
Composing Abstractions of Hybrid Systems

Paulo Tabuada1, George J. Pappas1, and Pedro Lima2

1 Department of Electrical Engineering, University of Pennsylvania
Philadelphia, PA 19104,

{tabuadap,pappasg}@seas.upenn.edu
2 Instituto de Sistemas e Robótica, Instituto Superior Técnico

1049-001 Lisboa - Portugal,
pal@isr.ist.utl.pt

Abstract. The analysis and design of hybrid systems must exploit their
hierarchical and compositional nature of in order to tackle complexity.
In previous work, we presented a hierarchical abstraction framework for
hybrid control systems based on the notions of simulation and bisimula-
tion. In this paper, we build upon our previous work and investigate the
compositionality of our abstraction framework. We present a composi-
tion operator that allows synchronization on inputs and states of hybrid
systems. We then show that the composition operator is compatible with
our abstraction framework in the sense that abstracting subsystems will
the result in an abstraction of the overall system.

1 Introduction

The complexity of hybrid systems analysis and design motivate the development
of methods and tools that scale well with dimension and exploit system structure.
Hierarchical decompositions model hybrid systems using a hierarchy of models
at different layers of abstraction. Analysis tasks are then performed on simpler,
abstracted models that are equivalent with respect to the relevant properties.
Design also benefits from this approach since the design starts at the top of the
hierarchy on a simple model and is then successively refined by incorporating
the modeling detail of each layer.

In addition, as systems are usually compositions of subsystems, one must take
advantage of the compositional structure of hybrid systems. We seek, therefore,
to take advantage of this compositional structure of hybrid systems to simplify
the computation of abstractions. This simplification comes from the fact that it
is much simpler to abstract subsystems individually and then interconnect them
in order to obtain an abstraction, rather than to extract an abstraction of the
system as a whole. In order to accomplish this, compositional operators need to
be compatible with abstraction operators.

The notions of composition and abstraction are mature in theoretical com-
puter science, and, in particular, in the areas of concurrency theory [10], [19],
and computer aided verification [9]. Notions of abstraction such as language in-
clusion, simulation relations, and bisimulation relations have been considered in

C.J. Tomlin and M.R. Greenstreet (Eds.): HSCC 2002, LNCS 2289, pp. 436–450, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



Composing Abstractions of Hybrid Systems 437

the context of hybrid systems. A formal model for hybrid systems allowing com-
position was proposed in [8], compositional refinements in a hierarchical setting
are discussed in [2], and assume guarantee proof rules are presented in [4].

For purely continuous systems, the notions of simulation, and bisimulation
had not received much attention [18]. Recently, similar notions were introduced
in [11, 12] which has resulted in constructions of abstractions for linear control
systems [11], and nonlinear control systems [12] while characterizing abstract-
ing maps that preserve properties of interest such as controllability. Based on
these results, in [16], we took the first steps towards constructing abstractions of
hybrid systems while preserving timed languages. This allowed us to introduce
in [17] an abstract notion of control systems comprising discrete, continuous and
hybrid systems. This abstract framework was the natural setting to understand
abstractions of hybrid control systems.

In this paper, we extend the hierarchical approach described in [17] towards
compositionality. Following the approach described in [19], we introduce a gen-
eral composition operator modeling the interconnection of subsystems and relate
compositionality with abstractions. We prove that simulations and bisimulations
of hybrid systems are compositional, and we also give necessary and sufficient
conditions for bisimulations to be compositional.

This paper is structured as follows. In Section 2 we review the abstract control
systems framework introduced in [17] and introduce the notions of simulation and
bisimulation. In Section 3 we introduce a composition operator based on [19],
modeling the interconnection of subsystems and relate compositionality with
abstractions. We prove the main results of the paper showing that abstractions
are compositional. We conclude at Section 4 by providing some topics for future
research. In Appendix A we collect some mathematical facts and notational
issues, and Appendix B contains the proofs of all the results.

2 Abstract Control Systems

In [17], we presented an abstract control systems framework which allows the
treatment of discrete, continuous, and hybrid control systems in a unified way.
This approach differs from other attempts of unification [7, 14] by regarding sys-
tems as control systems. We start by looking at discrete and continuous systems
to gain some motivation for the general case.

