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Abstract. Parameterized dataflow is a meta-modeling approach for incorporat-
ing dynamic reconfiguration capabilities into broad classes of dataflow-based
design frameworks for digital signal processing (DSP). Through a novel formal-
ization of dataflow parameterization, and a disciplined approach to specifying
parameter reconfiguration, the parameterized dataflow framework provides for
automated synthesis of robust and efficient embedded software. Central to these
synthesis objectives is the formulation and analysis of consistency in parameter-
ized dataflow specifications. Consistency analysis of reconfigurable specifica-
tions is particularly challenging due to their inherently dynamic behavior. This
paper presents a novel framework, based on a concept of local synchrony, for
managing consistency when synthesizing implementations from dynamically-
reconfigurable, parameterized dataflow graphs.

1.  Motivation and related work
Dataflow is an established computational model for simulation and synthesis of

software for digital signal processing (DSP) applications. The modern trend toward
highly dynamic and reconfigurable DSP system behavior, however, poses an important
challenge for dataflow-based DSP modeling techniques, which have traditionally been
well-suited primarily for applications with significantly static, high-level structure.
Parameterized dataflow [1] is a promising new meta-modeling approach that
addresses this challenge by systematically incorporating dynamic reconfiguration
capabilities into broad classes of dataflow-based design frameworks for digital signal
processing (DSP).

Through a novel formalization of dataflow parameterization, and a disciplined
approach to specifying parameter reconfiguration, the parameterized dataflow frame-
work provides for automated synthesis of robust and efficient embedded software.

1. This research was sponsored by the U. S. National Science Foundation under Grant
#9734275.
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Central to these synthesis objectives is the formulation and analysis of consistency in
parameterized dataflow specifications. Consistency analysis of reconfigurable specifi-
cations is particularly challenging due to their inherently dynamic behavior. This paper
presents a novel framework, based on a concept of local synchrony, for managing con-
sistency when synthesizing implementations from dynamically-reconfigurable, param-
eterized dataflow graphs. Specifically, we examine consistency issues in the context of
dataflow graphs that are based on the parameterized synchronous dataflow [1] (PSDF)
model of computation (MoC), which is the MoC that results when the parameterized
dataflow meta-modeling approach is integrated with the well-known synchronous
dataflow MoC. We focus on PSDF in this paper for clarity and uniformity; however,
the consistency analysis techniques described in this paper can be adapted to the inte-
gration of parameterized dataflow with any dataflow MoC that has a well-defined con-
cept of a graph iteration (e.g., to the parameterized cyclo-static dataflow model that is
described in [2]).

The organization of this paper is as follows. In the remainder of this section, we
review a variety of dataflow modeling approaches for DSP. In Section 2, we present an
application example to motivate the PSDF MoC, and in Section 3, we review the fun-
damental semantics of PSDF. In Sections 4 through 7 we develop and illustrate consis-
tency analysis formulations for PSDF specifications, and relate these formulations
precisely to constraints for robust execution of dynamically-reconfigurable applica-
tions that are modeled in PSDF. In Section 8, we summarize, and mention promising
directions for further study.

A restricted version of dataflow, termed synchronous dataflow (SDF) [12], that
offers strong compile-time predictability properties, but has limited expressive power,
has been studied extensively in the DSP context. The key restriction in SDF is that the
number of data values (tokens) produced and consumed by each actor (dataflow graph
node) is fixed and known at compile time. Many extensions to SDF have been pro-
posed to increase its expressive power, while maintaining its compile-time predictabil-
ity properties as much as possible. The primary benefits offered by SDF are static
scheduling, and optimization opportunities, leading to a high degree of compile-time
predictability. Although an important class of useful DSP applications can be modeled
efficiently in SDF, its expressive power is limited to static applications. Thus, many
extensions to the SDF model have been proposed, where the objective is to accommo-
date a broader range of applications, while maintaining a significant part of the com-
pile-time predictability of SDF.

Cyclo-static dataflow (CSDF) and scalable synchronous dataflow (SSDF) are the
two most popular extensions of SDF in use today. In CSDF, token production and con-
sumption can vary between actor invocations as long as the variation forms a certain
type of periodic pattern [4]. Each time an actor is fired, a different piece of code called
a phase is executed. For example, consider a distributor actor, which routes data
received from a single input to each of two outputs in alternation. In SDF, this actor
consumes two tokens and produces one token on each of its two outputs. In CSDF, by
contrast, the actor consumes one token on its input, and produces tokens according to
the periodic pattern  (one token produced on the first invocation, none on
the second, and so on) on one output edge, and according to the complementary peri-
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odic pattern  on the other output edge. A general CSDF graph can be
compiled as a cyclic pattern of pure SDF graphs, and static periodic schedules can be
constructed in this manner. CSDF offers several benefits over SDF including increased
flexibility in compactly and efficiently representing interaction between actors,
decreased buffer memory requirements for some applications, and increased opportu-
nities for behavioral optimizations such as constant propagation and dead code elimi-
nation [3, 4].

