Engineering Modelling Languages:
A Precise Meta-Modelling Approach

Tony Clark1", Andy Evans 2, and Stuart Kent >

D Department of Computer Science, King’s College London, UK
anclark@dcs.kcl.ac.uk

2) Department of Computer Science, University of York, UK
andyelcs.york.ac.uk

3 Computing Laboratory, University of Kent at Canterbury, UK
s.j.h.kent@ukc.ac.uk

Abstract. MMF uses meta-modelling techniques to precisely define mod-
elling languages. The approach employs novel technology based on pack-
age specialisation and templates. MMF is being applied to the UML 2.0
revision initiative and is supported by a tool.

1 Introduction

This paper describes a Meta-Modelling Framework (MMF) that addresses many of
the deficiencies in the current definition of The Unified Modeling Language (UML)
[18]. The facility comprises a language (MML) for defining modelling notations, a
tool (MMT) that checks and executes those definitions, and a method (MMM) con-
sisting of a model based approach to language definition and a set of patterns
embodying good practice in language definition. The development of MMF by the
pUML group ([14]) is ongoing and has been supported by IBM and Rational Inc.
The work reported in this paper is a simplified version of the work described in out
initial submission to the UML 2.0 revision initiative [13] [4] which is expected to be
completed in 2002. This paper describes the components of MMF and uses them to
develop a simple modelling language.

1.1 A Method for Meta-Modelling (MMM)

The UML is a collection of notations, some visual some textual. These notations
currently have a loose mapping to an abstract syntax (which is imprecisely defined),
which in turn is given an informal semantics written in natural language. The UML
needs to become a precisely defined family of modelling languages, where a model-
ling language comprises a notation (concrete syntax), abstract syntax and semantics.

Software Engineers define languages as a collection of models with mappings
between them. Typically a language consists of models for concrete syntax, abstract
syntax and for the semantic domain. The MMF approach applies OO modelling to
the definition of OO modelling languages. Each language component is defined as a
package containing a class diagram. Package specialization is employed to support

R.-D. Kutsche and H. Weber (Eds.): FASE 2002, LNCS 2306, pp. 159-173, 2002.
© Springer-Verlag Berlin Heidelberg 2002

160 Tony Clark et al.

reusable, modular, incremental language design. OCL [20] [15] is used to define
well-formedness constraints on the language components. Mappings between lan-
guage components are defined in terms of OCL constraints on associations between
model elements.

Conorete Abstract Semantic
Syrtax Syrtasx e —
Displ=y Semantic
Mapping Mapping

The MMF approach uses two key features of OO modelling technology: package
specialization and templates. Package specialization permits (possible partial) defini-
tions of model elements in a super-package to be consistently specialized in a sub-
package. Templates are parametric model elements; supplying model elements as
parameter values stamps out the template to produce a fresh model element. Tem-
plates provide a means of representing reusable modelling patterns; the MMF
approach uses templates to capture patterns that occur repeatedly in OO modelling
languages thereby providing a framework for defining language families.

This technology is not specific to MMF, UML has package specialization and para-
metric model elements and in particular the Catalysis approach [7] advocates the use
of these features as part of an OO method. Algebraic specification languages such as
Clear and OBJ and abstract programming languages such as ML and Haskell provide
a means of constructing libraries of parametric components and organising systems
by combining these components in different ways. However, MMF has provided the
most precise definition of these concepts within the scope of OO modelling to date.

1.2 A Language for Meta-Modelling (MML)

MML is a static OO modelling language that aims to be small, meta-circular and as
consistent as possible with UML 1.3. MML achieves parsimony by providing a small
number of highly expressive orthogonal modelling features. The complete definition
of MML is beyond the scope of this paper; the reader is directed to [2], [3] and [9] for
an overview of the MMF approach, to [3] for the meta-circular definition of MML
and to [5] and [6] for its formal definition. The rest of this section gives an overview
of the main features of MML which are an OCL-like expression language; class def-
initions; package definitions and templates.

