From EDOC Components to CCM Components:
A Precise Mapping Specification

Mariano Belaunde and Mikael Peltier
France Telecom R&D

bariano.bclaundc@francctclccorn. COFI
ikael.peltier@francetelecom.com|

Abstract. Nowadays, component-oriented approaches are being promoted by
tool providers as a way to enhance the modularity and the reuse of software
pieces. Moreover, there are distinct levels of abstraction where components can
be defined. The EDOC specification [5] is a high-level approach that introduces
composition independently of any middleware platform, while the CCM speci-
fication [3] extends the CORBA middleware to simplify the implementation of
concrete software components. This paper will focus on the problem of how to
specify mapping from component abstract models into more concrete compo-
nent models. Moreover, we will present a model transformation language called
MTrans that can be used to specify comprehensive mappings that can be auto-
mated in an ambiguous way.

1 Introduction

To manipulate, classify and buy "on the shelf" software components - in a similar way
as hardware electronic components - is still a myth. Most software engineering tool
providers refer to this technology when they present their products. Especially, many
component-oriented frameworks are currently deployed in the industry (for instance
the EJB framework, which is widely used). Nevertheless, there is a lot of confusion
regarding what a software component is. Inter-operability between components, com-
ing from distinct tool providers, is in fact very difficult to achieve because there is not
yet a widely accepted and operational standard. Part of the complexity arises from the
fact that there are already multiple middleware platforms that coexist today (such as
CORBA, COM, and the EJB).

The Model Driven Architecture [1] from the OMG intend to manage this complexity
by taking a model centric approach and by distinguishing models that are platform
independent (PIM) from models specific to a platform (PSM). The MDA promises to
standardize the mappings that will enable inter-operation and integration of compo-
nents, even when these are implemented on the basis of heterogeneous platforms.

In this paper we will focus on the problem of specifying executable mappings between
a platform independent component based specification and a platform dependent

R.-D.Kutsche and H. Weber (Eds.): FASE 2002, LNCS 2306, pp. 143-158, 2002.
© Springer-Verlag Berlin Heidelberg 2002

144 Mariano Belaunde and Mikael Peltier

component specification. An executable mapping is a mapping specification that can
be automated by a tool. To illustrate this point we will show how CCM (CORBA
Component Model [3]) component descriptions can be derived from high-level
EDOC/CCA (Component Collaboration Architecture [5]) component models. The
mapping specification will use the MTrans language, a generic formalism for model
transformation, developed by France Telecom. This language is based on meta-
modeling techniques and intends to mix the “confort” of a declarative language and
the efficiency of the procedural style.

In the second section we will present the CCM and the EDOC concepts and point out
what are the most relevant differences. The third section will focus on the available
approaches used today to specify mappings and we will look in particular the advan-
tages of using meta-modeling techniques. In section four we will describe the general
motivation and the fundamental concepts of the MTrans language. In the next section
an "EDOC to CCM" executable mapping specification will be presented, first infor-
mally and then described formally in terms of the MTrans language.

The last section will point out the future work on the topic of mapping component
specifications and will assess some of the expectations in respect of the standardiza-
tion.

2 CCM Components versus EDOC Components

During the last past four years the OMG has put considerable effort on standardizing
the area of software components. The Corba Components [3] adopted specification
reflect an attempt to integrate most of the EJB concepts in the context of the CORBA
middleware. More recently, the “UML profile for EDOC” [3] specification, which is
in the process to be adopted, proposed a high-level component-oriented approach for
building enterprise distributed systems. Unlike CCM, an EDOC specification is “plat-
form independent”, meaning that it may be implemented in distinct platforms, such as
the Microsoft COM, or CORBA. In this section we will describe both of the two
frameworks. This will help to understand the mapping specification presented in sec-
tion 6.