In SSDF, each actor has the capacity to process any integer multiple of the basic
SDF token production (consumption) quantities at an output (input) port, leading to
reduced inter-actor context-switching, and hence improved performance in synthe-
sized implementations [16].

In the boolean dataflow (BDF) model, the number of tokens produced or con-
sumed on an edge is either fixed, or is a two-valued function of a control token present
on a control terminal of the same actor [6]. Scheduling analysis of a BDF graph can
lead to the construction of a complete cycle, which is a sequence of actor executions
that returns the graph to its original state. Scheduling techniques for BDF graphs
attempt to derive quasi-static schedules (schedules that are derived using compile time
analysis that significantly reduces the amount of run-time scheduling involved) in
which each conditional actor invocation is annotated with the run-time condition under
which the invocation should occur.

Synchronous piggybacked dataflow (SPDF) is a recently-proposed extension of
SDF that provides support for global states in a disciplined fashion. This development
of SPDF addresses the problem of updating local parameters (“local states”) of a block
with global parameters (“global states”) based on synchronous state update (SU)
requests. SPDF accommodates this by constructing a global table for global parame-
ters, and piggybacking a pointer to a global table entry (tuple of parameter name, and
parameter values) on each data sample. A special piggybacking block (PB) is intro-
duced that models the coupling of data samples and the global table pointers. When an
SU request is delivered to an actor it will first update its local parameter with a new
value of the global parameter before processing its data samples. SPDF utilizes an effi-
cient code synthesis technique with compile-time analysis, such that the PB’s function
can be simulated without piggybacking (an expensive copy operation), which allows
memory efficient code synthesis.

The VSDF [13] and multirate hierarchical timing pair (MHTP) [7] models are
dataflow modeling techniques that are geared towards efficient hardware implementa-
tion.

Parameterized dataflow modeling differs from dataflow modeling techniques
such as SDF, CSDF, SSDF, BDF, SPDF, VSDF, and MHTP in that it is a meta-model-
ing technique: parameterized dataflow can be applied to any underlying “base” data-
flow model that has a well-defined notion of a graph iteration (invocation). The
dataflow parameterization and parameter value reconfiguration concepts that underlie
parameterized dataflow can be incorporated into any dataflow model that satisfies this
requirement to significantly increase its expressive power. For example, a minimal
periodic schedule is a suitable and natural notion of an iteration in SDF, SSDF, CSDF,
and SPDF. Similarly, in BDF, a complete cycle, when it is exists, can be used to spec-
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ify a graph iteration. 
Furthermore, in contrast to previous work on dataflow modeling, the parameter-

ized dataflow approach achieves increased expressive power entirely through its com-
prehensive support for parameter definition and parameter value reconfiguration.
Actor parameters have been used for years in block diagram DSP design environ-
ments. Conventionally, these parameters are assigned static values that remain
unchanged throughout execution. The parameterized dataflow approach takes this as a
starting point, and develops a comprehensive framework for dynamically reconfigur-
ing the behavior of dataflow actors, edges, graphs, and subsystems by run-time modifi-
cation of parameter values. SPDF also allows actor parameters to be reconfigured
dynamically. However, SPDF is restricted to reconfiguring only those parameters of an
actor that do not affect its dataflow behavior (token production/consumption). Parame-
terized dataflow does not impose this restriction, which greatly enhances the utility of
the modeling approach, but significantly complicates scheduling and dataflow consis-
tency analysis. A key consideration in our detailed development of the PSDF MoC
(recall that PSDF is the integration of the parameterized dataflow meta-modeling
approach with the synchronous dataflow MoC) is addressing these complications in a
robust manner, as we will explain in Sections 4 and 7. Such thorough support for
parameterization, as well as the associated management of application dynamics in
terms of run-time reconfiguration, is not available in any of the previously-developed
dataflow modeling techniques.