1.2.1 A Basic Expression Language

MML consists of a basic expression language which is based on OCL. The language
provides a basic collection of data types including integers, booleans and strings
together with standard operations over values of these types. MML supports sets and
sequences together with a small number of standard OCL iteration constructs; the
following denotes 5 (the full list of iteration constructs is defined in [6]):

Set{l,2,3}->select(x | x > 1)->iterate(y n =0 | n + y)

Engineering Modelling Languages: A Precise Meta-Modelling Approach 161

1.2.2 Class Definitions

MML classes define the structure, behaviour and invariants of their instances. The
following defines a class of people.

class Person
name : String; age : Integer; married : Boolean;
children : Set (Person); parents : Set (Person);
init (s:Seqg(Instance)) :Person
self.name := s->at(0) []
self.age := s->at(l) []
self;
averageChildAge () : Integer
self.children->iterate(c a=0 | a+c.age)/self.children->size;
inv
IfMarriedThenOverl5 self.married implies self.age >= 16;
OnlyTwoParents self.parents->size = 2

end

The definition of the class Person shows a number of MML features. In general, an
MML definition consists of a name and an expression. A class definition introduces
a new name whose scope is the class definition and relative to the package in which
the class is defined using the “::” operator, for example SomePackage::Person.

A class has a number of attributes each of which is a definition consisting of a name
and a type. A class definition has a number of method definitions each of which
have typed parameters, a return type and a body. The body of a method is an expres-
sion which provides the return value when the method is called by sending an
instance of the class a message. The init method of a class is automatically invoked
when a new instance of the class is created. A class definition has a number of
invariant constraint definitions following the keyword inv. Each constraint consists
of a name and a boolean expression. The constraints express well formedness prop-
erties of the instances of the class. For example, in order to be married a person must
be aged 16 or over.

1.2.3 Association Definitions

Classes may be associated to show logical dependency between instances of the
classes. Currently MML supports only binary associations. A binary association
consists of the two classes being associated, the name of the association and two
association ends (one for each class). An association end is a definition consisting of
aname and a multiplicity. The multiplicity constraint the number of instances of the
attached class that can be associated with an instance of the class attached to the
other end. For example, suppose that the children and parents attributes of the Per-
son class were defined via an association (at most 2 parents, but any number of chil-
dren):

162 Tony Clark et al.

association Family

parents : Person mult: 2
children : Person mult: *
end

1.2.4 Package Definitions

Packages are used in MML to group definitions of model elements. MML provides a
powerful package specialization mechanism that allows packages to inherit from par-
ent packages and to consistently specialize all of the inherited contents. For example:

package People
class Person
// as given above
end;
association Family
// as given above
end
end

Note that the association Family refers to the class Person as defined in the package
People. Now, suppose that we want to extend the notion of being a person with an
employer:

package Employment extends People
class Person yearsInService : Integer end;
class Company name : String end;
association Works
company : Company mult: 1
employees : Person mult: *
end
end

The package Employment extends the package People and therefore includes all of
the definitions from People. A package is a name space and we may refer to two dif-
ferent classes called Person: People::Person and Employment::Person. Employ-
ment::Person contains all the definitions from People::Person extended with a new
attribute named yearsInService. A package may only contain one definition with any
given name. Therefore the association named Family in the package Employment
must refer to the extended definition of Person. All definitions given by People have
been consistently extended in Employment. The notion of consistent extension for
model elements defined in a package is similar to the idea of virtual methods in C++.
Package specialization supports multiple inheritance. Packages may be nested in
which case the for package specialization outlined above hold for the nested pack-
ages.

