
Hairetes: A Search Engine for OCR Documents

Kazem Taghva and Jeffrey Coombs

Information Science Research Institute
University of Nevada, Las Vegas

taghva@isri.unlv.edu

Abstract. In this paper, we report on the architecture and preliminary
implementation of our search engine, Hairetes. This engine is based on
an extended concept of Retrieval by General Logical Imaging (RbGLI).
In this extension, word similarity measures are computed by EMIM and
Bayes’ theorem.

1 Introduction

During the 1990’s the Information Science Research Institute (ISRI) at the Uni-
versity of Nevada, Las Vegas conducted a series of large scale OCR tests to better
understand OCR accuracy with respect to retrieval effectiveness [13,14,15,16].
These tests generally imply that average precision and recall are not affected
by OCR errors. They also imply that certain ranking algorithms can produce
marked variability in document ranking. These ranking problems are essentially
due to normalization factors such as document length which one can overcome
by using length normalization as defined by Singhal [12].

One of the more interesting experiments we conducted was the role of OCR
errors with respect to feedback [14]. This experiment showed that in the manually
corrected collection, average precision keeps improving as more terms are added
to queries. But in the OCR collection, precision values level off after a certain
number of term expansions. Further analysis showed that this complication was
a result of a few “difficult to retrieve” documents within the OCR collection.
Consequently, one can assume for documents with low OCR accuracy (such as
handwritten texts, faxes, or nth-generation photocopies) that the retrieval may
require more effort.

Putting OCR issues aside for a moment and concentrating on retrieval con-
cepts based on statistical models, one observes that term mismatch has played an
important role in hindering the user from finding relevant documents [2]. Typ-
ically, a document is not retrieved unless the query and document have some
terms in common. Many approaches such as latent semantic indexing, use of
thesauri, and query expansions were developed to address the term mismatch
problem [1,5,6]. One of the more recent and promising approaches is Retrieval by
General Logical Imaging (RbGLI) proposed by Crestani and Van Rijsbergen [3,
4,11]. This technique is heavily dependent on the assumption that a measure of
similarity on the term space can be evaluated. Hairetes is an implementation of
this idea extended by OCR word similarities adopted from OCRSpell [18]. We

D. Lopresti, J. Hu, and R. Kashi (Eds.): DAS 2002, LNCS 2423, pp. 412–422, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



Hairetes: A Search Engine for OCR Documents 413

believe by augmenting RbGLI with similarities based on OCR errors, we can
provide an environment to study retrieval effectiveness from poorly recognized
document collections.

This paper is organized into six sections. Section one is this Introduction.
Section two covers some basic material on index construction. Section three
shows how word similarity calculations are performed. Sections four and five are
short discussions on query processing and compression. Finally, section six is the
conclusion and a prospectus of future work.

2 Document Information

In building a search engine for OCR, one needs to take into consideration the
type of problems that OCR errors cause and an alternative way of displaying
information. In this section, we will give a modified version of a typical construc-
tion following [19].

The information associated with the collection is kept in three structures.
The first structure keeps the document information. Each record in this structure
looks like:

doc no. doc weight summary doc-type words image bit image categories

Summary is a pointer to the document summary. Doc-type can be ASCII, OCR-
ASCII, OCR with word bounding boxes, or some other possibility. words are
pointers to the words in the document. The fields image and categories contain
pointers to images and categories.

The doc weight in search engines represents the length of the document.
This length is typically the number of distinct terms in a document or the fre-
quency of the term with the highest occurrence [8,9]. It is shown in [13,14] that
these sorts of length estimation cause problems when the collection is predom-
inantly OCR text. Singhal [12] defined the length of the document as byte size
and showed that this notion of length works well with OCR collections. In our
engine, we use this length measure.

The second structure is the lexicon with records of the form:

word t word no. ft max sim similar max OCR-related OCR-related Excp

ft is the number of documents in which word t occurs. Max sim is the number of
non-empty pointers to similar terms. Similar contains pointers to similar words.
Max OCR-related is the number of non-empty pointers to OCR related terms.
OCR-related contains pointers to OCR related terms. Excp is an exception bit
indicating that the term is an acronym, proper noun, garbage string, etc.