2.1 The CORBA Component Model (CCM)

The Corba Component Model is a very ambitious specification that aims at simplify-
ing the problem of building transactional, robust and secure enterprise systems. In
contrast with traditional monolithic transactional systems, it promotes modularity and
the reuse of the standardized CORBA services, such as security, notification, transac-
tion and persistence. The CCM specification includes a conceptual model of composi-
tion (see the metamodel excerpts in Figure 1), a programming model, a deployment
and an execution model. By providing a well-defined environment that manages con-
tainers and home factories for the components, the programmer can focus on the re-

From EDOC Components to CCM Components 145

quired business functionality rather than dealing with all the non-functional behavior
aspects (such as security).

0..n
*+SUPPOTtS | |nterfaceDef

+provides”7 /\

1 L 1 +uses
0..n 0..n
ProvidesDef UsesDef

receptacle
+facet P

+manages Home

1 1 1

+emit +publish¥.s 0..n " consumes
0..n -

EmitsDef PublishesDef ConsumesDef

—
/
/

EventDef

Fig. 1. The CCM metamodel

The CORBA interface definition language (CORBA-IDL) has been enhanced to ad-
dress the new fundamental types needed for components. A CCM component declares
the interfaces that are provided (facets) and the interfaces that are used (receptacles)
using named ports. In addition a component declares ports for receiving asynchronous
events as well as ports for emitting or publishing events. Finally, a component may
define the properties that are needed for its configuration.

Surprisingly, composition in CCM is not recursive: a component cannot be defined as
a composition of other “small” components. However, an assembly type can be de-
clared to gather a set of CCM components “working together”. An assembly descrip-
tor (described using an XML vocabulary) declares the way how components instances
are connected together through their respective ports. Also, it can provide collocation
constraints on the component instances (either the components execute on a single
node, either they are driven in a single process).

146 Mariano Belaunde and Mikael Peltier

2.2 The EDOC Component Model

The RFP (Request for Proposal) “UML Profile for EDOC” [2] called for a standard
way to use UML for designing distributed enterprise systems, with the assumption that
the design will adopt a component-oriented approach and that it will be “mappable” to
the existing software component frameworks (i.e. the CCM, the EJB, etc.).

The final submission, recommended to adoption in September 2001 is a “melting-pot”
of distinct interesting works, but containing also a lot of inconsistencies. There are
specific UML profiles for modeling event-driven systems, as well as for business
process. Anyway, the Enterprise Collaborative Architecture (ECA) which is part of
the EDOC submission, has proposed a general composition model (see Figure. 2), that
summarizes well the state of the art on components: recursion in composition, port
specification using protocols, configuration properties, etc. In addition, a graphical
notation has been proposed to be used as an alternative to the standard UML icons.
Figures 3 and 4 in this paper uses this notation which is more appropriate to figure out
the component structure.

Choreography

+uses ComponentUsage

A n T
1
| Connection
ProcessComponent Community
Protocol Process conngcts
n
Use
& Port 4 M

direction 4represents PortConnector +portsUsed
, n
n
Property

| PropertyDefinition +ills Value

ProtocolPort En value n

1

MultiPort FlowPort OperationPort

Fig. 2. The EDOC/ECA metamodel

An ECA component has an external view that includes the declaration of ports. A port
is simple or composite (containing sub-ports). It plays either the role of an “initiator”
or the role of a “responder”. The interaction through the ports needs to conforms with
a protocol specification. A protocol may imply complex interactions between the two
parties. A protocol choreography, which is represented by an activity diagram in
UML, is used to describe the ordering of the messages. Note that an interface (a col-
lection of synchronous operations) is treated as a particular case of a protocol. A
community is a special kind of composite that reflects a collaboration of top-level
component instances. Figure 3 shows a community with three components.

From EDOC Components to CCM Components 147

Buiyes Seller

Diedivery

Logisics

Dalivary

Fig. 3. The Buyer/Seller community

An ECA component may expose its internal structure (its inside) or it may declare a
“performer” role that implements it. In the former case, the internal view of the com-
ponent is described as a collaboration of other component instances (u#sages of other
components). The connections between the ports of the component instances are ex-
plicitly described. A choreography may be used to describe in detail the behavior of
this collaboration.

