
Discovery of Definition Patterns by
Compressing Dictionary Sentences

Masatoshi Tsuchiya†, Sadao Kurohashi‡, Satoshi Sato†

tsuchiya@pine.kuee.kyoto-u.ac.jp, kuro@kc.t.u-tokyo.ac.jp, sato@i.kyoto-u.ac.jp
†Graduate School of Informatics, Kyoto University

Sakyo, Kyoto, 606-8501, JAPAN
‡Graduate School of Information Science and Technology, Tokyo University

7-3-1 Hongou, Bunkyo, Tokyo, 113-8656, JAPAN

Abstract

This paper proposes an automatic
method to discover definition pat-
terns from a dictionary made for
humans. It contains frequent pat-
terns to describe words and con-
cepts. Each definition pattern gives
a set of similar words and can be
used as a template to clarify dis-
tinctions among them. To discover
these definition patterns, we convert
definition sentences into tree struc-
tures, and compress them using the
MDL principle. An experiment on
a Japanese children dictionary is re-
ported, showing the effectiveness of
our method.

1 Introduction

How to handle the meanings of words is the
first, crucial problem in realizing intelligent
natural language processing. A thesaurus is
one way of representing meanings of words
by describing their hyponym-hypernym rela-
tions.

A thesaurus, however, lacks information
about distinctions among synonyms. When
‘a swimming pool’ and ‘an athletics stadium’
are classified into the same group ‘a stadium’,
this classification clearly shows the similarity
among them, but gives no information about
their distinctions. Therefore, we cannot infer
the rule to distinguish between the natural
sentence “A boy swims in a swimming pool”
and the unnatural sentence “A boy swims
in an athletics stadium”. When a thesaurus

which keeps distinctions among synonyms is
available, it is easy to solve this difficulty.

This paper proposes an automatic method
to discover sets of similar words and to find
distinctions among them from an ordinary
dictionary. This is surely a step building a
thesaurus which can distinguish among syn-
onyms. There are frequently recurring sub-
sentential patterns in a dictionary because
its definition sentences are written carefully
to describe words and concepts. To dis-
cover such sub-sentential patterns, we employ
data compression using the MDL principle,
which is widely used to discover common sub-
structures in given data. Our approach con-
sists of two parts: 1) parsing definition sen-
tences to convert them into trees, and 2) com-
pressing the trees using the MDL principle to
extract those patterns. Each extracted sub-
sentential pattern gives a set of similar words
and can be used as a template to clarify dis-
tinctions among them.

We now proceed as follows. In Section 2,
we discuss frequent sub-sentential patterns in
dictionary sentences. The next section (Sec-
tion 3) explains the description length formu-
lation of the dictionary and presents an al-
gorithm to compress it. The experiment on
a Japanese children dictionary is reported in
Section 4, showing the effectiveness of our
method in Section 5. We finish this paper
with a conclusion section (Section 6).

2 Definition Sentences and
Definition Patterns

2.1 Definition Patterns

Reading a dictionary, we find that some
expressions are used frequently to describe

words and concepts. For example, the expres-
sion ‘comes into flowers’ is used 68 times in
Reikai Shogaku Kokugojiten (Tadika, 1997).
Three of them are:

aburana a type of plant which
comes into yellow flowers in
spring.

magnolia a type of plant which
comes into white flowers in
summer.

nemunoko ‘silk tree’ a type of
plant which comes into red flow-
ers in summer, forming a clus-
ter.

The common expression, ‘comes into flow-
ers’, indicates that these words denote plants
which bear flowers. More careful observa-
tion of these sentences reveals that these sen-
tences include words which represent colors
of flowers and words which denote seasons.
Using the variable < color > which denotes
an adjective of color, and using the variable
<season> which denotes a noun representing
a season, the common sub-sentential pattern
among these sentences can be unified into the
same format as follows:

comes into <color> flowers in <season> .

In this paper, we will call such common sub-
sentential patterns definition patterns, their
fixed parts common features, and their vari-
able parts common slots.