Discrete Control Systems: Let (Q,Σ, δ) be a discrete labeled transition
system, where Q is a finite set of states, Σ is a finite set of input symbols, and δ :
Q×Σ −→ Q is the next-state function. For simplicity, we restrict to deterministic
transition systems, and note that δ is in general a partial function. Let us denote
by Σ∗ the set of all finite strings obtained by concatenating elements in Σ. In
particular the empty string ε also belongs to Σ∗. Regarding concatenation of
strings as a map from Σ∗×Σ∗ to Σ∗ we can give Σ∗ the structure of a monoid.
Furthermore, it is well known from automata theory [5], that the transition
function δ defines a unique partial map from Q×Σ∗ to Q satisfying the following
properties:



438 Paulo Tabuada, George J. Pappas, and Pedro Lima

δ∗(q, ε) = q (1)
δ∗(q, σ1σ2) = δ∗(δ∗(q, σ1), σ2) (2)

A similar description of control system can also be given.
Continuous Control Systems: Let U be the space of admissible control

inputs. Define the set U t as:

U t = {u : [0, t[−→ U | [0, t[⊆ R
+
0 } (3)

An element of U t is denoted by ut, and represents a map from [0, t[ to U . Consider
now the set U∗ which is the disjoint union of all U t for t ∈ R

+
0 :

U∗ =
∐

t∈R+
0

U t (4)

The set U∗ can be regarded as a monoid under the operation of concatenation,
that is, if ut1 ∈ U t1 ⊂ U∗ and ut2 ∈ U t2 ⊂ U∗ then ut1ut2 = ut1+t2 ∈ U t1+t2 ⊂
U∗ with concatenation given by:

ut1ut2(t) =
{

ut1(t) if 0 ≤ t < t1
ut2(t− t1) if t1 ≤ t < t1 + t2

(5)

The identity element is given by the empty input, that is ε = u0. Let ẋ = f(x, u)
be a smooth control system, where x ∈ M , a smooth manifold and u ∈ U , the
set of admissible inputs. Choosing an admissible input trajectory ut, f(x, ut)
is a well defined vector field and as such it induces a flow which we denote by
γx : [0, t[−→ M , such that γx(0) = x. We thus see that a smooth control system
defines a partial map:

Φ :M × U∗ −→ M

(x, ut) �→ γx(t) (6)

satisfying:

Φ(x, ε) = Φ(x, u0) = γx(0) = x (7)
Φ(x, ut1ut2) = γx(t1 + t2) = γγx(t1)(t2) = Φ(Φ(x, ut1), ut2) (8)

We think of the monoid as the set of control actions available to influence the
evolution of the system. In many cases, however, these available actions change
from state to state. This dependence of the available actions on the states forces
us to work with generalized monoids, see Appendix A for the correct definition.

Definition 1 (Abstract Control System). Let S be a set and M a gener-
alized monoid over S. An abstract control system over S is a map Φ :M −→ S
respecting the monoid structure, that is:

1. Identity: Φ(s, ε) = s
2. Semi-group: Φ(s, a1a2) = Φ(Φ(s, a1), a2)



Composing Abstractions of Hybrid Systems 439

We now show how this definition is general enough to cover also hybrid control
systems.

Hybrid Control Systems: The state space of an hybrid control system is a
set of smooth manifolds Xq parameterized by the discrete states q ∈ Q, denoted
by X = {Xq}q∈Q. A point in X is represented by the pair (q, x). The set of
available actions at each point is described by a subset of the following monoid:

M =
∐

n∈N0

(U∗ ∪Σ∗)n (9)

assuming that U∗ ∩ Σ∗ = {ε} and regarding U∗ and Σ∗ simply as sets. Let us
elaborate on the product operation onM. This operation is defined as the usual
concatenation and therefore it requires finite length strings. To accommodate
this requirement and still be able to have an infinite number of concatenations
of elements in U∗ we proceed as follows. Suppose that we want to show that
σ1u

t1ut2 . . . utk . . . σ2 belongs to M, where tk is a convergent series. Instead of
regarding each element in the string as an element inM (which would not allow
us to define the last concatenation since it would happen after ∞) we regard
σ1 and σ2 as elements of M and ut1ut2 . . . utk . . . = ut′ as an element of U∗

and consequently as an element of M, where t′ = lim
k−→∞

tk. This string is then

regarded as the map m : {1, 2, 3} −→ M defined by m(1) = σ1, m(2) = ut′

and m(3) = σ3. The product in M is then the usual concatenation on reduced
strings, that is, strings where all consequent sequences of elements of U∗ or Σ∗

have been replaced by their product in U∗ or Σ∗, respectively. Hybrid control
systems are now cast into the abstract control systems framework as:

Definition 2 (Hybrid Control System). An hybrid control system H =
(X,MX , ΦX) consists of:

– The state space X = {Xq}q∈Q.
– A generalized monoid MX over X.
– A map ΦX :MX −→ X respecting the monoid structure and such that for all

q ∈ Q, there is a set Inv(q) ⊆ Xq and for all x ∈ Inv(q), MX(q, x) ∩ U∗ �=
{ε} and Φ((q, x), ut′ ) ∈ Inv(q) for every prefix ut′ of every ut ∈ MX(q, x).

