
Appears in Proc. 2002 Hybrid Systems: Computation and Control Workshop
March, 2002Exploiting Implicit Representations in TimedAutomaton Veri�cation for Controller SynthesisRobert P. Goldman, David J. Musliner, Michael J. S. Pelican?Automated Reasoning Group, Honeywell Laboratories, 3660 Technology Drive,Minneapolis, MN 55418, USAfgoldman, musliner, pelicang@htc.honeywell.comAbstract. Automatic controller synthesis and veri�cation techniquespromise to revolutionize the construction of high-con�dence software.However, approaches based on explicit state-machine models are subjectto extreme state-space explosion and the accompanying scale limitations.In this paper, we describe how to exploit an implicit, transition-based,representation of timed automata in controller synthesis. The CIRCAController Synthesis Module (CSM) automatically synthesizes hard real-time, reactive controllers using a transition-based implicit representationof the state space. By exploiting this implicit representation in searchfor a controller and in a customized model checking veri�er, the CSMis able to e�ciently build controllers for problems with very large statespaces. We provide experimental results that show substantial speed-upand orders-of-magnitude reductions in the state spaces explored. Theseresults can be applied to other veri�cation problems, both in the contextof controller synthesis and in more traditional veri�cation problems.1 IntroductionThis paper describes techniques for exploiting implicit representations in timedautomaton controller synthesis. We show how reachability search exploits the im-plicit representation to substantially improve its e�ciency. We have developedand implemented a system, the CIRCA Controller Synthesis Module (CSM),for automatic synthesis and execution of hard real-time discrete controllers. Un-like previous, game-theoretic algorithms [2, 8], the CSM derives its controller\on-the-
y" [14]. The CSM exploits a feature- and transition-based implicit rep-resentation of its state space, both in searching for the controller and in checkingits correctness. Finally, the CSM generates memoryless and clockless controllers.These design elements substantially decrease the number of states that must beexplored in the synthesis process.The CSM is a component of the CIRCA architecture for intelligent con-trol of mission-critical real-time autonomous systems [10, 11]. To permit on-line? This material is based upon work supported by DARPA/ITO and the Air Force Re-search Laboratory under Contract No. F30602-00-C-0017.The authors thank StavrosTripakis for many helpful suggestions. Thanks also to our anonymous referees.

recon�guration, CIRCA has concurrently-operating controller synthesis (plan-ning) and control (plan-execution) subsystems. The CSM uses models of theworld (plant and environment) to automatically synthesize hard real-time safety-preserving controllers (plans). Concurrently a separate Real-Time Subsystem(RTS) executes the controllers, enforcing response time guarantees. The concur-rent operation means that the computationally expensive methods used by theCSM will not violate the tight timing requirements of the controllers.This paper discusses how the CSM's controller synthesis algorithm interactswith a model-checking reachability search algorithm that exploits the implicitrepresentation. This technique substantially improves veri�cation e�ciency; bytwo orders of magnitude for large examples. We start by introducing the CIRCACSM and its transition- and feature-based representation. Then we outline theforward search algorithm that the CSM uses to synthesize controllers, pointingout the role played by timed automaton veri�cation. Next we explain how toformulate the execution semantics of the CIRCA model as a construction ofsets of timed automata. The timed automaton model provides the semantics,but does not provide a practical approach for veri�cation. We describe methodsfor model-checking that exploit CIRCA's implicit, transition-based, state spacerepresentation. We conclude with a comparison to related work in controllersynthesis and AI planning.2 The Controller Synthesis ModuleCIRCA's CSM automatically synthesizes real-time reactive discrete controllersthat guarantee system safety when run on CIRCA's Real-Time Subsystem (RTS).The CSM takes in a description of the processes in the system's environment,represented as a set of time-constrained transitions that modify world features.Discrete states of the system are modeled as sets of feature-value assignments.Thus the transition descriptions, together with speci�cations of initial states,implicitly de�ne the set of possible system states.For example, Fig. 1 shows several transitions taken from a problem whereCIRCA is to control the Cassini spacecraft in Saturn Orbital Insertion [4, 12].This �gure also includes the initial state description.The CSM reasons about transitions of three types:Action transitions represent actions performed by the RTS. These parallel theoperators of a conventional planning system. Associated with each action isa worst case execution time, an upper bound on the delay before the actionoccurs.Temporal transitions represent uncontrollable processes, some of which mayneed to be preempted. See Sect. 2.1 for the de�nition of \preemption" inthis context. Associated with each temporal transition is a lower bound onits delay. Transitions whose lower bound is zero are referred to as \events,"and are handled specially for e�ciency reasons.

