes in Computer
Science 2284, Springer, Berlin etc., 2002, pp. 49-66. 40, 41, 46, 49

[4] Bonatti, P. A., Kraus, S., Subrahmanian, V.S.: Foundations of secure deductive
databases, IEEE Transactions on Knowledge and Data Engineering 7,3 (1995),
pp. 406-422. 40, 41, 46, 54

[5] S. Castano, M. Fugini, G. Martella, P. Samarati: Database Security, Addison-
Wesley, 1994. 40

[6] D.E. Denning: Cryptography and Data Security, Addison-Wesley, 1982. 40

[7] Lloyd, J. W.: Foundations of Logic Programming, Springer, 1987. 42

[8] Shoenfield, J. R.: Mathematical Logic, Addison-Wesley, Reading etc., 1967. 42

Confidentiality Policies and Their Enforcement 55

[9] Sicherman, G.L., de Jonge, W., van de Riet, R.P.: Answering queries without
revealing secrets, ACM Transactions on Database Systems 8,1 (1983), pp. 41-59.
40, 41, 46, 47

	Confidentiality Policies and Their Enforcement for Controlled Query Evaluation
	Introduction
	A Unified Formal Model for Confidentiality Policies
	Ordinary Query Evaluation
	Controlled Query Evaluation
	Confidentiality Requirements
	Existing Methods for Known Policies
	Existing Methods for Unknown Policies

	Filling in the Gaps
	Lies and Refusal for Unknown Potential Secrets
	Combined Methods for Unknown Policies

	A Systematic View of Controlled Query Evaluation
	Known Policies vs. Unknown Policies
	Potential Secrets vs. Secrecies

	Summary and Conclusions