The semantics associated with the evolution from (q, x) governed by Φ and
controlled by a ∈ M(q,x) is the standard transition semantics of hybrid au-
tomata [3]. Suppose that a = ut1σ1σ2u

t2 , then Φ((q, x), a) = (q′, x′) means that
the system starting at (q, x) evolves during t1 units of time under continuous
input ut1 , jumps under input σ1 and them jumps again under σ2. After the two
consecutive jumps, the system evolves under the continuous control input ut2

reaching (q′, x′), t2 units of time after the last jump.

2.1 Control System Abstractions

We now review the notions of simulation and bisimulation in the context of
abstract control systems while referring the reader to Appendix A for the relevant
notation.



440 Paulo Tabuada, George J. Pappas, and Pedro Lima

Definition 3 (Simulations of Abstract Control Systems). Let ΦX and ΦY

be two abstract control systems over X and Y with generalized monoids MX and
MY , respectively and F ⊆ MX ×MY a generalized monoid respecting relation.
Then ΦY is a simulation of ΦX with respect to F or a F -simulation iff for any
x ∈ X:

y ∈ FB(x) ⇒ ∀(x,ax)∈dom(F ) ∃(y,ay)∈F (x,ax) ΦY (y, ay) ∈ FB(ΦX(x, ax))

The above definition slightly generalizes the usual notions of morphisms between
transition systems in [19], since the inputs inMY , if obtained from F , depend on
the inputs onMX as well as the state. It is straightforward to see that abstract
control systems and relations satisfying the above condition form a category,
that we call the abstract control systems category. The notion of bisimulation is
defined as a symmetric simulation:

Definition 4. Let ΦX and ΦY be abstract control systems over X and Y with
generalized monoids MX and MY respectively. If F ⊆ MX ×MY is a gener-
alized monoid respecting relation we say that ΦX is F -bisimilar to ΦY iff ΦY is
a F -simulation of ΦX and ΦX is a F−1-simulation of ΦY .

Although we used relations to define simulations and bisimulations we will as-
sume through the remaining paper that F is the relation induced by a map
f : MX −→ MY . The approach taken to define bisimulation is similar in spirit
to the one in [10], however instead of preserving inputs between bisimulations,
we relate them through the map f . If one chooses a map f which is the identity
on inputs we recover the notion of bisimulation in [10]. Several other approaches
to bisimulation are reported in the literature and we point the reader to the
comparative study in [13] and the references therein.

The notion of simulation allows to define several different types of abstraction
since when f : MX −→ MY defines a simulation from ΦX to ΦY , the map fB

takes state trajectories of ΦX to state trajectories of ΦY [15]. This shows, in par-
ticular, that f(L(ΦX)) ⊆ L(ΦY ), where L(Φ) denotes the language generated by
abstract control system Φ. When f is simply the inclusion ofMX intoMY , that
is f(x, a) = (x, a) ∈ MY for every (x, a) ∈ MX we recover the popular notion
of abstraction based on language inclusion since L(ΦX) = f(L(ΦX)) ⊆ L(ΦY ).
Under certain conditions on the relation F the computation of a simulation can
be done algorithmically as described in [17].

3 Compositional Abstractions

In this section, we follow the categorical description of composition of transition
systems as described in [19]. A variety of composition operations can be modeled
as the product operation followed by a restriction operation.

3.1 Parallel Composition with Synchronization

The first step of composition combines two abstract control systems into a sin-
gle one by forming their product. Given two abstract control systems ΦX :MX



Composing Abstractions of Hybrid Systems 441

−→ X and ΦY : MY −→ Y we define their product to be the abstract con-
trol system ΦX × ΦY : (MX × MY ) −→ (X × Y ), ΦX × ΦY ((x, y), (ax, ay)) =
(ΦX(x, ax), ΦY (y, ay)), where the actions available at each (x, y) ∈ X × Y are
subsets of the direct product monoidMX⊗MY . The trajectories of the product
control system consist of all possible combinations of the initial control systems
trajectories. The product can also be defined in a categorical manner.

Definition 5 (Product of abstract control systems). Let ΦX :MX −→ X
and ΦY :MY −→ Y be two abstract control systems. The product of these abstract
control systems is a triple (ΦX × ΦY , πX , πY ) where ΦX × ΦY is an abstract
control system and πX ⊆ (X × Y ) × X and πY ⊆ (X × Y ) × Y are projection
relations such that ΦX is a πX -simulation of ΦX × ΦY , ΦY is a πY -simulation
of ΦX × ΦY , and for any other triple (ΦZ , pX , pY ) of this type there is one and
only one relation ζ ⊆ Z × (X × Y ) such that ΦX × ΦY is a ζ-simulation of ΦZ ,
and the following diagram commutes:

ΦZ

pX

@
@

@
@I

ΦX ΦX × ΦY
�πX ΦY

-πY

6
ζ pY

�
�
�
��

(10)

The relations πX and πY are in fact those induced by the canonical projection
maps πX : X × Y −→ X , πY : X × Y −→ Y and the relation ζ is easily seen
to be given by ζ = (pX , pY ). This definition of product may seem unnecessarily
abstract and complicated at the first contact, it will, however, render the proof
of the main result on the compatibility of parallel composition with respect to
simulations a much simpler task.