The third structure contains the posting for each word. These postings con-
tain document word occurrence plus other useful information such as word po-
sition in the document and bounding box coordinates.



414 K. Taghva and J. Coombs

2.1 Creating an Inverted File

The inverted file is built following [19].

1. /*initialization*/
a) create an empty lexicon S.
b) create an empty temporary file.

2. /* process text and write temporary file */
For each document Dd in the collection 1 ≤ d ≤ N
a) Read Dd, parsing it into index terms.
b) for each index term t ∈ Dd

i. let fd,t be the frequency in Dd of term t.
ii. search S for t.
iii. if t is not in S, insert it.
iv. write a record (t,d,fd,t) to the temporary file, where t is represented

by the word number.
v. call acronym(t).
call graphic-text-recognizer(t) if t is OCR text.
call proper-noun(t).
If any return “yes”, set Excp, the exception-bit, to 1 in the lexicon
entry for t.

c) /* Populate Document-info record */
i. enter doc-num and doc-type.
ii. enter document weight as bytesize0.375 [12].
iii. generate summary.
iv. compress and store this document posting and make the pointers to

the word in the document point to this location in the document
posting file.

3. /* Internal sorting to make runs */
Let k be the number of records that can be held in memory.
a) Read k records from the temporary file.
b) sort into nondecreasing t order, and for equal values of t, nondecreasing
d order.

c) write the sorted run back to the temporary file.
d) repeat until there are no more runs to be sorted.

4. /* Merging */
Pairwise search runs in the temporary file until it is one sorted run.

3 Word Similarity Calculation

Word similarity has been studied in the field of information retrieval for a long
time. Thesauri construction is an example of word similarity efforts. Most of
the automatic word similarity procedures depend on word frequency and co-
occurrence. In the case of OCR errors, word similarity represents the closeness
of a misrecognized word to other correctly recognized words in the collection. We
typically need to divide the indexed terms into two groups of correctly recognized
and incorrectly recognized words. This can be done with the help of a dictionary
or, as we recently discovered, with dimensionality reduction techniques [17].



Hairetes: A Search Engine for OCR Documents 415

3.1 Apply a Dimensionality Reduction

Hence we will define a constant Doc-Dim-Reduction which can be changed and
experimented with. For example, if Doc-Dim-Reduction = 3, then we will only
look at the words occurring in 3 or more of the documents. We can then divide
the lexicon into 2 sets of words: The set Correct will contain words with ft ≥ 3
or Excp = 1, and the set Suspect will be the complement of Correct.

3.2 Apply EMIM

We will then apply EMIM (Expected Mutual Information Measure) on the
Correct list to generate similar, the similar-words’ field in the lexicon:

word t word no. ft max sim similar max OCR-related OCR-related Excp
t1 x1 . . .xn

t2 y1 . . . ym

. . . . . .

where x1 is the most similar to term t1 and xn is least similar, and y1 is most
similar to t2 while ym is the least similar to t2.

EMIM is defined as:

EMIM(t1, t2) =
1∑

i=0

1∑
j=0

r(t∗1 = i, t
∗
2 = j) log2

(
r(t∗1 = i, t

∗
2 = j)

p(t∗1 = i)p(t
∗
2 = j)

)
.

Here the expressions t∗1 and t
∗
2 represent functions from terms t1 and t2 to

the set {0,1} where 0 indicates the absence and 1 the presence of a term in a
document. Thus p(t∗1 = i) is the probability that t∗1 returns the value i, and
r(t∗1 = i, t∗2 = j) is the probability that t∗1 and t

∗
2 return the values i and j

respectively. If i and j take the value 1, then r(t∗1 = 1, t
∗
2 = 1) is the probability

that t1 and t2 will co-occur in a given document.
Van Rijsbergen in [10] shows that EMIM can be estimated in the following

way. First define the contingency table:

tl ∈ dock tl �∈ dock
tm ∈ dock n11 n01 n.1 = tfm

tm �∈ dock n10 n00 n.0
n1. = tfl n0. N

The value n11 is the number of documents in which both terms tl and tm occur
(that is, t∗l = 1 and t∗m = 1), n01 the number of documents in which tm occurs
but tl does not, n10 the number of documents containing tl but not tm, and n00
is the number of documents in which neither term occurs. The value n1. is the
total number of documents in which tl appears, that is, n1. is the term frequency
tfl of tl. The expression n0. stands for the number of documents in which tl
does not occur, which is the same as N − tfl where N is the total number of
documents in the collection.