The fact that ‘aburana’, ‘magnolia’, and
‘nemunoki’ belong to the set of words which
are described by this definition pattern indi-
cates that they are similar. In other words, it
is possible to get a set of similar words when a
definition pattern is discovered. Distinctions
among them are also extracted by different
values of common slots.

2.2 Arbitrariness of Definition
Patterns

We have focused on the definition pattern
‘comes into <color> flowers in <season> ’ in
the previous section, and there are many pos-
sible definition patterns of different sizes, such
as ‘comes into < color > flower’, ‘comes into

flowers’ and so on. Similarly, there are possi-
ble patterns of different ranges of values. We
can suppose the common slot <noun> is the
space which can hold any noun and the defini-
tion pattern ‘comes into flowers in <noun> ’.

To select an appropriate pattern from many
possible ones, we employ the Minimum De-
scription Length (MDL) principle, proposed
by Rissanen (Rissanen, 1989). In the MDL
principle, models are evaluated by the sum of
the description length of the model and the
description length of the given data based on
it, and the model which gives the minimum
sum is the best model to describe the given
data. A previous study (Cook and Holder,
1994) employs the MDL principle to discover
common sub-structures such as benzene from
molecular structures, and others (Li, 1998;
Bunt and Muskens, 1999) discover characters
of language from a large corpus based on the
MDL principle.

3 Dictionary Description Length

This section explains the definition of the de-
scription length of the dictionary used to com-
press its definition sentences using the MDL
principle. In our approach, definition sen-
tences are converted into tree structures, then
definition patterns are mapped into sub-trees
among them. We will define the description
length of the dictionary, considering compres-
sion using common sub-trees.

3.1 Tree Representation of Definition
Sentences

At first, each definition sentence of a dictio-
nary is converted into a tree. Each of its ver-
tices has a label corresponding to a content
word, and each of its edges has a connection
type representing a modifier-head relation be-
tween content words.

To perform such a conversion, we need
language-dependent analysis. In our experi-
ments, the Japanese morphological analyzer
JUMAN, and the parser KNP were employed
(Kurohashi and Nagao, 1994). Both of them
can analyze definition sentences of a Japanese
dictionary with a fairly satisfactory accuracy.

After the conversion of raw sentences into

trees, we believe our method is language-
independent. Although our experiment was
done on a Japanese dictionary, in this paper
we use their English translations for explana-
tion.

As a matter of notational convenience, we
use the following formal definition of tree. A
tree t which has n vertices is defined as a 4-
tuple,

t = (n, Vt, Et,Φt), (1)

where Vt denotes its vertex set, Et denotes its
edge set, and Φt denotes a mapping from Et

to a set of ordered pairs of instances of Vt.

3.2 Tree Representation of Definition
Patterns

We focus attention on the tree representation
of definition patterns included in definition
sentences.

Figure 1–a illustrates how the expression
of the common feature ‘comes into flowers’ is
converted into the common sub-tree which is
discovered from both trees.

Expressions in common slots, such as ‘yel-
low’ and ‘white’, are mapped to vertices which
have an edge connecting to the common sub-
tree. To represent a vertex corresponding to
a common slot, we use semantic classes which
are sets of labels of vertices corresponding to
common slots. In our approach, a label is a
content word and a semantic class is defined
as a set of content words. Suppose the seman-
tic class < color >= {yellow, white, . . .}, and
the definition pattern ‘comes into < color >
flowers’ can be extracted as the sub-tree B
which includes a semantic class vertex in Fig-
ure 1–c.

We also introduce connection classes which
enable more flexible expressions of definition
patterns. A connection class is defined as a set
of connection types, considering a hierarchy
of relations between content words based on
syntactic knowledge.

3.3 Formal Definition of Description
Length of a Dictionary

In this section, we give a formal definition of
the description length of a dictionary.