Example 1. Consider the transition systems inspired from [19] and displayed on
the left of Figure 1 where the ε evolutions are not represented. The product of
these transitions systems will consist of all possible evolutions of both systems
as displayed on the right of Figure 1.

���� ��� ���� ���

���� ���

���� ���

��� ��

��� ��

��� ��

��� ��

��� ��

��� ���
�� ��

�� ��

�

�

��� ��

��� ��

Fig. 1. Two transition systems on the left and the corresponding product tran-
sition system on the right.



442 Paulo Tabuada, George J. Pappas, and Pedro Lima

In the product abstract control system, the behavior of one system does not influ-
ence the behavior of the other system. Since in general the behavior of a system
composed of several subsystems depends strongly on the interaction between the
subsystems, one tries to capture this interaction by removing undesired evolu-
tions from the product system ΦX × ΦY through the operation of restriction.
Given a generalized submonoid ML ⊆ MW we define the restriction of control
system ΦW : MW −→ W to ML as a new control system ΦW |ML : ML −→ L
which is given by ΦW |ML(x, a) = ΦW (x, a) iff (x, a) ∈ ML and ΦW (x, a′) be-
longs to L for any prefix a′ of a. In general the domain of ΦW |ML ,ML, may be
strictly contained inML since restricting the base space implies also restricting
the available inputs to those that do not force the abstract control system to
leave the restricted base. If the generalized submonoid ML has the same state
space as MW but “less” control inputs available at each state, then restriction
is modeling synchronization of both systems on the control inputs. If on the
other hand the available control inputs are equal but the state space of ML is
“smaller” then the state space ofMW then both systems are being synchronized
on the state space. Synchronization on inputs and states is also captured by the
operation of restriction by choosing a generalized submonoid with “less” avail-
able inputs and “smaller” state space. This operation also admits a categorical
characterization.

Definition 6 (Restriction of abstract control systems). Let ΦW : MW

−→ W be an abstract control system, ML a generalized submonoid of MW and
g and h two simulation relations such that ML = {(w, aw) ∈ MW | g(w, aw) =
h(w, aw)}. The restriction of ΦW to ML is a pair (ΦW |ML , iML) where ΦW |ML

is an abstract control system and iML ⊆ ML × MW is an inclusion relation
such that ΦW is a iML-simulation of ΦW |ML satisfying g ◦ iML = h ◦ iML and
for any other pair (ΦZ , iMZ ) of this type there is one and only one relation η
such that ΦW |ML is a η-simulation of ΦZ , and the following diagram commutes:

ΦW |ML ΦW
-iML

ΦZ

6
η iMZ

�
�
�
��

ΦV
-g
-

h

(11)

It is not difficult to see that the relation iML is simply the inclusion iML(al) =
al ∈ MW for every al ∈ ML. With the notions of product and restriction
at hand, we can now define a general operation of parallel composition with
synchronization.

Definition 7 (Parallel Composition with synchronization). Let ΦX :
MX −→ X and ΦY : MY −→ Y be two abstract control systems and consider a
generalized submonoid ML ⊆ MX ×MY . The parallel composition of ΦX and
ΦY with synchronization over ML is the abstract control system defined as:

ΦX ‖ML ΦY = (ΦX × ΦY )|ML (12)



Composing Abstractions of Hybrid Systems 443

Example 2. Consider the transition systems displayed on the left of Figure 1.
By specifying the generalized submonoid:

ML = {((x1, y1), (a, b)), ((x1, y1), (ε, c))((x1, y1), (ε, ε)), ((x2, y1), (ε, c)),
((x2, y1), (ε, ε)), ((x2, y2), (ε, ε)), ((x1, y2), (ε, ε))} (13)

it is possible to synchronize the event a with the event b on the parallel composi-
tion of these systems, while the remaining evolutions not controlled by a neither
by b remain unchanged. The resulting transition system is displayed in Figure 2.

���� ��� ���� ��� ���� ���

��� �� ��� ��

���� ���

��� ��

Fig. 2. Parallel composition with synchronization of the transition systems dis-
played on the left of Figure 1.