In recent years, several modeling techniques have been proposed that enhance
expressive power by providing precise semantics for integrating dataflow graphs with
finite state machine (FSM) models. These include El Greco [5], which provides facili-
ties for “control models” to dynamically configure specification parameters; *charts
(pronounced “starcharts”) with heterochronous dataflow as the concurrency model [9];
the FunState intermediate representation [17]; the DF* framework developed at K. U.
Leuven [8]; and the control flow provisions in bounded dynamic dataflow [14]. In con-
trast, parameterized dataflow does not require any departure from the dataflow frame-
work. This is advantageous for users of DSP design tools who are already accustomed
to working purely in the dataflow domain, and for whom integration with FSMs may
presently be an experimental concept. With a longer term view, due to the meta-model-
ing nature of parameterized dataflow, it appears promising to incorporate our parame-
terization/reconfiguration techniques into the dataflow components of existing FSM/
dataflow hybrids. This is a useful direction for further investigation.

The parameterized dataflow modeling approach was introduced in [1], which
provides an overview of its modeling semantics, and quasi-static scheduling of param-
eterized dataflow specifications was explored in [2]. This paper focuses on consistency
analysis of parameterized dataflow specifications, and develops techniques that can be
integrated with scheduling to provide robust operation of synthesized implementa-
tions.

2.  Application example
To motivate the PSDF model, Fig. 1(a) shows a speech compression application,

which is modeled by a PSDF subsystem Compress. A speech instance of length  isL
4



transmitted from the sender side to the receiver side using as few bits as possible,
applying analysis-synthesis techniques [10]. In the init graph, the genHdr actor gener-
ates a stream of header packets, where each header contains information about a par-
ticular speech instance, including its length . The setSpch actor reads a header packet
and accordingly configures , which is modeled as a parameter of the Compress sub-
system. The s1 and s2 actors are “black boxes” responsible for generating samples of
this speech instance. In the body graph, actor s2 generates the speech sample, zero-
padding it to a length . The An (Analyze) actor accepts small speech segments of size

, and performs linear prediction, producing  auto-regressive (AR) coefficients and
the residual error signal of length  at its output. The model order (ord) and input
length (len) parameters of the An actor are configured with the subsystem parameters

 and , respectively. The AR coefficients and the residual signal are quantized,
encoded (by actors q1, q2), and transmitted to the receiver side, where these are first
dequantized (by actors d1, d2) and then each segment is reconstructed in the Sn (Syn-
thesize) actor through AR modeling using the  AR coefficients and the residual sig-
nal of length  as excitation. Finally, the Pl (Play) actor plays the entire reconstructed
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Fig. 1. A PSDF specification of a speech compression application. 
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speech instance. 
The size of each speech segment ( ), and the AR model order ( ) are important

design parameters for producing a good AR model, which is necessary for achieving
high compression ratios. The values of  and , along with the zero-padded speech
sample length  are modeled as subsystem parameters of Compress that are config-
ured in the subinit graph. The select actor in the subinit graph reads the original speech
instance, and examines it to determine  and , using any of the existing techniques,
e.g., the Burg segment size selection algorithm, and the AIC order selection criterion
[10]. The zero-padded speech length  is computed such that it is the smallest integer
greater than  that is exactly divided by the segment size, . From these relation-
ships, it is useful to convey to the scheduler the assertion that . 

Note that for clarity, the above PSDF model does not specify all the details of the
application. Our purpose here is to provide an overview of the modeling process, using
mixed-grain DSP actors, such that PSDF-specific aspects of the model are emphasized
— especially those parameters that are relevant from the scheduler’s perspective. All
actor parameters that do not affect dataflow behavior have been omitted from the spec-
ification. For example, the quantizers and dequantizers will have actor parameters con-
trolling their quantization levels and thresholds. The select actor could determine two
such sets — one for the residual and one for the coefficients.

An SDF or CSDF representation of this application will have hard numbers (e.g.,
150 instead of ) for the dataflow in Fig. 1(a), corresponding to a particular speech
sample. Thus, for processing separate speech samples, the design needs to be modified
and the static schedule re-computed. SPDF can accommodate those parameter recon-
figurations that do not affect an actor’s dataflow properties (e.g., the threshold parame-
ter of the quantizer actors), but not reconfiguration of the len parameter of the Analyze
actor (An), since len affects the dataflow of An. Thus, again separate designs are neces-
sary to process separate speech samples.

3.  PSDF semantics
In the PSDF model, a DSP application will typically be represented as a PSDF

subsystem  that is made up of three PSDF graphs — the init graph , the subinit
graph , and the body graph . A set of parameters is provided  to control the
behavior of the subsystem. In most cases, the subsystem parameters will be directly
derived from the parameters of the application algorithm. For example, in a block
adaptive filtering system, the step size and the block size emerge as natural subsystem
parameters. Intuitively, in a subsystem, the body graph is used to model its dataflow
behavior, while the init and subinit graphs are responsible for configuring subsystem
parameter values, thus controlling the body graph behavior.