1.2.5 Templates

A template is a parametric model element. When parameters are supplied to the tem-
plate the result is a new model element. The supplied parameter values are model ele-
ments that are used by the template to construct, or stamp out, the new model
element. Templates are used to capture patterns of recurring structure, behaviour and

Engineering Modelling Languages: A Precise Meta-Modelling Approach 163

constraints that occur in models. Templates differ from specialization, which also
captures patterns, in that there is no dependency between the template and the result
of stamping it out. Specialization captures patterns in terms of (abstract) model ele-
ments that are specialized rather than stamped out. The process of specialization can
lead to dependencies both between a super-model element and its sub-model ele-
ments and can also lead to sibling dependencies between different sub-model ele-
ments. Templates are not a replacement for specialization; they offer a new tool to
the modeller that should be used where appropriate.

Suppose that we wish to capture the notion of containment. This involves two
classes: a container and a contained element. Suppose also that all containers pro-
vide access to their contained elements via a method with the same name as the con-
tained element class. Finally, suppose that we know all contained elements are
named and that the container cannot contain two different elements with the same
name. This can be expressed as a template in MML:

package Contains (Container,nl,ml,Contained,n2,m2)

class <<Container>>

<<n2>>() :Set (<<Contained>>) self.<<n2>>

inv

<<“Every” + Contained + “HasADifferentName”>>
self.<<n2>>->forAll(cl c2 | cl.name = c2.name implies cl = c2)

end;
association <<Container + Contains>>

<<nl>> : <<Container>> mult: <<ml>>
<<n2>> : <<Contained>> mult: <<m2>>
end
end

The package template Contains is defined to have six parameters. Container is the
name of the container class, Contained is the name of the contained element class,
nl is the name used by an instance of the contained class to refer to its container and
n2 is the name used by an instance of the container class to refer to its contents. The
parameters m1 and m2 are the appropriate multiplicities for the containment.
Throughout the body of the template definition literal names may be turned into
expressions that are evaluated by enclosing them in << and >>. The names are sup-
plied as strings and therefore the string concatenation operator + is used to construct
new names. Suppose that we wish to express the containment relationship between
a person and their children:

package People

extends Container (“Person”,”children”,*,”Person”,”parents”,2)
class Person ...atribute and method definitions... end
end

Stamping out the container template produces a new package that can be used as the
parent package of People. Defining the parents and children attributes this way has
not saved much effort, however the template can be reused when defining the
Employment package:

164 Tony Clark et al.

package Employment

extends Companies, People,

Container (“Company”, “employees”, *, "Person”, ”employer”, 1)
end

1.3 A Tool for Meta-Modelling (MMT)

MMT is a prototype tool written in Java that supports the MMF approach. MMT con-
sists of a virtual machine that runs the MML calculus which is a simple object-based
calculus that supports higher order functions. All the MML examples contained in
this paper are derived from MML code running on MMT (some slight simplifications
have been applied). MMT defines MML by loading a collection of meta-circular
boot files written in MML. The definitions in this paper have been loaded and
checked in MMT which provides a flexible environment for inspecting and flattening
definitions of packages and classes. A full description of MMT is outside the scope
of this paper.

2 The Definition of a Simple Modelling Language

SML is a static modelling language that consists of packages and classes with
attributes. Packages can contain both packages and classes. Classes contain
attributes. An attribute has a name and a type. SML supports inheritance: packages
may have super-packages, classes may have super-classes and attributes may have
super-attributes. The meaning of SML package models is given by snapshots that
contain objects. Each object is a container of slots which are named values. A pack-
age is a classifier for snapshots that contain sub-snapshots and objects corresponding
to the packages and classes in the package. The structure of the syntax, semantic
domain and semantic mapping for SML follows standard patterns that occur in mod-
elling languages. The following sections show how these patterns can be captured as
templates and then how SML can be defined by stamping out the templates.