3.2 Compositionality of Simulations

We now determine if composition of subsystems is compatible with abstraction.
A positive answer to this question is given by the next theorem which describes
how the process of computing abstractions can be rendered more efficient by
exploring the interconnection structure of hybrid systems.

Theorem 1 (Compositionality of Simulations). Given abstract control sys-
tems ΦX , ΦZ (which is a F -simulation of ΦX), ΦY , ΦW (which is a G-simulation
of ΦY ) and the generalized submonoid ML ⊆ MX × MY , the parallel compo-
sition of the simulations ΦZ and ΦW with synchronization over (F × G)(ML)
is a (F × G)|ML

-simulation of the parallel composition of ΦX with ΦY with
synchronization over ML.

The above result was stated for parallel composition of two abstract control
systems but it can be easily extended to any finite number of abstract control
systems. The relevance of the result lies in the fact that, in general, it is much
easier to abstract each individual subsystem and by parallel composition obtain
an abstraction of the overall system.

Example 3. To illustrate the use of Theorem 1 we shall make use of the cele-
brated water tank system from [1]. Consider two water tanks that can be filled
by water coming from a pipe as displayed on the left of Figure 3. The water
level at tank A is measured by x1 while the water level at tank B is measured by
x2. Each tank has also an outflow that causes a decrease in the water level. The
outflow rate at tank A is v1 while at tank B is v2. This outflow can be compen-
sated by a water inflow coming from the pipe on top of the tanks. This pipe has



444 Paulo Tabuada, George J. Pappas, and Pedro Lima

�� � � ��

�� � � � � ��
�� � � � � � � ��

�� � � � �� � ��
�� � � � � ��
�� � � � � � � ��

�� ��

��

��

�

� � ��

��

��

����

Fig. 3. Water tank system: Physical setup on the left and hybrid model on the
right.

an inflow rate of w which can be directed to tank A or to tank B by means of a
valve located in the pipe. Contrary to [1], we explicitly incorporate a first order
model of the valve in the hybrid automaton describing this hybrid control sys-
tem, displayed on the right of Figure 3. We now seek to abstract away the valve
dynamics to obtain the usual model that considers the switching of the inflow
from one tank to the other instantaneous1. Instead of computing an abstraction
directly from this hybrid automaton we start by realizing that this automaton
can be obtained by parallel composition of hybrid control systems HX and HY

modeling the pipe and the tanks, respectively, as shown in Figure 4. This compo-

�� � � �� �� � � � �� � ��

�� ��

��

��

�� � � �� � ��
�� � � �� � ��

�

Fig. 4. Hybrid model of the pipe and water tanks on the left and right, respec-
tively.

sition is synchronized on the generalized submonoid ML ⊆ MX ×MY defined
by the equalities u1 = w and u2 = w − w. We now abstract the pipe model
by aggregating all the continuous states in discrete state q1 to 0 and all the
continuous states in discrete state q2 to w. Theorem 1 ensures that composing
HY with this abstraction will result in an abstraction of hybrid control system
HX ‖ML HY . The new synchronizing generalized monoid is obtained from ML

by replacing w by 0 on the continuous inputs in state q1 and replacing w by w
in the continuous inputs at discrete state q2. This is also be described by the
1 We remark that considering the water switching instantaneous leads to zeno trajec-
tories [6], however this problem falls beyond the scope of the current paper.



Composing Abstractions of Hybrid Systems 445

equalities u1 = 0, u2 = w and u1 = w, u2 = 0 valid at discrete states q1 and
q2, respectively. The resulting hybrid control system is displayed in Figure 5.
This example illustrates the clear advantage of exploring compositionality in

�� � � � ��

�� � � � � ��

�� � � � � ��

�� � � � ��

�� ��

��

��

Fig. 5. Abstracted hybrid model of the water tank system.

computing hybrid abstractions. We have only computed continuous abstractions
of one-dimensional control systems (for the pipe automaton), whereas if one
would have proceeded directly from hybrid control system HX ‖ML HY without
exploring the compositional structure, one would have computed continuous ab-
stractions of the three-dimensional continuous control systems at each discrete
location.

3.3 Compositionality of Bisimulations

In this section we extend the previous compatibility results from simulations to
bisimulations. Although the product respects bisimulations the same does not
happen with the operation of restriction so we need additional assumptions to
ensure that bisimulations are respected by composition as stated in the next
result.

Theorem 2 (Compositionality of Bisimulations). Given abstract control
systems ΦX , ΦZ (a F -bisimulation of ΦX), ΦY , ΦW (a G-bisimulation of ΦY )
and a generalized submonoid ML ⊆ MX × MY we have that the parallel
composition of the bisimulations ΦZ and ΦW with synchronization over (F ×
G)(ML) is a (F × G)|ML

-bisimulation of the parallel composition of ΦX with
ΦY with synchronization over ML iff (F ×G)−1|(F×G)(ML) = (F ×G)|ML

−1

where (F ×G)(ML) is the domain of ΦZ ‖(F×G)(ML) ΦW .