3.3.1 Class of a Target Tree Set

To employ the MDL principle, it is neces-
sary that a class of the target data be a finite
set or a countably infinite set. We introduce
a label set Σ and a connection type set Γ to
express a class of a target tree set which repre-
sents a dictionary. A semantic class is defined
as a set of content words, and the label set Σ
satisfies

Σ ⊆ 2Σ0 ,

where Σ0 denotes a set of all content words
in the dictionary. For example, the minimum
label set Σmin to describe all trees and sub-
trees in Figure 1–c is defined as

Σmin =

{
a type, plant, comes, flowers, spring,
summer, white, yellow, <color>

}
.

Because a connection class is defined as a set
of connection types, a connection type set Γ
satisfies

Γ ⊆ 2Γ0 ,

where Γ0 denotes the set of all modifier-head
relations between content words in the dictio-
nary. Finally, considering that both the label
set and the connection type set are finite sets,
and that an element of the target set is a tree
which is defined as in Formula 1, in follows
that the class of the target tree set represents
a countably infinite set.

3.3.2 Description Length of a Simple
Tree

Let us first consider how to calculate the
simple tree description length L(t|Σ0, Γ0)
where t denotes a discrete tree which meets
these restrictions: 1) all vertices are labeled
by instances of the label set Σ0 which includes
no semantic classes, 2) all edges are typed by
instances of the connection type set Γ0 which
includes no type classes. Given the label set
Σ0 and the type set Γ0, we need

L(t|Σ0, Γ0) = − log P (t|Σ0,Γ0), (2)

to encode t using a non-redundant code.
When all probability distributions of size of
tree, vertices, edges, and tree structure are

yellow flowersa type comesplant spring

flowersa type comesplant white summer

into

aburana

magnolia
of

of

in

into

in

flowerscomes

into
Sub-tree A

Sub-tree B

flowerscomes <color>

into

(a)

(b)

(c)

which

which

a type plant spring

aburana
of which

sub-tree B

in

a type plant summer

of
magnolia

which

sub-tree B

in

a type plant

aburana
of which

sub-tree A spring

in

yellow

a type plant

of which
magnolia

sub-tree A white summer

in

Figure 1: Compression examples of a dictionary.

independent, the probability of realizing t is
defined as a joint probability distribution:

P (t|Σ0, Γ0)
= P (n, Vt, Et, Φt|Σ0,Γ0)
= P (n)P (Vt|Σ0)P (Et|Γ0)P (Φt|Vt, Et).(3)

If we assume that each occurrence of ver-
tices is independent, the conditional probabil-
ity P (Vt|Σ0) is estimated as

P (Vt|Σ0) =
∏

v∈Vt

P (v|Σ0). (4)

When the probability distribution over Σ0 is
assumed to be a uniform distribution, the
conditional probability P (v|Σ0) is estimated
as

P (v|Σ0) =
1
|Σ0| . (5)

Assuming that each occurrence of edges
is independent, the conditional probability

P (Et|Γ0) of mapping from each edge of Et

to a instance of Γ0 is estimated as

P (Et|Γ0) =
∏

e∈Et

P (e|Γ0). (6)

Assuming further that the probability distri-
bution over Γ0 is uniform, the conditional
probability P (e|Γ0) is estimated as

P (e|Γ0) =
1
|Γ0| . (7)

In Japanese, all vertices except the last one
of the sentence have an edge connecting to a
following vertex. Then the number of possi-
ble tree structures is equal to the factorial of
(|Vt| − 1). When the probability distribution
of realizing t over Vt and Et is a uniform dis-
tribution, we estimate

P (Φt|Vt, Et) =
1

(|Vg| − 1)!
. (8)

The probability P (n) must satisfy two re-
strictions: 1) it is greater than zero over
all positive numbers, and 2) it satisfies∑∞

n P (n) ≤ 1. As such a probability distribu-
tion, we employ the probability Pu that gives
the unary encoding of positive numbers.