Seller
QuateCaloulatar
Sales //E’:l Cuote &
Quoate]
Order ""--.\ Seller_Orders
ShippingNotice Order OrderConfirmalion
PaymentNetic:e—I

Fig. 4. A partial view of a "seller" component

148 Mariano Belaunde and Mikael Peltier
3 Techniques for Specifying Mappings

A transformation is a process which is used to produce coded data in a format towards
another format. This transformation can either consist of an one-to-one relation (corre-
spondence) between elements either be more complex and involve intermediary com-
putations to realize the transformation.

3.1 Current Approaches

The need for specifying mappings between models has increased dramatically today in
the object modeling community. This is due at least to two main reasons:

- The UML graphical notation often serves as a concrete notation in specific
domains. This is made possible because of the extensibility mechanism in
UML that permits to extend the semantics while preserving the notation core.
However, independently of the usage of the UML diagrams, designers have
often a metamodel of the domain concepts. Thus, a mapping specification is
needed to show how this domain concepts maps into the UML concepts. The
Software Process Engineering Management [4], the "UML profile for
EDOC" [5] and the "UML profile for EAI" [6] are examples of OMG specifi-
cations providing both a metamodel and a UML profile.

- The MDA promotes the separation between platform independent models
and platform dependent. This requires to specify very precisely the mapping
between models located at distinct levels. As an example, the "UML profile
for EDOC" submission has proposed some non-normative technology map-
pings, such as "EDOC to EJB" and "EDOC to CCM"[I

How do the mapping between a source and target models be specified today in the
specifications produced by the OMG?. There are distinct approaches, but all of them
are more informal than formal. The SPEM and EDOC submissions, use tables provid-
ing the correspondences between the concepts. We will typically find some explana-
tion in natural language accompanied with a three column table in the form: source-
entity/map-comment/target-entity.

This approach is suitable when the transformations are really simplistic, for instance,
in the case of UML profiles, when each domain concept is translated using a single
UML stereotype. But in general, things are more complex. In order to really take ad-
vantage of all the UML diagramming capabilities, a domain concept may be showed
in different places with a distinct identity (in SPEM an activity is represented either as
an operation, or as an action state, or as a use case, etc.). There are also many complex
short-cuts conventions that are difficult to specify precisely using tables.

In the "UML for EAI" submission [15], in addition to this correspondence tables, the
mapping rules are further refined by means of "invariant constraints". For example

! The mapping presented in section 6 reuses parts of the proposal included in this specification.

From EDOC Components to CCM Components 149

"The name of the terminal is the name of the target end of the association". This ap-
proach is interesting. The constraints are expressed in English but we could imagine
that they can also be translated as OCL invariants (with some extensions to the OCL
language). This formal specification could be used to check that a program has per-
formed correctly the mapping. However it will be very difficult (probably impossible)
to generate automatically the program itself!

To summarize, it is really difficult to specify precise mappings formally (and even
harder if we want these to be readable!). In general the semi-formal mapping provided
in the OMG specifications are useful to understand the fundamentals of the mapping.
But in the perspective of an implementation, they offer a limited help to human pro-
grammers (and even less to an automated engine). A lot of implicit information need
to be re-interpreted by the programmer. This includes for instance, the determination
of the ordering to accomplish the transformation (the visiting strategy).

3.2 Towards an Executable Mapping Specification

An executable mapping specification is something that ideally should be a pure "de-
clarative" language. However, our feeling is that a compromise is needed between
"the procedural" and "declarative" paradigm in order to have a highly expressive,
predictable, understandable formalism that could be automated in an efficient way.