From the previous result we conclude that if we have a means of computing
bisimulations and if we choose the synchronization generalized submonoid care-
fully we can compute bisimulations by exploring the interconnection structure
of large-scale systems.



446 Paulo Tabuada, George J. Pappas, and Pedro Lima

4 Conclusions

In this paper, we addressed the interplay between abstractions and composi-
tionality of hybrid systems. Based on previous work on abstractions of hybrid
control systems, we introduced a composition operator, and showed that this
composition operator is compatible with abstractions based on simulations. Fur-
thermore, we presented necessary and sufficient conditions for this operator to
be also compatible with bisimulations. Current research is focusing on classes
of hybrid systems and composition operators for which the abstraction process
can be fully automated. Another important topic for future research is to un-
derstand which conditions guarantee that hybrid systems relevant properties are
preserved by abstractions, and specially by composition operators.

Acknowledgments: The authors would like to thank Esfandiar Haghverdi
for extremely stimulating discussions on category theory, and its use for hybrid
systems. The first author was supported by Fundação para a Ciência e Tecnologia
under grant PRAXIS XXI/BD/18149/98 while the second author was partially
supported by DARPA ITO MoBIES Grant F33615-00-C-1707.

References

[1] R. Alur and T.A. Henzinger. Modularity for timed and hybrid systems. In Pro-
ceedings of the 9th International Conference on Concurency Theory, volume 1243
of Lecture Notes in Computer Science, pages 74–88. Springer-Verlag, 1997.

[2] Rajeev Alur, Radu Grosu, Insup Lee, and Oleg Sokolsky. Compositional refine-
ments for hierarchical hybrid systems. In Hybrid Systems : Computation and Con-
trol, volume 2034 of Lecture Notes in Computer Science, pages 33–48. Springer
Verlag, 2001.

[3] T.A. Henzinger. The theory of hybrid automata. In Proceedings of the 11th
Annual IEEE Symposium on Logic in Computer Science, pages 278–292. IEEE
Computer Society Press, 1996.

[4] Thomas A. Henzinger, Marius Minea, and Vinayak Prabhu. Assume-guarantee
reasoning for hierarchical hybrid systems. In Hybrid Systems : Computation
and Control, volume 2034 of Lecture Notes in Computer Science, pages 275–290.
Springer Verlag, 2001.

[5] John E. Hopcroft and Jeffery D. Ullman. Introduction to Automata Theory, Lan-
guages and Computation. Addison-Wesley Publishing Company, USA, 1979.

[6] Karl Henrick Johansson, Magnus Egersted, John Lygeros, and S. Sastry. On the
regularization of hybrid automata. Systems and Control Letters, 38:141–150, 1999.

[7] E.A. Lee and A. Sangiovanni-Vincentelli. A framework for comparing models of
computation. IEEE Transactions on Computer Aided Design, 17(12), December
1998.

[8] Nancy Lynch, Roberto Segala, and Frits Vaandrager. Hybrid I/O automata re-
visited. In Hybrid Systems : Computation and Control, volume 2034 of Lecture
Notes in Computer Science, pages 403–417. Springer Verlag, 2001.

[9] Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems: Safety.
Springer Verlag, New York, 1995.

[10] R. Milner. Communication and Concurrency. Prentice Hall, 1989.



Composing Abstractions of Hybrid Systems 447

[11] George J. Pappas, Gerardo Lafferriere, and Shankar Sastry. Hierarchically consis-
tent control systems. IEEE Transactions on Automatic Control, 45(6):1144–1160,
June 2000.

[12] George J. Pappas and Slobodan Simic. Consistent hierarchies of affine nonlinear
systems. IEEE Transactions on Automatic Control, 2001. To appear.

[13] Markus Roggenbach and Mila Majster-Cederbaum. Towards a unified view of
bisimulation: a comparative study. Theoretical Computer Science, (238):81–130,
2000.

[14] J.J.M.M. Rutten. Universal coalgebra: a theory of systems. Theoretical Computer
Science, 249(1):3–80, 2000.

[15] Paulo Tabuada. Hierarchies and Compositional Abstractions of Hybrid Systems.
PhD thesis, Instituto Superior Técnico, Lisbon, Portugal, January 2002.

[16] Paulo Tabuada and George J. Pappas. Hybrid abstractions that preserve timed
languages. In Hybrid Systems : Computation and Control, volume 2034 of Lecture
Notes in Computer Science, pages 501–514. Springer Verlag, 2001.