A PSDF graph is a dataflow graph composed of PSDF actors and PSDF edges. A
PSDF actor  is characterized by a set of parameters ( ), which can control
both the functional behavior as well as the dataflow behavior (numbers of tokens con-
sumed and produced) at its input and output ports. Each parameter  is either assigned
a value from an associated set, called , or is left unspecified (denoted by the
symbol ). These statically-unspecified parameters are assigned values at run-time
that can change dynamically, thus dynamically modifying the actor behavior.
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 defines the set of valid parameter value combinations for . A configura-
tion that does not assign the value  to any parameter is called a complete configura-
tion, and the set of all possible complete, valid configurations of  is
represented as . Similarly, the sets of valid and complete configurations of
a PSDF graph  are denoted  and , respectively.

Like a PSDF actor, a PSDF edge  also has an associated parameterization
( ), and a set of complete and valid configurations ( ). The delay
characteristics on an edge (e.g., the number of units of delay, initial token values, and
re-initialization period) can in general depend on its parameter configuration. In partic-
ular, the delay function  associated with edge  gives the delay
on  that results from any valid parameter setting.

Now suppose that we have a PSDF graph , and a complete configuration
. Then for a PSDF actor  in , we represent the instance of  asso-

ciated with  by , and similarly, for a PSDF edge , we define 
to be the instance of  associated with the complete configuration . The instance of

 associated with  is a pure SDF graph, which we denote by . If the
 is sample-rate consistent, then it is possible to compute the correspond-

ing parameterized repetitions vector , which gives the number of times that each
actor should be invoked in each iteration of a minimal periodic schedule for

.
The port consumption function associated with , denoted

, gives the number of tokens consumed from a speci-
fied input port on each invocation of actor , corresponding to a valid, complete con-
figuration of . The port production function 
associated with  is defined in a similar fashion.

To facilitate bounded memory implementation, the designer must provide a max-
imum token transfer function associated with each PSDF actor , denoted ,
that specifies an upper bound on the number of tokens transferred (produced or con-
sumed) at each port of actor  (per invocation). In contrast to the use of similar
bounds in bounded dynamic dataflow [14], maximum token transfer bounds are
employed in PSDF to guarantee bounded memory operation. Similarly, a maximum
delay value, denoted , must be specified for a PSDF edge , which provides
an upper bound on the number of delay tokens that can reside at any time on . The
maximum token transfer and delay values are necessary to ensure bounded memory
executions of consistent PSDF specifications.

A PSDF subsystem  can be embedded within a “parent” PSDF graph
abstracted as a hierarchical PSDF actor , and we say that . In
such a scenario,  can participate in dataflow communication with parent graph
actors at its interface ports. The init graph  does not participate in this dataflow; the
subinit graph  may only accept dataflow inputs; while the body graph  both
accepts dataflow inputs and produces dataflow outputs. The PSDF operational seman-
tics [1] specify that  is invoked once at the beginning of each (minimal periodic)
invocation of the hierarchical parent graph in which  is embedded;  is invoked at
the beginning of each invocation of ; and  is invoked after each invocation of

. 
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Consistency issues in PSDF are based on disciplined dynamic scheduling princi-
ples that allow every PSDF graph to assume the configuration of an SDF graph on
each graph invocation. This ensures that a schedule for a PSDF graph can be con-
structed as a dynamically reconfigurable SDF schedule. Such scheduling leads to a set
of  local synchrony constraints for PSDF graphs and PSDF subsystems that need to be
satisfied for consistent specifications. This paper is concerned with the detailed devel-
opment of local synchrony concepts for PSDF system analysis, simulation, and synthe-
sis.

A detailed discussion of PSDF modeling semantics can be found in [1], which
also shows that the hierarchical, parameterized representation of PSDF supports
increased design modularity (e.g., by naturally consolidating distinct actors, in some
cases, into different configurations of the same actor), and thus, leads to increased
design reuse in block diagram DSP design environments.

4.  Local synchrony consistency in PSDF 
Consistency in PSDF specifications requires that certain dataflow properties

remain fixed across certain types of parameter reconfigurations. This is captured by
the following concepts of configuration projections and function invariance. 

Definition 1: Given a configuration  of a non-empty parameter set , and a 
non-empty subset of parameters , the projection of  onto , denoted , 
is defined by

. (1)
Thus, the projection is obtained by “discarding” from  all values associated with
parameters outside of .

Definition 2: Given a parameter set , a function  into some 
range set ; and a subset , we say that  is invariant over  if for every pair 

, we have

. (2)

In other words,  is invariant over  if the value of  is entirely a function of the
parameters outside of . Intuitively, the function  does not depend on any member
of , it only depends on the members of .