416 K. Taghva and J. Coombs

Any item in the contingency table can be calculated given that n11 and the
values of tfm, tfl, and N are known. The marginal values are easy to calculate
since tfm and tfl are the term frequencies of tm and tl, which are available from
the inverted file, and N is the total number of documents in the collection. Get-
ting n11, however, may prove to be computationally expensive and may require
sophisticated estimation techniques to calculate effeciently.

Van Rijsbergen uses the contingency table definitions to state an estimate
for EMIM which is strictly monotone to that measure:

̂EMIM = n11 log2
n11
tfltfm

+ n10 log2
n10
tfln.0

+ n01 log2
n01
n0.tfm

+ n00 log2
n00
n0.n.0

.

According to Van Rijsbergen, the first term indicates the similarity of the
two terms, the second and third measure dissimilarity, and the last term is likely
to be constant in large samples. Also, we must define 0 log 0 = 0.

Consider as an example the following document collection from [19]:

1. Pease porridge hot. Pease porridge cold.
2. Pease porridge in the pot.
3. Nine days old.
4. Some like it hot. Some like it cold.
5. Some like it in the pot.
6. Nine days old.

The contingency table for term 1 (pease) and term 2 (porridge) is:

pease
porridge 2 0 2

0 4 4
2 4 6

and the ̂EMIM values for other terms with respect to pease are:

̂EMIM ̂EMIM
pease,porridge -10.00 pease,nine -10.00
pease,hot -14.32 pease,days -10.00
pease,cold -14.32 pease,old -10.00
pease,in -14.32 pease,some -10.00
pease,the -14.32 pease,like -10.00
pease,pot -14.32 pease,it -10.00

where, for example, ̂EMIM for pease and porridge is calculated as

̂EMIM(pease, porridge) = 2 log 2
4
+ 0 log

0
8
+ 0 log

0
8
+ 4 log

4
16
= −10

So, the “closest” terms to pease are porridge, nine, days, old, some, like, and it.



Hairetes: A Search Engine for OCR Documents 417

3.3 OCR Similarity

Our next goal is to create the OCR-related terms entries for the lexicon, such
that:

OCR-related words:
Cj . . . S1 . . .Sm . . .

where each Si is a Suspect term and Cj is a Correct term in the lexicon.
To construct these entries, a spelling correction system developed by ISRI

especially for OCR text errors called OCRSpell can be used. OCRSpell is similar
to a spell-checking program such as ISpell [7] but with the ability to help correct
errors typically generated by OCR software.

In particular OCRSpell attempts to identify and suggest corrections for seg-
mentation and classification errors resulting from the OCR process. Segmenta-
tion errors encompass such errors as recognizing single letters as multiple char-
acters, for example, reading ‘rn’ for ‘m’, reading multiple characters as single
letters, e.g., ‘ci’ for ‘d’, and incorrect concatenation and division of terms, such
as recognizing ‘c at’ for ‘cat’. Classification errors are errors such as replacing
‘o’ with ‘9’ in ‘J9hn’.

OCRSpell uses a specially designed parser, domain specific dictionaries, and
a statistical device mapping word generator to create a list of word candidates as
replacements for incorrect terms. Also provided with each replacement candidate
is a probability that the corrected term is in fact the correction for that particular
incorrect term. For example, if OCRSpell is given an expression such as “iiien”,
it produces the output:

@(#) Ispell Output Emulator Version 1.0.00 08/17/95
iiien
original word: iiien
***********************************
amen 0.000359
man 0.000530
mien 0.000190
men 0.012714
iii-en 0.002057
***********************************

This output indicates that OCRSpell believes that there is a probability of
0.000359 that “amen” is the correct replacement for “iiien”, a 0.000530 proba-
bility that “man” is the correct replacement, and so on. Further details of the
OCRSpell system are available in [18].

To use OCRSpell to generate the OCR-related entries, however, we must
note that the output of OCRSpell gives us P (Cj |Si), the conditional probability
that Cj is the Correct term given we started with the Suspect term Si. For the
OCR-related terms, however, we want a measure like P (Si|Cj), the conditional
probability Si is the term we want given we have Cj .