;; The action of switching on an Inertial Reference Unit (IRU).ACTION start_IRU1_warm_upPRECONDITIONS: '((IRU1 off))POSTCONDITIONS: '((IRU1 warming))DELAY: <= 1;; The process of the IRU warming.RELIABLE-TEMPORAL warm_up_IRU1PRECONDITIONS: '((IRU1 warming))POSTCONDITIONS: '((IRU1 on))DELAY: [45 90];; Sometimes the IRUs break without warning.EVENT IRU1_failsPRECONDITIONS: '((IRU1 on))POSTCONDITIONS: '((IRU1 broken));; If the engine is burning while the active IRU breaks,;; we have a limited amount of time to fix the problem before;; the spacecraft will go too far out of control.TEMPORAL fail_if_burn_with_broken_IRU1PRECONDITIONS: '((engine on)(active_IRU IRU1) (IRU1 broken))POSTCONDITIONS: '((failure T))DELAY: >= 5Fig. 1. Example transition descriptions given to CIRCA's planner.Reliable temporal transitions represent continuous processes that may needto be employed by the CIRCA agent. Reliable temporal transitions have bothupper and lower bounds on their delays.While in the worst case an implicit representation is not superior to explicitstate space enumeration, in practice there are substantial advantages. In manyproblems, vast sub-spaces of the state space are unreachable, either because ofthe control regime, or because of consistency constraints. The use of an im-plicit representation, together with a constructive search algorithm, allow us toavoid enumerating the full state space. The transition-centered representationallows us to conveniently represent processes that extend over multiple states.For example, a single transition (e.g., warming up a piece of equipment) may beextended over multiple discrete states. A similar representational convenienceis often achieved by multiplying together many automata, but expanding theproduct construction restores the state explosion. Finally, in this paper we showhow the transition-based implicit representation can be exploited in a veri�er.2.1 CSM AlgorithmGiven problem representations as above, the controller synthesis (planning)problem can be posed as choosing a control action for each reachable discrete

state (feature-value assignment) of the system. Note that this controller synthe-sis problem is simpler than the general problem of synthesizing controllers fortimed automata. In particular, CIRCA's controllers are memoryless and cannotreference clocks. This restriction has two advantages: �rst, it makes the synthesisproblem easier and second, it allows us to ensure that the controllers we generateare actually realizable in the RTS.Since the CSM focuses on generating safe controllers, a critical issue is mak-ing failure states unreachable. In controller synthesis, this is done by the processwe refer to as preemption. A transition t is preempted in a state s i� some othertransition t0 from s must occur before t could possibly occur. The CSM achievespreemption by choosing a control action that is fast enough that it is guaranteedto occur before the transition to be preempted.1The controller synthesis algorithm is as follows:1. Choose a state from the set of reachable states (at the start of controllersynthesis, only the initial state(s) is(are) reachable).2. For each uncontrollable transition enabled in this state, choose whether ornot to preempt it. Transitions that lead to failure states must be preempted.3. Choose a control action or no-op for that state.4. Invoke the veri�er to con�rm that the (partial) controller is safe.5. If the controller is not safe, use information from the veri�er to direct back-tracking.6. If the controller is safe, recompute the set of reachable states.7. If there are no unplanned reachable states (reachable states for which acontrol action has not been chosen), terminate successfully.8. If some unplanned reachable states remain, loop to step 1.During the course of the search algorithm, the CSM will use the veri�ermodule after each assignment of a control action (see step 4). This means that theveri�er will be invoked before the controller is complete. At such points we use theveri�er as a conservative heuristic by treating all unplanned states as if they are\safe havens." Unplanned states are treated as absorbing states of the system,and any veri�cation traces that enter these states are regarded as successful.Note that this process converges to a sound and complete veri�cation whenthe controller synthesis process is complete. When the veri�er indicates that acontroller is unsafe, the CSM will query it for a path to the distinguished failurestate. The set of states along that path provides a set of candidate decisions torevise.For those familiar with designs for game-theoretic synthesis of controllersfor timed systems [2, 8], the CSM algorithm is the same in its purpose. Onedi�erence is that the CSM algorithm works starting from an initial state andbuilding forward by search. The game-theoretic algorithms, on the other hand,typically use a �xpoint operation to �nd a controllable subspace, starting fromunsafe states (or other synthesis failures). Another di�erence is that the CSM1 Note that in some cases a reliable temporal transition, e.g., the warming up of thebackup IRU, can be the transition that preempts a failure.