2.1 Templates for SML Definition
2.1.1 Named Model Elements

Most modelling elements in SML are named. Like Java, MMT makes use of a
toString method when displaying objects:

package Named (Model)
class <<Model>>
name : String;
toString () :String
"<" + self.of.name + self.name + ">"
end
end

2.1.2 Cloning Model Elements

Packages may have parents. A child package is defined to contain all the model ele-
ments defined by the parent package. A given model element is defined in a single
name space; a package provides the name space for all of its elements. Therefore,

Engineering Modelling Languages: A Precise Meta-Modelling Approach 165

when a model element is inherited from a parent package, the element must be cop-
ied and the containing name space must be updated to be the child package. The
process of inheriting a copy of a model element and updating its containing name
space is referred to as cloning. The cloning pattern occurs in two distinct stages: (1)
a model element is shallow copied (no copying of slots) and the containing name
space is updated; (2) the slots are copied.

package Clonable (Container,Contained)

class <<Contained>>
clone (nameSpace:<<Container>>) :<<Container>>

let o = self.copy()
ms = self.of.allMethods ()

cs = ms—->select(m | m.name = "cloneAux")
in o.<<Container>> := nameSpace []
cs->collect(m | (m.body) (o,nameSpace)) [] ©
end
end
end

The Clonable template is defined above and is used to declare a clonable model ele-
ment. The definition uses knowledge about the MML meta-level in order to copy an
instance of the container class. Every object has a method named ‘copy’ that pro-
duces a shallow copy of the receiver. The template updates the value of the con-
tainer to be the name space supplied to ‘clone’ and then invokes all of the methods
defined by the container class named ‘cloneAux’. Each method will deal with copy-
ing the slots of the new object ‘0’.

2.1.3 Name Spaces

class <<Container>>
<<"locallyDefines"+Contained>> (name:String) :Boolean

self.<<Contained+"s">>()->exists(m | m.name = name);
<<"localLookup"+Contained>> (name:String) :Set (<<Contained>>)
self.<<Contained+"s">>()->select (m | m.name = name) ;

<<"defines"+Contained>> (name:String) :Boolean
self.<<"all"+Contained+"s">> () ->exists(m | m.name = name);
<<"lookup"+Contained>> (name:String) :<<Contained>>
if self.<<"locallyDefines"+Contained>> (name)
then self.<<"locallookup"+Contained>> (name) .selectElement ()
else 1f self.<<"defines"+Contained>> (name)

then self.<<"all"+Contained+"s">>()->select (m |
m.name = name) .selectElement ()
else state.error ("NameSpace::lookup")
endif
endif

end

A name space is a container of named model elements that provides a protocol for
accessing the elements by name. The template defined above is a simple notion of
name space in which contained elements are assumed to own their own names. The
template defines a name space lookup protocol involving local lookup and inherited
lookup. The template therefore represents a mixin that requires the container to

166 Tony Clark et al.

define a pair of methods for the contained elements that returns the local contains and
the inherited contents.

2.1.4 Containers

package Contains(Container,Contained)
class <<Container>>
<<Contained + "s">> () :Set (<<Contained>>)
self.<<Contained + "s">>
cloneAux (me:<<Container>>, nameSpace:<<Container>>)
me.<<Contained + "s">> :=
(me.<<Contained + "s">>()->collect (x |
x.clone (nameSpace.<<"lookup" + Container>>(me.name))))
end;
association <<Container + Contained>>
<<Container>> : Contains::<<Container>> mult: 1
<<Contained + "s">> : Contains::<<Contained>> mult: *
end
end

Many model elements in SML contain other model elements. The contains template
defines a method for accessing the contained elements; providing method access
allows the contained elements to be encapsulated. A variation of Contains is Self-
Contains which has a single parameter. SelfContains is used to express model ele-
ments that can contain other model elements of the same type. A root self container
contains itself; the method providing access to the contained elements of a self con-
tainer removes the ‘self” from the elements it returns (thereby satisfying the round
trip constraint and also preventing cycles occurring when processing the contained
elements).