418 K. Taghva and J. Coombs

We can use Bayes’ Theorem to get this from the OCRSpell results:

P (Si|Cj) =
P (Si) · P (Cj |Si)

P (S1) · P (Cj |S1) + · · ·+ P (Sk) · P (Cj |Sk)

but the difficulty here is getting all the information needed to make the calcu-
lation. There are two problems here: (1) how to get P (Cj |Sk) for all k, and (2)
how to get all the P (Sk)’s.

With regard to the first problem, consider the output from OCRSpell for the
Suspect term iiien listed earlier. What this output gives us is:

P (C1 = amen|S = iiien) = 0.000359
P (C2 = man|S = iiien) = 0.000530
P (C3 = mien|S = iiien) = 0.000190
P (C4 = men|S = iiien) = 0.012714
P (C5 = iii− en|S = iiien) = 0.002057

However, what we really need in order to use Bayes’ rule is a list for all k of
the probabilities P (Cj |Sk) for a specific Cj . For example, we want to know for
all k P (Ci = men|Sk), that is, the probability that men is Correct for each
given Suspect term that OCRSpell claims is similar to men in the document
collection.

One way to get this information is to maintain a Term Probability B+-tree
(or some other appropriate data structure) during the lexicon building phase.
When the first occurrence of a Suspect term is discovered, OCRSpell should be
run on the term, and for each Correct term having non-zero probability, that
term should be added/updated to the B+-tree with an entry consisting of the
Suspect word and associated probability. Hence the entry for men in the Term
Probability B+-Tree would look like:

men iiien 0.012714 mqn 0.007673 . . .

This entry is updated when iiien is first discovered in the document collection
and again when mqn and subsequent Suspect terms are found.

In general, the procedure is as follows: Suppose the lexicon L of Correct
terms exists, and there exists a list of Suspect terms SW . Create a useful data
structure, like a B+-tree, called B. Add items from SW to B in this way:

for each term s in SW
for each Correct term c returned by OCRSpell(s)

if c is in L
add c to B if not there
add s and its probability to c’s entry in B

For the second problem of defining P (Sk), we may use the inverse document
frequency (idf)

P (Sk) = idf(Sk) = − log fSk

N



Hairetes: A Search Engine for OCR Documents 419

since the lexicon entry of Suspect words will contain the frequency they occur
in the collection. Now, to calculate the probabilities of the OCR-related terms,
let c be a Correct term in B (our Term Probability B+-Tree) and si one of
c’s Suspect terms and pi its probability. That is, going back to the previous
example:

c s1 p1 s2 p2
men iiien 0.012714 mqn 0.007673 . . .

Let E be the number of OCR-related words entered in c’s lexicon so far. A
procedure (not necessarily the most efficient) to select the OCR-related word
entries for the lexicon would be:

for each Correct term c in B
E = 0

for each Suspect term entry si in c’s entry in B
calculate P (si|c) := idf(si)·pi∑

k=0
idf(sk)·pk

if E < m,
add a pointer to si and
add P (si|c) to c’s entry in the lexicon.
E = E + 1

else if P (si|c) > min(P (sk|c))
(where the P (sk|c)’s are values already entered under c),

replace the minimal sk and P (sk|c) with si and P (si|c)

4 Query Processing

We plan orginally to construct Hairetes using Retrieval by General Logical Imag-
ing (RbGLI). Later we will implement a vector space version. For more about
RbGLI see [2,3,4].

4.1 Opinionated Function

First, we define the opinionated-function as follows:

opinionated-function (ft, total no, POS)
return ((− log ft

N ) · (2total no−POS))

where ft is the number of documents containing the term t, total no is the total
number of terms similar to t listed in t’s lexicon entry, and POS is the position
of a term t′i in t’s lexicon entry:

term no. similar words:
t . . . N t′1 . . . t

′
m . . .

where t′1 through t
′
m are pointers to terms similar to t. N is a binary number

indicating the number of non-empty pointers. For example 1111000000 means
there are four such pointers.