algorithm heavily exploits its implicit state space representation. Because ofthese features, for many problems, the CSM algorithm is able to �nd a controllerwithout visiting large portions of the state space.Two further remarks are worth making. The �rst is that the search describedhere is not made blindly. We use a domain-independent heuristic, providinglimited lookahead, to direct the search. We do not have space to describe thatheuristic here; it is based on one developed for AI planning [9]. Without heuristicdirection, even small synthesis problems can be too challenging. The second isthat we have developed an alternative method of search that works by divide-and-conquer rather than reasoning forward [6]. For many problems, this suppliesa substantial speed-up. Again, we do not have space to discuss this approach indepth here.3 Modeling for Veri�cationThe CSM algorithm described above operates entirely in the discrete domain ofthe timed problem. This ensures that the controllers may be easily implementedautomatically. However, a path-dependent computation is required to determinehow much time remains on a transition's delay when it applies to two or morestates on a path. The CSM uses a timed automaton veri�cation system to ensurethat the controllers the CSM builds are safe. In this section, we discuss a formalmodel of the RTS, expressed in terms of timed automata. The following sectiondescribes how to reason about this model e�ciently.3.1 Execution SemanticsThe controllers of the CIRCA RTS are not arbitrary pieces of software; they areintentionally very limited in their computational power. These limitations serveto make controller synthesis computationally e�cient and make it simpler tobuild an RTS that provides timing guarantees. The controller generated by theCSM is compiled into a set of Test-Action Pairs (TAPs) to be run by the RTS.Each TAP has a boolean test expression that distinguishes between states wherea particular action is and is not to be executed. Note that these test expressionsdo not have access to any clocks. A sample TAP for the Saturn Orbit Insertiondomain is given in Fig. 2.The set of TAPs that make up a controller are assembled into a loop andscheduled to meet all the TAP deadlines. Note that in order to meet deadlines,this loop may contain multiple copies of a single TAP. The deadlines are com-puted from the delays of the transitions that the control actions must preempt.3.2 Timed AutomataNow that we have a sense of the execution semantics of CIRCA's RTS, webrie
y review the modeling formalism, timed automata, before presenting themodel itself.