The motivation of consistency issues in PSDF stems from the principle of local
SDF scheduling of PSDF graphs, which is the concept of being able to view every
PSDF graph as an SDF graph on each invocation of the graph, after it has been suitably
configured. Local SDF scheduling is highly desirable, as it allows a compiler to sched-
ule any PSDF graph (and the subsystems inside it) as a dynamically reconfigurable
SDF schedule, thus leveraging the rich library of scheduling and analysis techniques
available in SDF. Relevant issues in local SDF scheduling can be classified into three
distinct categories — issues that are related to the underlying SDF model, those that
relate to bounded memory execution, and issues that arise as a direct consequence of
the hierarchical parameterized representation of PSDF. SDF consistency issues such as
sample rate mismatch and deadlock detection appear in the first category, while the
third category requires that every subsystem embedded in the graph as a hierarchical
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actor behave as an SDF actor throughout one invocation of the graph (which may
encompass several invocations of the embedded subsystems). Since, in general, a sub-
system communicates with its parent graph through its interface ports, the above
requirement translates to the necessity of some fixed patterns in the interface dataflow
behavior of the subsystem. Since consistency in PSDF implies being able to perform
local SDF scheduling, it is referred to as local synchrony consistency (or simply local
synchrony), and applies to both PSDF graphs and PSDF specifications (subsystems).

More specifically, a PSDF graph  is locally synchronous if for every
, the instantiated SDF graph  has the following proper-

ties: it is sample rate consistent (  exists); it  is deadlock free; the maximum token
transfer bound is satisfied for every port of every actor; the maximum delay value
bound is satisfied for every edge; and every child subsystem is locally synchronous. 

Formally, this translates to the following local synchrony conditions, which must
hold for all  in order for the PSDF graph  to be locally synchronous. 
• The instantiated SDF graph  has a valid schedule. 
• For each actor , and for each input port , we have

.
• Similarly, for each actor , and for each output port , we have

.
• For each edge , we have .
• For each hierarchical actor  in ,  is locally synchronous.

If these conditions are all satisfied for every , then we say that 
is inherently locally synchronous (or simply locally synchronous). If no

 satisfies all of these conditions simultaneously, then  is inherently
locally non-synchronous (or simply locally non-synchronous). If  is neither inher-
ently locally synchronous, nor inherently locally non-synchronous, then  is partially
locally synchronous. Thus,  is partially locally synchronous if there exists a configu-
ration  for which all of the local synchrony conditions are satisfied,
and there also exists a configuration  for which at least one of the
conditions is not satisfied. We sometimes separately refer to the different local syn-
chrony conditions as dataflow consistency (the existence of a valid schedule), bounded
memory consistency (the maximum bounds are satisfied for each actor port and each
edge), and subsystem consistency (each subsystem is locally synchronous) of the
PSDF graph .

Intuitively, a PSDF specification  is locally synchronous if its interface data-
flow behavior (token production and consumption at interface ports) is determined
entirely by the init graph of the specification. As indicated above, local synchrony of a
specification is necessary in order to enable local SDF scheduling when the specifica-
tion is embedded in a graph and communicates with actors in this parent graph through
dataflow edges. Four conditions must be satisfied for a specification to be locally syn-
chronous. 

First, the init graph must produce exactly one token on each output port on each
invocation. This is because each output port is bound to a parameter setting (of the
body graph or subinit graph). An alternative is to allow multiple tokens to be produced
on an init graph output port, and assign those values one by one to the dependent

G
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parameter on successive invocations of . But this leads to two problems. First, we
would have to line up the number of tokens produced with the number of invocations
of , thus giving rise to sample rate consistency issues across graph boundaries,
which needlessly complicates the semantics. Second, it violates the principle that
parameters set in the init graph maintain constant values throughout one invocation of
the parent graph of , which in turn violates the requirements for local SDF schedul-
ing. The interface dataflow of the hierarchical actor representing  is allowed to
depend on parameters set in the init graph. For the parent graph of  to be configured
as an SDF graph on every invocation, each such embedded hierarchical actor must
behave as an SDF actor, for which the parameters set in the init graph must remain
constant throughout an invocation of the parent graph.

Similarly the subinit graph must also produce exactly one token on each output
port. Parameters set in the subinit graph can change from one invocation of  to the
next, which is ensured by a single token production at a subinit graph output port on
every invocation of the subinit graph. Recall that a single invocation of the subinit
graph is followed by exactly one invocation of the body graph. Thus, a token produced
on a subinit graph output port is immediately utilized in the corresponding invocation
of the body graph. Any excess tokens are redundant (or viewed another way, ambigu-
ous) and will accumulate at the port. 