420 K. Taghva and J. Coombs

4.2 Query Process

We want to retrieve r documents in response to a query. We will keep an array
called the accumulator (A) to keep track of the similarity between the documents
and the query. So, if this array is indexed with the document number, it is more
likely that most of the similarities will be zero. Among the non-zero similarities
we want to select the top r documents following the model of a heap.

Let’s assume we have query Q:

1. Set A← φ, where A is the accumulator array.
2. For each query term t ∈ Q,

a) search the lexicon
b) record ft and the address It, the inverted file entry for t.
c) set P (t) = − log ft

N
d) read the inverted file entry It.

i. For each pair (d, fd,t) in It
If Ad �∈ A then
set Ad ← 0
set A← A+Ad

set Ad ← Ad + P (t)
ii. look at the list of terms similar to t, call them t1, . . . , tk

A. sort this list on word no.
B. look at the list of the words in d and identify among t1, . . . , tk

those terms which are not in d and call these t′1, . . . , t
′
l.

C. for each t′i look in the lexicon for the word t in the t
′
i list of words.

D. if found, set
opinionated-value ←opinionated-function(ft′

i
, TOT, POS)

where TOT is the total number of words in the similar-word list
for t′i and POS is the position of t in the similar-word list for t

′
i.

E. set Ad ← Ad + opinionated-value
iii. Assume t′1, . . . , t

′
l are the list of OCR-related terms of term t with

probabilities p1, . . . , pl. For each ti in this list
A. read It, the inverted file entry. For each (d, fd,t) in this list

if Ad �∈ A then
set Ad ← 0
set A← A+Ad

set Ad ← Ad +
(
− log fti

N × pi

)
3. For each Ad ∈ A, set Ad ← Ad

weight−of−d from the document info file
4. select the r documents with the highest Ad value.

5 Compression of Files

As it was pointed out in Section 2, OCR collections require certain considera-
tions to compensate for errors. Index size and image display are two prominent
factors. The compression of the postings and bounding boxes has to be taken



Hairetes: A Search Engine for OCR Documents 421

into consideration for a manageable and efficient system. We mainly rely on
unary and γ-code [19] to compress these entries. For the sake of completeness,
we define these two codes here.

Example: The unary code for a number x is defined as (x − 1) 1-bits
followed by a 0-bit. So if x is 9, the unary code is 111111110. The γ-code
for x is defined as follows for x = 9:
1. Take �log x
.
�log 9
 = 3.

2. represent 1 + �log x
 as a unary code.
1 + �log x
 = 1 + 3 = 4 has code 1110.

3. calculate x− 2�log x�.
9− 23 = 9− 8 = 1.

4. Now represent x− 2�log x� as �log x
 binary code.
In our example, 9− 23 = 1 is represented as 001.

5. So the code for 9 is 1110 001.

To decode example 1110 001, extract the unary code, in this case 1110, which
is 4. Treat the next 3 (4− 1 = 3) bits as a binary code, in this case 001, which
is the binary code for 1. The original number is 24−1 + 1 = 8 + 1 = 9.

We can use γ-code to compress the posting and bounding boxes for each term.
As an example, suppose document number 10 has 5 words as shown below:

occurrences of
doc. no. words word no. word 50 in doc x1 y1 x2 y2 x3 y3
10 5 50 3 10 15 302 47 614 312

75 2 12 18 300 320
. . . . . .

We compress the information for these 5 words as follows:

(γ-code 5)(γ-code 50)(γ-code 3)(unary x1)(unary y1)(unary x2)(unary y2)
(unary x3)(unary y3)(γ-code 75)(γ-code 2)(unary x1)(unary y1). . .

6 Conclusion and Future Work

Statistically-based information retrieval engines are robust enough to deal with
typical OCR errors in text. If the collection is poor in quality, then certain
documents may be hard to locate and retrieve. Hairetes is designed to address
this problem and avoid the extreme variability in the the ranked result set.

Hairetes is currently being implemented and we hope to report on its perfor-
mance in the near future.

References

[1] Jean Aitchison, Alan Gilchrist, and David Bawden. Thesaurus Construction and
Use : A Practical Manual. Fitzroy Dearborn, 4th edition, 2000.



422 K. Taghva and J. Coombs

[2] Fabio Crestani. Exploiting the similarity of non-matching terms at retrieval time.
Journal of Information Retrieval, pages 25–45, 2000.