#<TAP 2>Tests: (AND (IRU1 BROKEN)(OR (AND (ACTIVE_IRU NONE) (IRU2 ON))(AND (ACTIVE_IRU IRU1) (ENGINE ON))))Acts : select_IRU2
TAP 2 TAP 1 TAP 3 TAP 1TAP 1 TAP 4Fig. 2. A sample Test-Action Pair and TAP schedule loop from the Saturn OrbitInsertion problem.De�nition 1 (Timed Automaton [3].). A timed automaton A is a tuple
S;si;X ;L; E ; I� where S is a �nite set of locations; si is the initial location;X is a �nite set of clocks; L is a �nite set of labels; E is a �nite set of edges;and I is the set of invariants. Each edge e 2 E is a tuple (s; L; ; �; s0) wheres 2 S is the source, s0 2 S is the target, L � L are the labels, 2 	X is theguard, and � � X is a clock reset. Timing constraints (X) appear in guards andinvariants and clock assignments. In our models, all clock constraints are of theform ci � k or ci > k for some clock ci and integer constant k. Guards dictatewhen the model may follow an edge, invariants indicate when the model mustleave a state. In our models, all clock resets re-assign the corresponding clock tozero; they are used to start and reset processes. The state of a timed automatonis a pair: hs; Ci. s 2 S is a location and C : X ! Q � 0 is a clock valuation,that assigns a non-negative rational number to each clock.It often simpli�es the representation of a complex system to treat it as a prod-uct of some number of simpler automata. The labels L are used to synchronizeedges in di�erent automata when creating their product.De�nition 2 (Product Automaton). Given two automata A1 and A2, A1 =
S1; si1;X1;L1; E1; I1� and A2 =
S2; si2;X2;L2; E2; I2�, their product Ap is
S1 � S2; sip;X1 [X2;L1 [L2; Ep; Ip� ; where sip = (si1; si2) and I(s1; s2) = I(s1)^I(s2). The edges are de�ned by:1. for l 2 L1 \ L2, for every hs1; l; 1; �1; s01i 2 E1, and hs2; l; 2; �2; s02i 2 E2,Ep contains h(s1; s2); l; 1 [2; �1 [�2; (s01; s02)i.2. for l 2 L1 n L2, for hs1; l; 1; �1; s01i 2 E1 and s2 2 S2, Ep containsh(s1; s2); l; 1; �1; (s01; s2)i. Likewise for l 2 L2 n L1.3.3 Modeling CIRCA with Timed AutomataWe give the semantics of CSM models in terms of sets of interacting timedautomata (see Fig. 3). Using multiple automata allows us to accurately capturethe interaction of multiple, simultaneously operating processes. The startingpoint of the translation is the CIRCA plan-graph, constructed by the CIRCACSM:

s2

s1

State space
Image

Transition
Uncontrollable

Images

RTS Model

Fire B

CommitSenseCommit
A B

Fire A

l1

l2l3

l4

Base Model

s1

s2

CSM Model

Action
Images

EnabledDisabled

Fire T

Enable T

Enable TDisable T

Transition ModelsFig. 3. The veri�er model and its relation to the CSM model.De�nition 3 (Plan Graph). P = hS;E;!F ; !V ; �; I; T; �; �; p; �i where1. S is a set of states.2. E is a set of edges.3. !F= [f0:::fm] is a vector of features (in a purely propositional domain, thesewill be propositions).4. !V = [V0:::Vm] is a corresponding vector of sets of values (Vi = fvi0:::vikig)that each feature can take on.5. � : S 7!!V is a function mapping from states to unique vectors of valueassignments.6. I � S is a distinguished subset of initial states.7. T = U [A is the set of transitions, made up of an uncontrollable (U)subset, the temporals and reliable temporals, and a controllable (A) sub-set, the actions. Each transition, t, has an associated delay (�t) lower andupper bound: lb(�t) and ub(�t). For temporals ub(�t) = 1, for eventslb(�t) = 0; ub(�t) =1.8. � is an interpretation of the edges: � : E 7! T .9. � : S 7! 2T is the enabled relationship | the set of transitions enabled in aparticular state.10. p : S 7! A [� (where � is the \action" of doing nothing) is the actions thatthe CSM has planned. Note that p will generally be a partial function.11. � : S 7! 2U is a set of preemptions the CSM expects.For every CIRCA plan graph, P, we construct a timed automaton model,�(P). �(P) is the product of a number of individual automata. There is oneautomaton, which we call the base model , that models the feature structure of