Our focus is on executable formalisms that operate with object oriented model defini-
tions. There are examples of other non OO approaches, like those based on XML and
XSLT] or those based on EBNF production rulesf]

From now on, there a lot of pragmatic solutions for model transformations that mix
declarative and procedural aspects. For instance, in a UML Case tool, such as the
Objecteering [12], or a transformation engine such as Scriptor [13], a dedicated lan-
guage is used to inspect and create the model elements (in compliance with the UML
metamodel). Transformations rules are written for each UML meta-class using either
pseudo-formal navigation expressions, either templates with placeholders. Further-
more, it is possible to derive automatically this transformation rules from models rep-
resenting design patterns. A very important work in the topic of design pattern appli-
cation has been achieved with the UMLAUT framework [9].

Anyway, in the context of our research project, we were more interested in an explicit
and executable object oriented formalism, tool independent, that would not be de-
pendent on a unique metamodel. In other words, what we were looking for was a kind
of OCL extension for model transformation based on the MOF. The MOF provides a

2 There are a lot of limitations that appear when using XSLT processors to transform models
rendered as XML documents (using the XMI standard).

3 The productions rules for XML schemas in [16] are expressed in this way. The rules are
precise and unambiguous.

150 Mariano Belaunde and Mikael Peltier

very simple object-oriented meta-language that is used to define other languages
(metamodels). The MOF constructs are in fact those commonly used in class-
diagrams: classes with attributes, binary associations with cardinalities in both ends,
class inheritance and so on. Full object-orientation, genericity and good integration
with UML graphical notation are the main advantages that emerge from this approach.

A lot of research is being carried out today to apply meta-modeling techniques to
model transformation. There were also some interesting results in the last past years.
In particular, we would mention the approach taken by R.Lemesle [10], which pro-
poses a prolog-like declarative language with selection clauses and conclusions. The
implementation was based on the sNets formalism [11] which was used to encode the
MOF metametamodel concepts as well as the rules.

3.3 How to Go from an Abstract Model to a Concrete Model

When going from an abstract model of a system into another more concrete model of
the same system, the transformation process requires in general additional information
to be provided. This includes:

- Decisional choices to set distinct mapping alternatives. For example: what
security level will be needed in the concrete system?

- Enrichment of the source model in order to take in account aspects not origi-
nally expressed in the source model but that are relevant to the target.

There are different techniques to provide this additional information. For instance
global parameters may be passed to the transformation engine. In UML models,
tagged values are often used to annotate the source model with additional data. An-
other approach is to use distinct inter-related models as the input for the transforma-
tion. A security model and architectural model may, for instance, be linked with the
domain specific model to be transformed.

4 The Mtrans Language

MTrans is a textual formal formalism to express transformations on models. It's an
executable formalism in the sense that it has unambiguous execution semantics and
can be automated by a tool. Access to the source model elements and the assignment
of the target model elements is expressed in the terms of the concepts and the proper-
ties existing in the source and target metamodels. MTrans reuses the navigation capa-
bilities of OCL, a formal and pure expression language used to define constraints on
OO models.

From EDOC Components to CCM Components 151

Module Function
>
n
Rule
n +guard Exp
name
? n
Section —
nstruction
kind : KindSection <@——
<<enumeration>>
KindSection
init Assign Let IfElse
inherits
attributes
roles
ends

Fig. 5. Main syntax constructs in Mtrans

4.1 Foundations

A MTrans specification is made of a set of rules and a set of function deﬁnitionsﬂ(see
fig 4). A rule indicates how an instance of the target metamodel is created and how its
attributes and roles are assigned in the context of an instance of the source metamodel.
A rule has an optional name and contains distinct sections. In each section there are
instructions. The 'init' section contains initial computations that are performed before
creating the destination instance. The 'attributes' and 'roles' sections are used to assign
the properties of the destination instance (which is created at the end of the 'init' sec-
tion). A rule may have additional parameters (other than the implicit 'self' contextual
source instance).