Third, the number of tokens consumed by the subinit graph from each input port
must not be a function of the subinit graph parameters that are bound to dataflow
inputs of . Finally, the number of tokens produced or consumed at each specification
interface port of the body graph must be a function of the body graph parameters that
are controlled by the init graph. The third and fourth conditions ensure that a hierarchi-
cally nested PSDF specification behaves like an SDF actor throughout any single invo-
cation of the parent graph in which it is embedded, which is necessary for local SDF
scheduling. 

In mathematical terms, the first condition (called the init condition for local syn-
chrony of ) is the requirement that
• A. The init graph  is locally synchronous; and

• B. for each , and each interface output port  of ,

. (3)

The init condition dictates that the init graph must be (inherently) locally synchronous
and must produce exactly one token at each interface output port on each invocation.
Similarly, the second and third conditions are the requirements that
• C. the subinit graph  is locally synchronous;

• D. for each , and each interface output port  of ,

; and (4)

• E. for each interface input port  of , the product

Φ
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Φ
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p domain Φi( )∈ φ Φi
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is invariant over those parameters  that are bound to dataflow inputs
of .

We refer to Condition D above as the subinit output condition, and to Condition E
as the subinit input condition for local synchrony of . Thus, the subinit graph must
be locally synchronous;  must produce exactly one token at each of its interface
output ports on each invocation; and the number of tokens consumed from an input
port of  (during an invocation of ) must be a function only of the parameters that
are controlled by the init graph or by hierarchically-higher-level graphs.

Finally, the fourth condition for local synchrony of the PSDF specification 
requires that 
• F. the body graph  is locally synchronous;
• G. for each interface input port  of , the product

 (5)

is invariant over those parameters  that are configured in the subinit
graph ; and
• H. similarly, for each interface output port  of , the product

(6)

is also invariant over those parameters  that are configured in the
subinit graph .

Conditions (F), (G) and (H) are collectively termed the body condition for local
synchrony of . In other words, the body graph must be locally synchronous, and the
total number of tokens transferred at any port of  throughout a given invocation of

 must depend only on those parameters of  that are controlled by  or higher-
level graphs.

We sometimes loosely refer to the subinit input condition and the body condition
as the local synchrony conditions, and we collectively refer to the requirements of the
init condition and the subinit output condition as unit transfer consistency.

If Conditions (A) through (H) all hold, then we say that the PSDF specification
 is inherently locally synchronous (or simply locally synchronous). If either of the

graphs , , and  is locally non-synchronous, no  satisfies (3),
or no  satisfies (D), then  is inherently locally non-synchronous (or
simply locally non-synchronous). If  is neither inherently locally synchronous, nor
inherently locally non-synchronous, then  is partially locally-synchronous. Note
that if either of the invariance conditions G or H does not hold, then that does not nec-
essarily lead to local non-synchrony of , as the system may satisfy partial local syn-
chrony, which may acceptable if input data sequences that lead to inconsistent
parameter reconfigurations do not arise in practice or are very rare. 

5.  Local synchrony examples
As discussed in Section 4, PSDF subsystems can be classified as inherently

locally synchronous, inherently locally non-synchronous, or partially locally synchro-
nous. An illustration of these distinctions is given in Fig. 2. Part (a) shows the body
graph of a PSDF specification  with one interface input port, and one interface out-
put port. Note that each of the PSDF graphs shown in the figure has two edges and
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three nodes. The interface edges (connecting actors in the body graph or subinit graph
of a subsystem to parent graph actors) do not contribute to the graph topology in the
child (body or subinit) graph. In Fig. 2(a), the body graph parameters  and  are
configured in the associated init and subinit graph, respectively. As shown in the fig-
ure, the topology matrix of  is a function of the body graph parameters  and .
The topology matrix of an SDF graph is a matrix whose rows are indexed by the graph
edges, whose columns are indexed by the graph actors, and whose entries give the
numbers of tokens produced by actors onto incident output edges, and the negatives of
the numbers of tokens consumed by actors from incident input edges (full details on
the topology matrix formulation can be found in [12]). Our illustration in Figure 2
extends this concept of the topology matrix to PSDF graphs.

From the repetitions vector  of , the token consumption at the interface
input port of the body graph is obtained as  = . Similarly, the token produc-
tion at the interface output port of  is  = . Thus, the interface dataflow of

 is independent of the body graph parameter  that is not configured in  (i.e.,
whose value is not updated by the init graph). Hence, the body condition for local syn-
chrony of  is satisfied, and if the other local synchrony requirements are also satis-
fied, then  qualifies as an inherently locally synchronous specification. 