the domain. There is an RTS model that models the actions of the CIRCA agent.Finally, for every uncontrollable transition, there is a separate timed automatonmodeling that process. Proper synchronization ensures that the base machinestate re
ects the e�ect of the transitions and that the state of the other automataaccurately indicate whether or not a given process will (may) be underway.De�nition 4 (Translation of CIRCA Plan Graph).�(P) = �(P) � �(P) �Qu2U(P) �(u) where �(P) is the base model; �(P) is theRTS model; and �(u) is the automaton modeling the process that corresponds touncontrollable transition u.De�nition 5 (Base model). �(P) =
�(S);�l0	 ; ;; �(P); �E(P); I>� where:1. �(S) = f�(s) j s 2 Sg [�lF ; l0	 is the image under � of the state set of P.This image contains a location for each state in P, as well as a distinguishedfailure location, lF , and initial location, l0.2. �(P) is the label set; it is given as De�nition 6.3. �E (P) is the edge set of the base model. It is given as De�nition 7.Note that there are no clocks in the base machine; all timing constraints willbe handled by other automata in the composite model. Thus, the invariant foreach state in this model is simply >. We have notated this vacuous invariant asI>. Similarly, all of the edges have a vacuous guard. The labels of the translationmodel ensure that the other component automata synchronize correctly.De�nition 6 (Label set for �(P)).�(P) = feu;du; fu j u 2 Ug (1) [ffa j a 2 Ag (2) [fragThe symbols in (1) are used to synchronize the automata for uncontrollabletransitions with the base model. The symbols in (2) together with the distin-guished reset symbol ra are used to synchronize the automaton modeling theRTS with the base model. The base model edge set, �E (P), captures the e�ecton the agent and environment of the various transitions.De�nition 7 (Base model edge set). �E (P) is made up of the followingsubsets of edges:2(1) �hl0; ��(init; s); �(s)i j s 2 I	(2) �h�(s); ffug ; lFi j s 2 S; u 2 �(s)	(3) fh�(s); ffug [��(u; s0); �(s0)i j s 2 S; u 62 �(s); s0 2 u(s)g(4) fh�(s); fcag ; si j s 2 S; a = p(s)g(5) fh�(s); ffag [��(a; s0); �(a(s))i j s 2 S; a 2 �(s); s0 2 a(s)g(6) �h�(s); ffag ; lF i j s 2 S; a 62 �(s)	2 The clock resets of these transitions are all ;, and the guards are all >, so we haveomitted them.

Edge set (1) is merely a set of initialization edges, that carry the base modelfrom its distinguished single initial location to the image of each of the initialstates of P. (2) takes the base model to its distinguished failure location, lF , whena preemption fails. (3) captures the e�ects of the uncontrollable transitions theCSM didn't preempt. (4) synchronizes with the RTS transitions that capture theRTS committing to execute a particular action (i.e., the test part of the TAP).(5) captures the e�ects of a successfully-executed action. (6) captures a failuredue to a race condition. Event sets ��(t; s) are used to capture the e�ects on thevarious processes of going to s by means of t.De�nition 8.��(t; s) = feu j u 2 �(s)g [fdu j u 6= t ^ u 62 �(s)g [fragThe symbol set ��(t; s) contains an enable symbol for each u enabled in s,and a disable symbol for each u not enabled in s. The addition of the symbol raensures that the RTS machine will \notice" the state transition.There will be one automaton, �(u) for every uncontrollable transition, u.Each such model will have two states, enabled, eu, and disabled, du, and transi-tions for enabling, disabling, and �ring: eu;du, and fu, respectively (see Fig. 3).It will also have a clock, cu, and the guards and invariants will be derived fromthe timing constraints on u:De�nition 9 (Uncontrollable Transition Automata).�(u) = hfeu; dug ; du; fcug ; feu;du; fug ; E(v(u)); IiE(v(u)) = f hdu; fdug;>; ;; dui; hdu; feug;>; cu:= 0; eui;heu; feug;>; ;; eui; heu; fdug;>; ;; dui;heu; ffug; cu � lb(�u); ;; dui gI(eu) = cu � ub(�u) and I(du) = >The model of the RTS, �, contains all of the planned actions in a singleautomaton. Execution of each planned action is captured as a two stage process:�rst the process of committing to the action (going to the state ca), and thenthe action's execution (returning to s0 through transition fa).De�nition 10 (RTS Model).� = hfs0g [fca j a 2 pg ; s0;�cRTS	 ;frag [fca; fa j a 2 pg ;�hs0; fcag ; cRTS � 0; cRTS:=0; cai;hca; ffag ; cRTS � ub(�a); cRTS:=0; s0i;hca; frag ; cRTS < ub(�a); cRTS:=0; s0i;hca; frag ; cRTS < ub(�a); ;; cai j a 2 p	�I(ca) = cRTS � ub(�a); I(s0) = cRTS � 0	i