[3] Fabio Crestani and C.J. Van Rijsbergen. A study of kinematics in information
retrieval. ACM Transactions on Information Systems, 16:225–255, 1998.

[4] Fabio Crestani, Ian Ruthven, M. Sanderson, and C.J. van Rijsbergen. The troubles
with using a logical model of ir on a large collection of documents. experimenting
retrieval by logical imaging on trec. In Proceedings of the Fourth Text Retrieval
Conference (TREC-4), 1995.

[5] Scott C. Deerwester, Susan T. Dumais, Thomas K. Landauer, George W. Furnas,
and Richard A. Harshman. Indexing by latent semantic analysis. Journal of the
American Society of Information Science, 41(6):391–407, 1990.

[6] William B. Frakes. Stemming algorithms. In William B. Frakes and Ricardo
Baeza-Yates, editors, Information Retrieval: Data Structures and Algorithms,
pages 131–160. Prentice Hall, 1992.

[7] R. E. Gorin, Pace Willisson, Walt Buehring, Geoff Kuenning, et al. Ispell, a free
software package for spell checking files. The UNIX community, 1971. version
2.0.02.

[8] Donna K. Harman. Ranking algorithms. In William B. Frakes and Ricardo Baeza-
Yates, editors, Information Retrieval: Data Structures and Algorithms, pages 363–
392. Prentice Hall, 1992.

[9] Donna K. Harman. Relevance feedback and other query modification techniques.
In William B. Frakes and Ricardo Baeza-Yates, editors, Information Retrieval:
Data Structures and Algorithms, pages 241–263. Prentice Hall, 1992.

[10] C. J. Van Rijsbergen. A theoretical basis for the use of co-occurrence data in
information retrieval. Journal of Documentation, 33(2):106–109, June 1977.

[11] C. J. Van Rijsbergen. A non-classical logic for information retrieval. The Com-
puter Journal, 29:481–485, 1986.

[12] Amit Singhal, Gerard Salton, and Chris Buckley. Length normalization in de-
graded text collections. In Proc. of SDAIR-96 5th Annual Symposium on Docu-
ment Analysis and Information Retrieval, pages 149–162, Las Vegas, NV, 1996.

[13] Kazem Taghva, Julie Borsack, and Allen Condit. Results of applying probabilistic
IR to OCR text. In Proc. 17th Intl. ACM/SIGIR Conf. on Research and Devel-
opment in Information Retrieval, pages 202–211, Dublin, Ireland, July 1994.

[14] Kazem Taghva, Julie Borsack, and Allen Condit. Effects of OCR errors on rank-
ing and feedback using the vector space model. Inf. Proc. and Management,
32(3):317–327, 1996.

[15] Kazem Taghva, Julie Borsack, and Allen Condit. Evaluation of model-based re-
trieval effectiveness with OCR text. ACM Transactions on Information Systems,
14(1):64–93, January 1996.

[16] Kazem Taghva, Julie Borsack, Allen Condit, and Srinivas Erva. The effects of
noisy data on text retrieval. J. American Soc. for Inf. Sci., 45(1):50–58, January
1994.

[17] Kazem Taghva, Thomas A. Nartker, and Julie Borsack. Recognize, categorize,
and retrieve. In Proc. of the Symposium on Document Image Understanding
Technology, pages 227–232, Columbia, MD, April 2001. Laboratory for Language
and Media Processing, University of Maryland.

[18] Kazem Taghva and Eric Stofsky. Ocrspell: An interactive spelling correction sys-
tem for OCR errors in text. Intl. Journal on Document Analysis and Recognition,
3(3):125–137, March 2001.

[19] I. Witten, A. Moffat, and T. Bell. Managing Gigabytes: Compressing and indexing
documents and images. Morgan Kaufmann, 2nd edition, 1999.


	Hairetes: A Search Engine for OCR Documents
	Introduction
	Document Information
	Creating an Inverted File

	Word Similarity Calculation
	Apply a Dimensionality Reduction
	Apply EMIM
	OCR Similarity

	Query Processing
	Opinionated Function
	Query Process

	Compression of Files
	Conclusion and Future Work
	References