A MTrans specification declares one or more rules serving as entry-points. Multiple
entry points allow either to perform multiple passes, or to apply the transformations to
separate parts of the model. A rule may invoke another rule. This is done using the
new operator. Entry-points and new operations allow the MTrans programmer to have
an explicit full control on the flow of execution.

A rule can inherit from one or more other rules. The destination type needs to be com-
pliant with the destination types of the inherited rules. The inherited rules are executed

4 OCL definitions (expressed with the 'def keyword) are a special kind of function definition in
Mtrans.

152 Mariano Belaunde and Mikael Peltier

after creating the destination instance and before the execution of the property as-
signment.

Rule inheritance permits the reuse of code that populates the properties of the destina-
tion model. In contrast, a function definition is used to reuse the code that inspects the
source model. A rule, for instance, cannot be invoked in a function body. As in OCL,
a MTrans function has a context argument (referred as 'self'). It may be of any known
type, including classes from the source model, as well as basic data-types and struc-
tured data-types (sequences, sets, etc.). All the predefined OCL definitions (such as
the set of operations defined for collections like collect and select) can be used in
function bodies.

4.2 Special Situations

- Anabstract rule is a rule that can only be used by inheritance.

- A rule may not specify its destination. In such case no instance is created in
the target model and only the 'init' section is available. The instructions in the
'init' section serves only to invoke other rules in inner source elements. This
is often useful to entry-point rules.

- A rule may not specify its source instance. In such case the first parameter
acts as the contextual argument (referred as 'self'). This is useful to create, for
instance, pre-defined destination elements that are not necessarily linked with
a source element.

- A function can be declared as external. In this case the body is not present,
meaning that the implementation is provided elsewhere. This is useful for
implementing predefined functions that will be linked afterwards to the trans-
formation MTrans engine.

4.3 Advantages of an Explicit Execution Strategy

MTrans is obviously not a "pure" declarative language; instead it's a mixture of "de-
clarative" and "procedural" formalism. A MTrans specification is in fact a program
with a specialized structure that clearly shows what is its intent. We believe that an
explicit execution strategyﬂbrings many advantages in terms of the precision and the
capacity to express complex situations. In non trivial transformations, it's often useful
to visit a model element more than onceﬂ Since we know what transformations were
made before, it is possible to reference the destination instances already created. The
resolve operation is used to obtain all the destination instances created from a source

5 A strategy describes how we want to apply the different steps of the transformation process.

6 Section 5.2 shows an example of this: The ECA community is visited twice, once for creat-
ing all the CCM component types and a second time for creating all the connections in the
CCM assembly.

From EDOC Components to CCM Components 153

instance (this is similar to the co-reference mechanism found in [10]). Note also that
without an explicit execution flow, the rules inheritance mechanisms, used for rule
reuse, would have an ambiguous semantics.

Special Rules and Conventions in MTrans

It is not always easy for a human reader to understand OCL expressions that involves
a long chain of iterative operations. In MTrans, to minimize this problem there are
some special rules and some short-cut conventions (abbreviations) that make things
appear simpler to the end-user of the language.

"Do nothing on abort": In the assignment instruction myattr= self.x.y'
the assignment will take place only if the access to the x and y fields is suc-
cessful;

"Chained assignments": The instruction 'myrole=a;b;c; ' specifies that my-
role will merge the results of the three expressions in a single list;

"Filtering notation": The expression x [filtering-expression], where X is
a sequence, expresses that the resulting list will be filtered according to the
filtering condition (which is expressed in terms of an implicit iterator). ItIs
equivalent to use in OCL a select operation.

Implicit macros: The filtering expression x[M] where M is a metaclass, ex-
pands as x[iterator.isOclType(M)] (only instances of type M are ac-
cepted)ﬂ

"pipeline operations": The instruction x->f (), where X is a collection, results
on calling once the 'f' function if f is declared as having a collection as the
context argument, or results in calling n times the 'f' function if 'f' declares a
non collection context argument. This convention applies also to the new’
operator to invoke a rule on each element of the list. Note that in OCL there
is a similar convention for 'x.propertyname' where x denotes a collection.