There are two classes of safety violations the veri�er must detect. The �rstis a failure to successfully preempt some nonvolitional transition. This case iscaught by transitions (2) of De�nition 7. The second is a race condition: here thefailure is to plan a for state s but not complete it before an uncontrolled processbrings the world to another state, s0, that does not satisfy the preconditions ofa. The latter case is caught by transitions (6) of De�nition 7.34 Exploiting the Model in Veri�cationA direct implementation of the above model will su�er a state space explo-sion. To overcome this, we have built a CIRCA-speci�c veri�er (CSV) able toexploit CIRCA's implicit state-space representation. The CSV constructs itstimed automata, both the individual automata and their product, in the processof computing reachability. This on-the-
y computation relies on the factoredrepresentation of the discrete state space and on the limitations of CIRCA'sRTS.The e�ciency gains from our factored state representation come in the com-putation of successor states. A naive implementation of the search would com-pute all of the locations (distinct discrete states) of the timed automaton upfront, but many of those might be unreachable. We compute the product au-tomaton lazily, rather than before doing the reachability search, thus construct-ing only reachable states.The individual automata, as well as their product, are computed on-the-
y.The timed automaton formalism permits multiple automata to synchronize inarbitrary ways. However, CIRCA automata synchronize in only limited ways.There will be only one \primary transition" that occurs in any state of theCIRCA product automaton: either a controlled transition that is part of theRTS automaton, or a single uncontrolled transition. Thus we may dispense withcomponent transitions and their labels.The transitions that synchronize with the primary transition are of threetypes:1. updates to the world automaton, recording the e�ect (the postconditions) ofthe primary jump on the discrete state of the world;2. enabling and disabling jumps that set the state of uncontrolled transitionsin the environment;3. a jump that has the e�ect of activating the control action planned for thenew state.Accordingly, we can very e�ciently implement a lazy successor generationfor a set of states S = hs;Ci; where s is a discrete state and C is a symbolicrepresentation of a class of clock valuations, in our case a di�erence-bound ma-trix. When one needs to compute the successor locations for the location s, one3 Checking for the race condition is not fully implemented in our current version; itsimplementation is in progress as of this writing.

Table 1. Comparison of run times with di�erent search strategies (Forward and DAP),timed automaton veri�er (RTA) versus CIRCA-speci�c veri�er (CSV). Times are givenin milliseconds. Forward DAPScenario Size Kronos RTA CSV Kronos RTA CSV1 1920 9288 190 188 22431 483 4172 72 6777 173 124 7070 385 3093 100 4765 114 97 4399 783 3854 560 5619 138 156 5599 366 2885 3182592 1 1 1 1 1 162786 40304 16983 762 568 506897 3035 13497 191232 258166 23030 25194 12919 4102 18338 191232 14637 652 533 436450 1157849 798559 991232 231769 21923 15474 1 1 225410 448512 1 1063321 466631 1 1 566111 411136 1 1064518 444657 1 1 557112 193536 37500 2585 1568 321626 3382 162613 129024 56732 3453 2933 77022 9958 121814 4592 16025 478 427 20220 1251 103615 7992 4680 183 176 75941 7672 556816 768 11535 426 337 13983 859 62117 120 5730 100 368 5695 754 68018 2880 16425 1349 1102 28922 2484 166919 192 6474 170 117 5715 331 30820 768 9016 303 246 6870 564 416need only compute a single outgoing edge for the RTS transition and make oneoutgoing edge for each uncontrollable transition.Making the outgoing edges is a matter of (again lazily) building the successorlocations and determining the clock resets for the edge. The clocks that must bereset are: (a) For each uncontrolled transition that is enabled in the successorlocation, but not enabled in the source location, s, add a clock reset for thecorresponding transition; (b) If the action planned for the successor location isdi�erent from the action planned for the source location, reset the action clock.These computations are quite simple to make and much easier than computingthe general product construction.Our experimental results show that the CSV substantially improves perfor-mance over Kronos [15] and also over a conventional model checker (denoted\RTA") that we built into CIRCA before developing the CSV. Table 1 con-tains comparison data between the conventional veri�ers and the CSV, for twodi�erent search strategies.4 The columns marked \forward," correspond to thealgorithm described in this paper. The columns marked \DAP" correspond tothe divide-and-conquer alternative [6]. The times, given in milliseconds, are for4 The problems are available at: http://www.htc.honeywell.com/projects/ants/