[17] Paulo Tabuada, George J. Pappas, and Pedro Lima. Compositional abstractions
of hybrid control systems. In Proceedings of the 40th IEEE Conference on Decision
and Control, December 2001.

[18] A. J. van der Schaft and J. M. Schumacher. Compositionality issues in discrete,
continuous, and hybrid systems. International Journal of Robust and Nonlinear
Control, 11(5):417–434, April 2001.

[19] Glynn Winskel and Mogens Nielsen. Models for concurrency. In Abramsky, Gab-
bay, and Maibaum, editors, Handbook of Logic and Foundations of Theoretical
Computer Science, volume 4. Oxford University Press, London, 1994.

A Notation and Mathematical Facts

A relation is a generalization of a function in the sense that it assigns to each
element in its domain a set of elements in its codomain. Mathematically a rela-
tion F between the sets S1 and S2 is simply a subset of their Cartesian product,
that is F ⊆ S1 × S2. Given two relations F ⊆ S1 × S2 and G ⊆ S2 × S3 we
can define their composition to be the relation G ◦ F ⊆ S1 × S3 defined by
G ◦ F = {(s1, s3) ∈ S1 × S3 : ∃s2 ∈ S2 (s1, s2) ∈ F ∧ (s2, s3) ∈ G}. Given
a relation F ⊆ S1 × S2 we call F−1 ⊆ S2 × S1 given by F−1 = {(s2, s1) ∈
S2 × S1 : (s1, s2) ∈ F} the inverse relation. An object that we will use fre-
quently is the set valued map F : S1 −→ 2S2 induced by a relation F and defined
by F (s1) = {s2 ∈ S2 : (s1, s2) ∈ F}.

We also introduce some notation for later use. Given relations F ⊆ S1 × S2,
G ⊆ S3 × S4 and a subset L ⊆ S1 × S3 we define the new relations F × G and
(F ×G)|L as F ×G = {((s1, s3), (s2, s4)) ∈ (S1 × S3) × (S2 × S4) : (s1, s2) ∈
F ∧ (s3, s4) ∈ G} and (F ×G)|L = {((s1, s3), (s2, s4)) ∈ F ×G : (s1, s3) ∈ L}.

As explained in Section 2 we will need to work with generalized monoids.
We start by recalling the notion of monoid. A monoid is a triple (M, ·, ε) where
M is a set closed under the associative operation · : M×M −→ M and ε is a
special element of M called identity. This element satisfies ε · m = m · ε = m
for any m ∈ M. We will usually denote m1 · m2 simply by m1m2 and refer to
the monoid simply as M. Given two elements m1 and m2 from M we say that



448 Paulo Tabuada, George J. Pappas, and Pedro Lima

m1 is a prefix of m2 iff there exists another m ∈ M such that m1m = m2. We
will be specially interested in generalized monoids obtained as follows. Let X be
a set and M a monoid. Then we can regard X × M as a set valued function
F : X −→ 2M which assigns to each x ∈ X the monoid F (x) =M. However, in
general, not all the elements of M will be available at each point in X so that
we need2 a map G : X −→ 2M such that G(x) may be a strict subset of M with
the property that G(x) is prefix closed for every x ∈ X . Such a map will be
called a generalized monoid over the set X and we shall denote it by MX . We
will, interchangeably, regard a generalized monoid as a map from X to 2M or as
the subset of X ×M defined by (x,m) ∈ MX iff m ∈ MX(x). A subsetML of
MX which is also a generalized monoid will be called a generalized submonoid.

We now relate generalized monoids through relations. Let F ⊆ MX×MY be
a relation between generalized monoids. Then F induces a relation FB ⊆ X×Y
by y ∈ FB(x) iff (y,m) ∈ F (x,m′) for any (y,m) ∈ MY and (x,m′) ∈ MX . We
then say that the relation F is generalized monoid respecting iff satisfies:

– Identity: y ∈ FB(x) ⇒ (y, ε) ∈ F (x, ε)
– Semi-group: (y1,m

′
1) ∈ F (x1,m1), (y2,m

′
2) ∈ F (x2,m2)

and (x1,m1m
′
1) ∈ MX ⇒ (y1,m

′
1m

′
2) ∈ F (x1,m1m2).