P (n) = Pu(n) = 2−n (9)

Finally, the description length of a tree t is
derived as follows:

L(t|Σ0,Γ0) = |Vt| log |Σ0|+ |Eg| log |Γ0|

+
|Vt|∑

i=1

log i− log Pu(n). (10)

3.3.3 Description Length of a
Sub-Tree

The description length of a sub-tree s is de-
rived in a similar way to Formula 10 as

L(s|Σ,Γ) = |Vs| log |Σ|+ |Es| log |Γ|

+
|Vs|∑

i=1

log i− log Pu(n), (11)

where Vs denotes a vertex set of s, Es denotes
an edge set of s.

3.3.4 Description Length of a
Condensed Tree

We turn to the description length of a tree
t which was condensed by using sub-trees in-
cluded in the sub-tree set Ω. Sub-trees may
include semantic class vertices and connec-
tion class edges, so we require more bits to
describe their actual labels and their actual
types. Some bits are also required to describe
possibilities of connections inside and outside
of sub-trees.

Let us consider bits which are required to
describe actual labels of semantic class ver-
tices. The number of possible mappings from
each vertex of the vertex set Vs to its actual
label in Σ0 is computed as

X(s) =
∏

v∈Vs

|C(v)|, (12)

where C(v) is the function of v which gives
its semantic class. As a matter of notational

convenience, we assume that C(v) returns {v}
when the label of the vertex v is not a seman-
tic class. If we assume that the distribution
of the occurrences of actual labels is uniform,
Formula 5 is replaced by this expression,

P ′(v|Σ) =
1
|Σ| ·

1
X(v)

. (13)

We will now discuss the bits required to
describe the actual types of connection class
edges in the similar way. On the sub-tree s,
the number of possible mappings from each
edge of the edge set Es to its actual label in
Γ0 is computed as

Y (s) =
∏

e∈Vs

|C(e)|, (14)

where C(e) is the function of e which gives its
connection class. The function C(e) returns
{e} when the type of the edge e is not connec-
tion class. If we assume that the distribution
of the occurrences of actual types is uniform,
Formula 7 is replaced by this expression,

P ′(e|Γ) =
1
|Γ| ·

1
Y (e)

. (15)

When a vertex is labeled as a sub-tree and
some edges connect to it, to distinguish their
inside end, some bits are also required. There-
fore, Formula 8 is replaced by this expression,

P ′(Φt|Vt, Et) =
1

(|Vt| − 1)! ·
∏

v∈Vt

|Vv||Ev | ,

(16)
where Ev denotes a set of edges connecting to
the vertex v, Vv denotes a vertex set of the
sub-tree v. When v is not labeled as a sub-
tree, we set Vv to {v}.

Finally, the description length of a tree t
which was condensed using sub-trees is de-
fined as

L(t|Σ + Ω,Γ)
= |Vt| log |Σ + Ω|+

∑

v∈Vt

log |C(v)|

+|Et| log |Γ|+
∑

e∈Et

log |C(e)|

+
|Vt|∑

i=1

log i +
∑

v∈Vt

|Ev| log |Vv|

− log Pu(n). (17)

3.3.5 Description Length of a
Dictionary

Consequently, the description length of a
set of trees D is derived as

L(D) =
∑

t∈D

L(t|Σ + Ω, Γ) +
∑

s∈Ω

L(s|Σ,Γ)

+L(Σ) + L(Γ), (18)

where L(Σ) denotes the description length of
Σ, L(Γ) denotes the description length of Γ.

Since there is no clear basis for selecting a
good Σ, we assume that L(Σ) is equal for all
Σ. The same may be said of L(Γ). Then, the
third and fourth item of Formula 18 can be
omitted, and so we obtain

L′(D) =
∑

t∈D

L(t|Σ + Ω,Γ) +
∑

s∈Ω

L(s|Σ, Γ)

(19)
as the objective function of the dictionary
compression based on the MDL principle.

3.4 Search Algorithm

As we mentioned above, the goal of the MDL
based compression is to find a label set Σ, a
type set Γ and a set of sub-trees Ω which min-
imize the value of the objective function. The
possible combination of Σ, Γ and Ω, however,
becomes so large that it is intractable to find
the optimal solution by considering all possi-
ble cases.