Dynamic casting: When defining and initializing local properties definitions
(using the 'let’ keyword) the type is not mandatory. However, the full signa-
ture is mandatory when defining functions signatures.

7 In MTrans disambiguation rules are used to prevent potential conflicts that may arise. In
standard OCL the [] operator is also used for accessing class-associations instances.

154 Mariano Belaunde and Mikael Peltier
5 Mapping from EDOC to CCM

5.1 General Principles of the Mapping

The main issue when mapping an EDOC model into a CCM model is how to deal with
the EDOC recursive composition. An EDOC component may be defined as a compo-
sition of other components, while, in CCM, an assembly cannot act as a part for an-
other composite. When going from an EDOC model to a CCM model, we have then to
decide what to do with the inside of a composite EDOC component. Many options are
possible. For the purpose of this presentation, we assume the following mapping strat-
egy: each EDOC component, whether it's a top-level or an inner one's, is translated as
a CCM component type. Furthermore, the whole EDOC community is mapped as a
single CCM assembly that declares all the needed connections between the CCM
component instances. In order not to loose component encapsulation, each CCM com-
ponent acts as a proxy for all the CCM components resulting from its "inside". To
achieve this we need to perform a deep traversal on the ports structure of each top-
level EDOC component and distinguish between ports that are used for "internal"
communication from those that are used for "external" communication. Depending on
the port mode (synchronous/asynchronous) and the port role (initiator/responding) we
generate either sink events, source/published events, facets (provided interfaces which
contain operations reflecting the synchronous flows) and receptacles (used interfaces
reflecting consumed flows).

5.2 A Formal Specification of the EDOC to CCM Mapping

In this section we present some excerpts of the executable mapping specified using
MTrans. This mapping is directly expressed in terms of the EDOC and the CCM
meta-models (described in Figure 1 and Figure 2)ﬂ

The first stage in the transformation process is to inspect in two passes the top-level
Buyer/Seller community (see Figure 3). The first pass (rule R1) creates the CCM
assembly structure while the second one (rule R2) creates CCM home instances for
each EDOC component found in the community.

Rl entrypoint rule Assembly from CommunityProcess {
-- We do not present this part in the paper -- }
R2 entrypoint rule undefined from CommunityProcess {
init:
self.uses.processComponent [unigue] ->new HomeDef (); }

8 The principles for mapping ECA flow ports are presented in the EDOC to CCM mapping
found in [3]. Although the way how to manage port composition remains very vague.

9 Another approach could be to use the UML profile for EDOC and the UML profile for CCM.
However the mapping based on the specific meta-models is easier to understand.

From EDOC Components to CCM Components 155

The rule R3, which is invoked by rule R2, performs then a deep traversal on the
EDOC components. Recursion stops when no inside is found in the component (when
'self.uses' aborts in (1)). CCM components are instantiated and linked to the
home that is in charge to manage it.

R3 rule HomeDef from ProcessComponent {
init
self.uses.processComponent [unique] ->new HomeDef () ; (1)
roles:
manages = self.new ComponentDef () ;

The Rule R4, invoked in rule R3, specifies how the CCM components are build from
EDOC components. The logic here is a bit more complex. The various kind of CCM
ports are populated according to the principles exposed in section 6.1. Ports used for
external communication are generated in a different way than ports dedicated to the
interaction with the internal components. Note that for an external consuming CCM
port there is a corresponding proxy emitting port. For clarity, many other details of the
mapping have been omitted here, such as mapping the configuration properties, the
transaction parameters, and so on.