Fig. 2(b) shows a slightly modified dataflow pattern for , such that the token
consumption at the interface input port of  is obtained as , and thus, depends
on the parameter , which is configured in the subinit graph. Consequently,  is not
inherently locally synchronous, rather, it exhibits partial local synchrony with respect

Fig. 2. The symbolic topology matrices and repetitions vectors of three PSDF graphs,
used to demonstrate inherent local synchrony, partial local synchrony, and inherent
local non-synchrony, respectively. Each dataflow edge is labelled with a positive integer.
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to the body condition. If  consistently takes on one particular value at run-time, then
a local synchrony error is not encountered. However, if  takes on different values at
run-time, then a local synchrony violation is detected, and execution is terminated. 

Fig. 2(c) shows the init graph of a specification , which configures a (body or
subinit graph) parameter at the interface output port of actor . From the repetitions
vector  of , the number of tokens produced at this interface output port is obtained
as  = , where  is a parameter of the init graph. Suppose that in this speci-
fication, . Then whatever value  takes on at run-time,
it is clear that  will produce more than one token at its interface output port on each
invocation. Hence, no  satisfies the init condition for local synchrony
of , and thus,  is classified as an inherently locally non-synchronous specification.

6.  Binary consistency and decidable dataflow
Before further discussion of analysis and verification issues for PSDF, we first

discuss some pre-requisite consistency notions, adapted from [3], for general DSP
dataflow specifications. 

In general DSP dataflow specifications, the term consistency refers to two essen-
tial requirements — the absence of deadlock and unbounded data accumulation. An
inherently consistent dataflow specification is one that can be implemented without
any chance of buffer underflow (deadlock) or unbounded data accumulation (regard-
less of the input sequences that are applied to the system). If there exist one or more
sets of input sequences for which deadlock and unbounded buffering are avoided, and
there also exist one or more sets for which deadlock or unbounded buffering results, a
specification is termed partially consistent. A dataflow specification that is neither
consistent nor partially consistent is called inherently inconsistent (or simply inconsis-
tent). More elaborate forms of consistency based on a probabilistic interpretation of
token flow are explored in [11].

A dataflow model of computation is a decidable dataflow model if it can be
determined in finite time whether or not an arbitrary specification in the model is con-
sistent, and it is a binary-consistency model if every specification in the model is either
inherently consistent or inherently inconsistent. In other words, a model is a binary-
consistency model if it contains no partially consistent specifications. All of the decid-
able dataflow models that are used in practice today — including SDF, CSDF, and
SSDF — are binary-consistency models. 

Binary consistency is convenient from a verification point of view since consis-
tency becomes an inherent property of a specification: whether or not deadlock or
unbounded data accumulation arises is not dependent on the input sequences that are
applied. Of course, such convenience comes at the expense of restricted applicability.
A binary-consistency model cannot be used to specify all applications. 

7.  Robust execution of PSDF specifications
In PSDF, consistency considerations go beyond deadlock and buffer overflow. In

particular, the concept of consistency in PSDF includes local synchrony issues. As we
have seen in Section 4, local synchrony consistency is, in general, dependent on the
input sequences that are applied to the given system. Thus, it is clear that PSDF cannot
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be classified as a binary-consistency model. Furthermore, consistency verification for
PSDF is not a decidable problem. In general, if a PSDF system completes successfully
for a certain input sequence, the system may be inherently consistent, or it may be par-
tially consistent. Similarly, if a PSDF system encounters a local synchrony violation
for certain input sequences, the system may be inconsistent or partially consistent. 

Since all local synchrony conditions have precise mathematical formulations and
at the same time can be checked at well-defined points during run-time operation, the
PSDF model accommodates, but does not rely on, rigorous, compile-time verification.
There exists a well-defined concept of “well-behaved” operation of a PSDF specifica-
tion, and the boundary between well-behaved and ill-behaved operation is also clearly
defined, and can be detected immediately at run-time in a systematic fashion (by
checking local synchrony constraints). More specifically, our development of parame-
terized dataflow provides a consistency framework and operational semantics that
leads to precise and general run-time (or simulation time) consistency verification. In
particular, an inconsistent system (a specification together with an input set) in PSDF
(or any parameterized dataflow augmentation of one of the existing binary consistency
models) will eventually be detected as being inconsistent, which is an improvement in
the level of predictability over other models that go beyond binary consistency, such as
BDF, DDF, BDDF, and CDDF [18]. In these alternative “dynamic” models, there is no
clear-cut semantic criterion on which the run-time environment terminates for an ill-
behaved system — termination may be triggered when the buffers on an edge are full,
but this is an implementation-dependent criterion. Conversely, in PSDF, when the run-
time environment forces termination of an ill-behaved system, it is based on a pre-
cisely-defined semantic criterion that the system cannot continue to execute in a
locally synchronous manner.