Furthermore, since they cannot be changed
independently, neither the divide and conquer
method nor dynamic programming can han-
dle this problem. Therefore, we do not aim at
finding the optimal solution, and take an it-
erative improvement method based on heuris-
tics instead.

First of all, we set Σ to the set of all con-
tent words in the dictionary and all seman-
tic classes in a handmade thesaurus to reduce
search space. Secondly, a fixed type set Γ is
prepared based on syntactic knowledge of the
target language. Having discussed that it is
impossible to obtain the optimal solution of a
sub-tree set Ω, we design a search procedure
based on an iterative improvement method for
Ω and a beam search for each element of Ω.
Our search procedure consists of the following
steps:

1. A list of all pairs of vertices is made which
exist in the target tree set D.

2. If a sub-tree in the list contains a word
vertex or a simple typed edge, new sub-
trees are added to the list whose word
vertex or simple typed edge is replaced
with all semantic classes or type classes
to which the vertex and the edge belongs.

3. All sub-trees are sorted depending on
their frequency. For the top-n sub-trees,
their scores are calculated and the re-
maining sub-trees are deleted from the
list. The score of a sub-tree s is equal to
the value of the objective function when
s is added to Ω.

4. For the best sub-tree which gives the
minimum score, if its score is worse than
L′best, go to step 7.

5. The best sub-tree is substituted for sbest,
and its score for L′best.

6. All sub-trees in the list are sorted de-
pending on their score. New sub-trees
which cover one of the the m-best sub-
trees and an additional vertex are added
to the new list. The list is replaced with
the new one, then the procedure is re-
peated from step 2.

7. The best sub-tree sbest is added to Ω, and
each of its occurrences in D is replaced
by a condensed vertex.

8. This iterative procedure will be contin-
ued while the last replacement improves
the value of the objective function.

4 Experiment

We applied the method described so far to
Reikai Shogaku Kokugojiten, a Japanese dic-
tionary for children (Tadika, 1997). Table 1
shows statistics of the dictionary. Definition
sentences were extracted from the dictionary
by a simple filter, and converted to tree struc-
tures by JUMAN and KNP.

It was impossible to conduct an experi-
ment by using a whole dictionary because

of the memory limit of our computer (Our
computer is Sun Enterprise–3500 with 4GB
memory). Therefore, we eliminated half of
the head words and those sentences which in-
clude words which have no category in the
thesaurus.

Table 1: Statistics of the dictionary.

whole target
of head words 28015 10087
of definition sentences 52919 13486
of vertices 179597 53212

As a thesaurus to reduce the search space
of Σ, we employed Bunruigoihyou, a Japanese
thesaurus (Nat, 1993). For words which have
several categories on the thesaurus, one of
them was selected randomly and the others
were ignored (Words of this thesaurus have
1.2 categories on average). Because most
general semantic classes confuse our heuristic
search procedure which depends on frequency,
such classes which were close to the root of the
thesaurus were deleted. Next, we defined the
fixed type set Γ based on dependency-types
between content words assigned by KNP.

980000

1e+06

1.02e+06

1.04e+06

1.06e+06

1.08e+06

1.1e+06

1.12e+06

1.14e+06

1.16e+06

0 200 400 600 800 1000 1200 1400 1600

L
’(

D
)

The size of the sub-graph set

Figure 2: Description length of the dictionary.

We employed the discussed algorithm on
the fixed sets Σ and Γ, and discovered 1409
sub-trees. Through this search process, the
value of the objective function decreased from
1153455.5 bit to 993121.6 bit. Figure 2 shows
the trace of L′(D). It was equivalent to 13.9%
compression.

5 Discussion

Figure 4 shows some compressed definition
sentences which are translated into English.
Most features detected by our method are rea-
sonable based on our linguistic intuition.