R4 rule ComponentDef from ProcessComponent {
init:
let ax_out =self.port->allAsyncInitiatorFlowPorts() ;
let ax_in = self.port->allAsyncResponderFlowPorts() ;
let sx_in = self.port [hasResponderSyncPorts()];
let sx_out = self.port[hasInitiatorSyncPorts()];
let pp = self.proxyPorts();
let ap_out = pp.allAsyncInitiatorFlowPorts() ;
let ap_in = pp.allAsyncResponderFlowPorts () ;
let sp_in = pplhasResponderSyncPorts()]; (2)
let sp_out = pplhasInitiatorSyncPorts()];
macro multiple = portUsage.outgoing->size>1;

roles
emits = ax out[!multiple] ->new[External]EmitsDef () ;
ap_in[!multiple] ->new[Internal] EmitsDef () ;
publishes = ax out[multiple] ->new[External] PublishesDef () ;
ap_in[multiple] ->new[Internal] EmitsDef () ;
consumes = ax_in->new[External] ConsumesDef () ;
ap_out-> new[Internal] ConsumesDef () ;
receptacle = sp out->new [External] UsesDef () ;
sp_in->new [Internal] UsesDef () ;
facet = sp_ in-s>new[External] ProvidesDef () ; (3)

sp_out->new[Internal] ProvidesDef () ;

The R5 rule, described below, is invoked in rule R4 for each external and top-level
port that contains at least one inner synchronous and responder sub-port (see the
marks (2) and (3) in rule R4). The purpose of the R5 and R6 is to generate all the
provided interfaces that are useful to a CCM component to be used from its outside.
An operation is generated for each synchronous and responder sub-port belonging to
the current source port. Note that the list of the sub-ports is passed as a parameter to
the rule R7.

156 Mariano Belaunde and Mikael Peltier

R5 rule [External] ProvidesDef from Port (
roles:
provides = self.new InterfaceDef (allSyncResponderPorts()) ;

R6 rule InterfaceDef from Port
parameters:
plist : Set (OperationPort) ;
roles:
contents = plist->new OperationDef () ;
}

All the utility functions, such as alldsyncinitiatorFlowPorts, used by rule R4, can be
coded in Mtrans using the navigability facilities (in a similar way as in OCL). Alterna-
tively, a function can be implemented directly as a native function using the target
language of the compiler (such as Java or Python).

5.3 Back to the Buyer/Seller Example
The MTrans specification described in 6.2 has been applied to the Buy/Seller provi-

sioning example (figures 3 and 4).
Below we present the structure of the resulting CCM model.

HomeDef Home Seller {
manages :
ref ComponentDef Seller;
1
ComponentDef Seller {
emits
EmitsDef QuoteRequestInternal { type=... }
EmitsDef Quote { type= DataQuote ... }
consumes
ConsumesDef QuoteRequest { type=... }
ConsumesDef QuoteInternal { type=... }

}

HomeDef Home QuoteCalculator {
manages:
ref ComponentDef QuoteCalculator;

}

Component QuoteCalculator {
emits:
EmitsDef Quote { type=DataQuote... }
consumes :
ConsumesDef QuoteRequest { type=... }

From EDOC Components to CCM Components 157

6 Conclusions and Future Work

Component-oriented specifications can be introduced at distinct levels of abstraction
during the software development cycle. Thus a EDOC/ECA model is likely to be used
at an "analysis" level while a CCM based description could be used later at "design"
phase, reflecting the specific architecture decisions. Obviously, for an organization
that have to maintain distinct models on their systems, it is an important issue to re-
duce the gap between models located at distinct level of abstractions. Moreover, in the
context of the OMG Model Driven Architecture, the problem of the mapping between
distinct models has been identified as being very important. We can expect that a
standard for model transformation will emerge from the OMG organization in a near
future.

Nowadays, mapping specifications are often defined informally. Although this kind of
description is useful to understand the global meaning of the transformation process, it
is not sufficient to avoid ambiguities arising from its interpretation. Moreover, an
informal mapping can not be executed without an explicit programming effort.