B Proofs

Proof (of Theorem 1). Consider the product system (ΦZ ×ΦW , πZ , πW ) and the
triple (ΦX × ΦY , F ◦ πX , G ◦ πY ). By definition of product we know that there
is one and only one relation ζ such that:

ΦX × ΦY

F ◦ πX

@
@
@
@I

ΦZ ΦZ × ΦW
�πZ ΦW

-πW

6
ζ G ◦ πY

�
�
�
��

commutes and this relation is given by ζ = (F,G) = F × G, meaning that
ΦZ ×ΦW is a F ×G-simulation of ΦX ×ΦY . Consider now the following diagram:

(ΦX × ΦY )|ML ΦZ × ΦW
-ζ ◦ iML ΦV

-g
-

h

where g and h are equal only on the generalized submonoid ζ(ML). It is clear
that g ◦ζ ◦ iML = h◦ζ ◦ iML sinceML ⊆ ML implies ζ ◦ iML(ML) = ζ(ML) ⊆
ζ(ML). Therefore, by definition of restriction there exists one and only one
simulation relation η from ΦX ‖ML ΦY to ΦZ ‖ζ(ML) ΦW which is given by
η = ζ ◦ iML = (F ×G) ◦ iML = (F ×G)|ML

. ��
2 In general, a generalized monoid over a set X can be seen as a small category with
elements of X as objects.



Composing Abstractions of Hybrid Systems 449

Proof (of Theorem 2). We now prove Theorem 2 through a series of results. We
start by showing that product respects bisimulations:

Lemma 1. Given abstract control systems ΦX , ΦZ (a F -bisimulation of ΦX),
ΦY and ΦW (a G-bisimulation of ΦY ) the product abstract control system ΦZ ×
ΦW is a F ×G-bisimulation of ΦX × ΦY .

Proof. Consider the following commutative diagrams:

ΦX ΦY

ΦX × ΦY

πX ��	
πY@
@R

ΦZ ΦW

ΦZ × ΦW

πZ @
@I πW�

��

?F ?G

?

η1

ΦX ΦY

ΦX × ΦY

πX ��	
πY@
@R

ΦZ ΦW

ΦZ × ΦW

πZ @
@I πW�

��

6F−1 6G−1

6

η2

By definition of product there exists one and only one relation η1 and one and
only one relation η2 such that the diagrams commute. In fact, η1 is the relation
η1 = (F ◦ πX , G ◦ πY ) = F × G and η2 = (F−1 ◦ πZ , G−1 ◦ πW ) = (F × G)−1

meaning that ΦX × ΦY is F ×G-bisimilar to ΦZ × ΦW . ��
Under the proper assumptions the operation of restriction is also compatible
with bisimulations:

Proposition 1. Let ΦX be an abstract control system, ΦY a F -bisimulation of
ΦX and ML a generalized submonoid of MX such that F−1|F (ML) = (F |ML

)−1.
The restriction ΦX |ML is a F |ML-bisimulation of ΦY |F (ML).

Proof. A similar argument to the proof of Proposition 1 shows that ΦY is a
F |ML

-simulation of ΦX so that we will only show that ΦX is a F |−1

ML
-simulation

of ΦY . Consider the following diagram:

ΦX |ML ΦX
-

iML

F−1 ◦ iF (ML)

@
@
@
@R

ΦY |F (ML)

ΦV
-g
-

h
(14)

where g and h are equal only on the generalized submonoid ML. We will show
that (14) commutes by proving the only nontrivial equality, g ◦ F−1 ◦ iF (ML) =
h ◦ F−1 ◦ iF (ML). Recall that the equality F−1|F (ML) = F |ML

−1 implies that

the domains of the relations are the same, that is F (ML) = F (ML). This allows
to conclude that:

F−1 ◦ iF (ML)(F (ML)) = F−1|F (ML) ◦ F (ML)

= F |ML

−1 ◦ F |ML
(ML) =ML ⊆ ML



450 Paulo Tabuada, George J. Pappas, and Pedro Lima

Since (14) commutes we can invoke the definition of restriction to ensure the
existence of a unique simulation relation from ΦY |F (ML) to ΦX |ML which is given
by η = F−1 ◦ iF (ML) = F−1|F (ML) = F |ML

−1 thereby showing bisimilarity. ��

The condition of the previous result is in fact also a necessary one as we now
show:

Proposition 2. Let ΦX be an abstract control system, ΦY a F -bisimulation of
ΦX and ML a generalized submonoid of MX. If the restriction ΦX |ML is a
F |ML-bisimulation of ΦY |F (ML) then F−1|F (ML) = (F |ML

)−1.

Proof. The following commutative diagram is a consequence of bisimilarity:

ΦY |F (ML) ΦY-iF (ML)

?F |ML

−1

?F
−1

ΦX |ML ΦX
-iML (15)

from which we get the following equality:

iML ◦ F |ML

−1 = F−1 ◦ iF (ML) (16)

from which follows the desired equality F |ML

−1 = F−1|F (ML). ��

Theorem 2 is just a restatement of Lemma 1 and Propositions 1 and 2 and is
therefore proved. ��


	Introduction
	Abstract Control Systems
	Control System Abstractions

	Compositional Abstractions
	Parallel Composition with Synchronization
	Compositionality of Simulations
	Compositionality of Bisimulations

	Conclusions