In addition, implementation of the PSDF operational semantics can be stream-
lined by careful compile-time analysis. Indeed, the PSDF model provides a promising
framework for productive compile time analysis that warrants further investigation. As
one example of such streamlining, an efficient quasi-static scheduling algorithm for
PSDF specifications is developed in [2]. The consistency analysis techniques devel-
oped in this paper are complementary to such scheduling techniques. In the general
quasi-static scheduling framework of parameterized dataflow, it is possible to perform
symbolic computation, and obtain a symbolic repetitions vector of a PSDF graph, sim-
ilar to what is done in BDF and CDDF. Then depending on how much the compiler
knows about the properties of the specification through user assertions, some amount
of analysis can be performed on local synchrony consistency. As implied by the opera-
tional semantics — which strictly enforces local synchrony — consistency issues that
cannot be resolved at compile time must be addressed with run-time verification.

Due to the flexible dynamic reconfiguration capabilities of PSDF, the general
problem of statically-verifying (verifying at compile-time) PSDF specifications is
clearly non-trivial, and deriving effective, compile-time verification techniques
appears to be a promising area for further research. In particular, the issue of compile-
time local synchrony verification of a PSDF subsystem calls for more investigation, as
it arises as an exclusively PSDF-specific consideration that is inherent in the parame-
terized hierarchical structure that PSDF proposes. On the other hand, dataflow consis-
14



tency issues (sample rate consistency and the presence of sufficient delays) are a by-
product of the underlying SDF model, and have been explored before in a dynamic
context in models such as BDF, CDDF, and BDDF. Compile-time local synchrony ver-
ification can take two general forms— determining whether or not a PSDF specifica-
tion is inherently locally synchronous (in which case run-time local synchrony checks
can be eliminated completely), and determining whether or not a specification is inher-
ently locally non-synchronous (in which case the system is unambiguously defective).

Bounded memory execution of consistent applications is a necessary requirement
for practical implementations. Given a PSDF specification that is inherently or par-
tially locally synchronous, there always exists a constant bound such that over any
admissible execution (execution that does not result in a run-time local synchrony vio-
lation), the buffer memory requirement is within the bound. This bound does not
depend on the input sequences, and is ensured by bounding the maximum token trans-
fer at an actor port, and the maximum delay accumulation on an edge. BDDF also
incorporates the concept of upper bounding the maximum token transfer rate at a
dynamic port. However, unlike PSDF, even with these bounds, BDDF does not guar-
antee bounded memory execution, since it does not possess the concept of a local
region of well-behaved operation. In PSDF, inherent and partial local synchrony both
ensure bounded memory requirements throughout execution of the associated PSDF
system as a sequence of consistent SDF executions. The bound on the token transfer at
each actor port ensures that every invocation of a PSDF graph executes in bounded
memory, while the bound on the maximum delay tokens on every edge rules out
unbounded token accumulation on an edge across invocations of a PSDF graph. A
suitable bound on the buffer memory requirements for a PSDF graph  can
be expressed as

, (7)

where  is the set of actor output ports in , and
 

is simply the set of complete configurations for which  has a valid schedule. From
the definition of the maximum token transfer and maximum delay quantities (  and

), the quantity in (7) can easily be shown to be less than or equal to the following
bound.

. (8)

The token production and consumption quantities are bounded (by the maximum token
transfer function), and the delay on an edge is also bounded (by the maximum delay
value), as shown in (8). Since the token transfer at each actor port is bounded, there is
only a finite number of possible different values that the repetitions vector can take on.
Hence the maxima in (7) and (8) exist. Computing much tighter bounds may in general
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be possible, and this appears to be a useful new direction for future work that warrants
further investigation. 

8.  Summary
This paper has developed the concept of local synchrony, and an associated

framework for robust execution of reconfigurable dataflow specifications that are
based on parameterized dataflow semantics. We have implemented a software tool that
accepts a PSDF specification, and generates either a quasi-static or fully-dynamic
schedule for it, as appropriate, and in this tool, we have integrated run-time checking
of the local synchrony formulations presented here.

Promising directions for future work include modeling and consistency analysis
of conditionals (if-then-else constructs) within the PSDF framework; synthesis of
streamlined code that implements run-time local synchrony verification; and the devel-
opment of efficient compile-time algorithms for determining whether or not a PSDF
specification is inherently locally synchronous, partially locally synchronous, or inher-
ently defective (locally non-synchronous).
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