The MTrans language has been designed to address this problem. This formalism is
based on the OCL language, is tool independent and it can be used with any MOF
compliant metamodel. A former partial implementation of the MTrans language has
been achieved on the top of a XSLT processor. The tool was used to transform SPEM
models expressed in UML into SPEM models expressed in the terms of the specific
SPEM metamodel. It was also used to assist the production of deployment descriptors
from CCM-like component specifications (in the context of the European
EURESCOM project P924). We are currently developing a new implementation of
the MTrans engine, which will be based on the Univers@lis model repository tool [8].
Among some of the new properties that could be addressed in a new version of the
MTrans formalism we would mention an explicit support for transformation patterns
and an enrichment of the navigational operations that could be based on techniques
existing in OO databases (such as the OQL language which is the counterpart of SQL
for relational databases).

References

1. OMG, «Model-Driven Architecture», document ormsc/2000-11-05, November 2000.
OMG, «RFP: UML Profile for Enterprise Distributed Object Computing», document
ad/1999-03-10, October 1999.

3. OMG, «CORBA Components», document orbos/1999-07-02, August 1999.

4. OMG, «The Software Process Engineering Metamodel (SPEM)», document ad/2001-06-
05, June 2001.

5. OMG, «4 UML Profile for Enterprise Distributed Object Computing», document ad/2001-
08-19, August 2001.

158

10.

11.

12.
13.
14.
15.
16.

All

Mariano Belaunde and Mikael Peltier

OMG, «UML Profile and Interchange Models for Enterprise Application Integration
(EAD)», document ad/2001-09-17, September 2001.

Meta Integration Technology, «Meta Integration Model Bridgen,
http://www.metaintegration.net/|

M.Belaunde, "A pragmatic approach for building a user-friendly UML: Repository",
UML'99 conference. Web Site: http://universalis.elibel.tm. fi/index.htmi|

W.M. Ho, J-M Jézequel, A. Le Guennec and F. Pennaneac’h, « UMLAUT: An extensible
UML transformation frameworky, Technical Report 3775, INRIA, October 1999.

R. Lemesle, «Transformation rules based on meta modelingy», Proceedings of the Second
International Enterprise Distributed Object Computing Workshop (San Diego), November
1998.

J.Bezivin, J.Lanneluc, R.Lemesle «sNets, the Core formalism for an Object-Oriented
Tooly, 1995.

Softeam, "Objecteering. UML Case Tool"; ://www.softeam.fr/
Softmaint, "The Scriptor transformation engine"
OMG, «Meta Object Facility, version 1.3», document ad/2000-04-03, March 2000.
OMG, "UML Profil for EAI", OMG document ad/2001-08-02.

OMG, "XML Schemas for XMI", OMG document ad/2000-08-14.

the OMG documents referenced here are available from the OMG website using the url:

http:// WWW.omg.org/cgi-bin/ doc?<doc-id>}

http://www.metaintegration.net/
http://universalis.elibel.tm.fr/index.html
http://www.softeam.fr/
http://www.softmaint.com/
http://www.omg.org/cgi-bin/doc?<doc-id>

	From EDOC Components to CCM Components: A Precise Mapping Specification
	1 Introduction
	2 CCM Components versus EDOC Components
	2.1 The CORBA Component Model (CCM)
	2.2 The EDOC Component Model

	3 Techniques for Specifying Mappings
	3.1 Current Approaches
	3.2 Towards an Executable Mapping Specification
	3.3 How to Go from an Abstract Model to a Concrete Model

	4 The Mtrans Language
	4.1 Foundations
	4.2 Special Situations
	4.3 Advantages of an Explicit Strategy
	4.4 Special Rules and Conventions in Mtrans

	5 Mapping form EDOC to CCM
	5.1 General Principles of the Mapping
	5.2 A Formal Specification of the EDOC to CCM Mapping
	5.3 Back to the Buyer/Seller Example

	6 Conclusions and Future Work
	References