The common sub-tree “to < arrange >
neatly” is discovered from three definition
sentences of tidying, arrangement and ap-
pearance. Definition sentences of other head
words such as hairdressing also include the
similar sub-tree “to < arrange > ”, but these
three head words are the most similar among
them. We found that there is no suitable word
among 22 head words which include the ex-
pression, “neatly”.

The common sub-tree “is <cook> to eat”
is discovered from the definition sentences of
the five head words such as kidney beans and
spaghetti. All these five head words denote
foodstuff and it is interesting that the proper
semantic class < cook > is discovered. The
definition sentences of asari, eel and shijimi
include the different sub-tree “is made into
<dish> to eat”, which includes the common
feature “to eat”, and they also concern food-
stuff. There are few foodstuff head words ex-
cept these eight head words in the dictionary.

We discovered the common sub-tree “comes
into < color > flowers” from the defini-
tion sentences whose head words are garde-
nia, magnolia and so on. These head words
are hyponyms of plants which bloom flow-
ers. These examples show the effectiveness of
our method which can extract the hyponym-
hypernym relation and the attribute <color>
which is shared by these hyponyms.

6 Conclusion

In this paper, we proposed an automatic
method to discover sets of similar words and
distinctions among them. Observing defini-
tion sentences in a real dictionary written in
natural language, we found that there are def-
inition patterns which are used frequently to
describe words and concepts. These definition
patterns consist of common features and com-
mon slots, and give sets of similar words and
distinctions among them. To discover these

haircut
to

<arrange>

shape the hair.

tidying
to

<arrange>
arrange neatly.

arrangement
to

<arrange>

tidy things neatly.

appearance
to

<arrange>

straighten clothes neatly.

precise
neatly and correct in regard to the smallest
details.

kidney beans
their green pods which are

<cook>
boiled to eat, and

their beans which are made into anko.

spaghetti
an Italian food which is

<cook>
boiled to eat and served

with some kind of sauce.

soumen ‘vermicelli’
a Japanese food which is

<cook>
boiled to eat.

tanishi ‘mud snail’
food snail which is

<cook>

poached to eat.

hijiki ‘algae’
food algae which is

<cook>
boiled to eat.

asari ‘clam’
food clam which is made into

<dish>

miso soup to eat.

eel
food fish which is made into

<dish>

kabayaki to eat.

shijimi ‘clam’
food clam which is made into

<dish>

miso soup to eat.

gardenia
a type of plant which comes into aromatic

<color>
white

flowers in summer

magnolia
a type of plant which comes into big

<color>
white

flowers in early summer

Figure 3: Samples of compressed definition sentences.

patterns, an automatic method was designed.
Its first step is parsing dictionary sentences to
convert them into trees, and its second step is
to compress the trees using the MDL princi-
ple. We reported an experiment to compress
a Japanese children’s dictionary, and discov-
ered several interesting results of definition
patterns among definition sentences, indicat-
ing the effectiveness of our method.

The target of our future research is to gen-
erate a thesaurus which includes descriptions
of distinctions among synonyms.

References

H. Bunt and R. Muskens, editors, 1999. Minimum
Description Length and Compositionality, vol-
ume 1, pages 113–128. Kluwer.

Diane J. Cook and Laerence B. Holder. 1994.
Substructure discovery using minimum descrip-
tion length and background knowledge. Jour-

nal of Artificial Intelligence Research, 1:231–
255.

Sadao Kurohashi and Makoto Nagao. 1994. A
syntactic analysis method of long Japanese sen-
tences based on the detection of conjunctive
structures. Computational Linguistics, 20(4).

Hang Li. 1998. Generalizing case frames using
a thesaurus and the mdl principle. Computa-
tional Linguistics, 24(2):217–244.

The National Language Research Institute, 1993.
Bunruigoihyou.

J. Rissanen. 1989. Stochastic Complexity in
Stochastic Inquiry. World Scientific Publishing
Company.

Junichi Tadika, editor. 1997. Reikai Shogaku
Kokkugojiten. Sansei-do Co.