runs of the CSM on a Sun UltraSparc 10, SPARC v. 9 processor, 440 MHz, with1 gigabyte of RAM. An 1 indicates a failure to �nd an automaton within a 20minute (i.e., t > 1; 200; 000) time limit.To give a sense of the raw size of the problems, the \Size" column presentsa worst-case bound on the number of discrete states for the �nal veri�cationproblem of each scenario. This value is computed by multiplying the numberof possible CSM world model states (for the base model) times the number oftransition model states (2jUj) times the number of RTS model states (jAj+ 1).Using the forward search strategy, the CSV is faster on 16 out of 20 scenarios.Using DAP, the CSV is faster on all 20 trials. The probability of these occurring,if the CSV and the conventional veri�er were equally likely to win on any giventrial, is .0046 and .000019, respectively. Table 1 indicates a speed-up of twoorders of magnitude on the larger scenarios, numbers 9-11, using DAP.Table 2 shows the state space reductions achieved by exploiting the implicitrepresentation. This table compares the total number of states visited by eachveri�er in the course of controller synthesis.A few facts should be noted: A veri�er will be run many times in the courseof synthesizing a controller. To minimize this, a number of cheaper tests �ltercontroller synthesis choices in advance of veri�cation, in order to avoid veri�ca-tion search whenever possible. The comparison is only with Kronos used as acomponent of the CSM, not Kronos as a general veri�cation tool. Finally, thecomputations done by Kronos and RTA are of a special-purpose product modelthat is slightly simpler and less accurate than the CSV's model.5 Related WorkAsarin,Maler, Pneuli and Sifakis (AMPS) [2, 8] independently developed a game-theoretic method of synthesizing real-time controllers. This work stopped at thedesign of the algorithm and derivation of complexity bounds; to our knowledgeit was not implemented. The AMPS approach has been implemented for thespecial case of automatically synthesizing schedulers [1]. The \planning as modelchecking" [5] approach is similar to work on game-theoretic controller synthesis,but limited to purely discrete systems.Kabanza [7]'s SimPlan is very similar to our CSM. However, SimPlanadopts a discrete time model and uses domain-speci�c heuristics.Tripakis and Altisen (TA) [14] have independently developed a controller syn-thesis algorithm for discrete and timed systems, that also uses forward searchwith on-the-
y generation of the state space. Note that on-the-
y synthesis hasbeen part of the CIRCA system since its conception in the early 1990s [10, 11].TA's on-line synthesis has some di�erent features from ours. They allow for mul-tiple control actions in a single state, and they allow the controller to consultclocks. TA's implicit representation of the state space is based on compositionof automata, as opposed to our feature and transition approach. We hope tocompare performance of CIRCA and a recent implementation of the TA algo-rithm [13].

Table 2. Comparison of state spaces explored with di�erent search strategies (For-ward and DAP), timed automaton veri�er (RTA) versus CIRCA-speci�c veri�er (CSV).Units are veri�er state objects, i.e., a location � a di�erence-bound matrix.Scenario Forward RTA Forward CSV DAP RTA DAP CSV1 30 30 30 332 34 34 33 333 15 15 15 154 18 18 18 185 153147 229831 170325 30696 122 120 500 547 2826 5375 631 838 146 131 301165 240659 4361 4799 163133 25910 219885 129329 184972 87111 219885 129329 189184 87112 585 513 509 9913 685 675 1782 9314 106 106 141 14215 17 17 1054 138916 117 101 131 11617 27 27 29 2518 284 290 355 26919 18 18 18 1820 63 60 33 34TA do not have a fully on-the-
y algorithm for timed controller synthesis.Their algorithm requires the initial computation of a quotient graph of the au-tomata, in turn requiring a full enumeration of the discrete state space. Thedisadvantages of such an approach can be seen by considering the state spacesizes of some examples, given in Table 1. We do not need to pre-enumeratethe quotient, since we build only a clockless reactive controller and so can usethe cruder time abstraction, which we compute on-the-
y. Note that this meansthat there are some controllers that TA (and AMPS) can �nd, that we cannot.However, clockless reactive controllers are easy to implement automatically, andthis is not true of controllers that employ clocks. Also, and again because of thesize of the state space, we use heuristic guidance in our state space search.6 ConclusionsIn this paper, we have presented the CIRCA controller synthesis algorithm,provided a timed automaton model for CIRCA CSM problems, and shown howa CIRCA-speci�c veri�er (CSV) algorithm can exploit the features of the model.The CSV shows dramatic speed-up over a general-purpose veri�cation algorithm.

While our model was developed for CIRCA, it is a general model for supervisorycontrol of timed automata, and could readily be used in other applications.References[1] K. Altisen, G. Goessler, A. Pnueli, J. Sifakis, S.Tripakis, and S.Yovine. A frame-work for scheduler synthesis. In Proceedings of the 1999 IEEE Real-Time SystemsSymposium (RTSS '99), Phoenix, AZ, December 1999. IEEE Computer SocietyPress.[2] E. Asarin, Oded Maler, and Amir Pneuli. Symbolic controller synthesis for discreteand timed systems. In Panos Antsaklis, Wolf Kohn, Anil Nerode, and ShankarSastry, editors, Proceedings of Hybrid Systems II. Springer Verlag, 1995.[3] C. Daws, A. Olivero, S. Tripakis, and S. Yovine. The tool Kronos. In HybridSystems III, 1996.[4] Erann Gat. News from the trenches: An overview of unmanned spacecraft for AI.In Illah Nourbakhsh, editor, AAAI Technical Report SSS-96-04: Planning withIncomplete Information for Robot Problems. American Association for Arti�cialIntelligence, March 1996.[5] Fausto Giunchiglia and Paolo Traverso. Planning as model-checking. In Proceed-ings of ECP-99. Springer Verlag, 1999.[6] Robert P. Goldman, David J. Musliner, Kurt D. Krebsbach, and Mark S. Boddy.Dynamic abstraction planning. In Proceedings of the Fourteenth National Con-ference on Arti�cial Intelligence, pages 680{686, Menlo Park, CA, July 1997.American Association for Arti�cial Intelligence, AAAI Press/MIT Press.[7] Froduald Kabanza. On the synthesis of situation control rules under exogenousevents. In Chitta Baral, editor, Theories of Action, Planning, and Robot Control:Bridging the Gap, number WS-96-07, pages 86{94. AAAI Press, 1996.[8] Oded Maler, Amir Pneuli, and Joseph Sifakis. On the synthesis of discrete con-trollers for timed systems. In Ernst W. Mayr and Claude Puech, editors, STACS95: Theoretical Aspects of Computer Science, pages 229{242. Springer Verlag,1995.[9] Drew McDermott. Using regression-match graphs to control search in planning.Arti�cial Intelligence, 109(1 { 2):111{159, April 1999.[10] David J. Musliner, Edmund H. Durfee, and Kang G. Shin. CIRCA: a cooperativeintelligent real-time control architecture. IEEE Transactions on Systems, Manand Cybernetics, 23(6):1561{1574, 1993.[11] David J. Musliner, Edmund H. Durfee, and Kang G. Shin. World modeling for thedynamic construction of real-time control plans. Arti�cial Intelligence, 74(1):83{127, March 1995.[12] David J. Musliner and Robert P. Goldman. CIRCA and the Cassini Saturn or-bit insertion: Solving a prepositioning problem. In Working Notes of the NASAWorkshop on Planning and Scheduling for Space, October 1997.[13] Stavros Tripakis, January 2002.[14] Stavros Tripakis and Karine Altisen. On-the-
y controller synthesis for discreteand dense-time systems. In J. Wing, J. Woodcock, and J. Davies, editors, FormalMethods 1999, volume I of Lecture Notes in Computer Science, pages 233{252.Springer Verlag, Berlin, 1999.[15] S. Yovine. Kronos: A veri�cation tool for real-time sytems. In Springer Inter-national Journal of Software Tools for Technology Transfer, volume 1, October1997.