The template defines a method for cloning the contained elements when a container
instance is cloned. The cloneAux method is supplied with the model element to clone
(me) and the current name space (nameSpace) containing the model element. Each
contained element is passed its name space by looking up the appropriate model ele-
ment in nameSpace. In the absence of package specialization, the nameSpaces
passed to model elements when they are cloned will be the appropriate copy of the
original nameSpace container for the element. However, if a package is specialized,
nameSpaces may be extended in which case the cloning mechanism will guarantee
that the most specific definition is supplied to clone as the containing name space.

2.1.5 Specialization

package Specializable (Model)

class <<Model>>
parents : Set (<<Model>>);
allLocalParents () : Set (<<Model>>)

self.parents->iterate (parent P = self.parents |
P->union (parent.alllocalParents()))
end
end

In SML packages may be extended to contain new definitions; classes can be
extended to contain new attributes, methods and constraints. Specialization may

Engineering Modelling Languages: A Precise Meta-Modelling Approach 167

occur explicitly when the modeller defines a package to extend a super-package or
defines a class to extend a super-class. Specialization may occur implicitly when the
container of a model element m specializes another container that defines a model
element m’ such that m and m” have the same name. Every specializable model ele-
ment must have a set of parents of the same type. The method allLocalParents is the
transitive closure of the parents relation.

The contents of a container are defined by its parents: the local parents, as defined
above, and any parents which are inherited from its own container:

——

s +a +b E

- [=]
o I

Package P defines classes A and B and a binary association between them. The
binary association has ends named a and b causing two attributes to be added to the
classes at opposite ends of the association. Package Q defines two classes A and B
with an attribute and an operation respectively. Package P is the parent of package
Q. In order to compute the attributes of Q::A we must first compute its parents. A
has no parents in Q but since the container of Q::A has parents we must inspect P in
order to check whether it defines a class named A. We find it does and that P::A has
an attributes named b. Therefore Q::A defines an attribute named b. The type of
Q::A::b is a class called B which must be referenced with respect to the container of
Q::A, namely Q. We find that Q defines Q::B and therefore the type of Q::A::b is
Q::B. If we repeat this process for Q::B we find that Q::B defines Q::B::a whose
type is Q::A. If we flatten the package inheritance the result is as follows:

—a]

) +a +b B

+x 0 imt

= [+ bool

168 Tony Clark et al.

A specializable container requires both the container and the contained model ele-
ments to be specializable. The complete set of parents for the contained model ele-
ments are defined by computing both the local parents (the transitive closure of the
parents relation) and the inherited parents via the container. The contents of a con-
tainer are computed with respect to all parents of the container. The template for spe-
cializable containers is:

package SpecializableContainer (Container,Contained)
extends Specializable (Container),Specializable (Contained)
class <<Container>>
<<"all"™ + Contained + "s">>() : Set(<<Contained>>)
self.allParents()->iterate(parent S = self.<<Contained+"s">>() |
S->union (parent.<<"all"+Contained+"s">>()->reject (c |
self.<<“locallyDefines + Contained>>(c.name))->collect (c |
c.clone(self))))
inv
<<Contained + “sHaveDifferentNames”>>
self.<<™all” + Contained + “s”>>()->forAll (cl c2 |

cl.name = c2.name implies cl = c2)
end;
class <<Contained>>
allParents () : Set (<<Contained>>)
self.alllocalParents () ->union(self.alllInheritedParents());
allInheritedParents () : Set(<<Contained>>)
if self.<<Container>> = sgself
then Set{}
else self.<<Container>>.allParents()->iterate(parent S = Set{} |
S->union (parent.<<"all"+Contained+"s">>()->select (m |
m.name = self.name)))
endif
end
end

All the contained elements of a specializable container are constructed as follows.
Firstly all the parents of the container are constructed (recall that the parents of a
model element will include both the locally defined parents and the parents inherited
from the container’s container). The locally defined contents are merged with the
contents of all the parents after removing any parent contents that are shadowed
locally. Finally, all inherited contents must be cloned in order that they are correctly
contained.

2.1.6 Relations

package Relation (Name, Domain, Range)
class <<Name>>

left : <<Domain>>;
right : <<Range>>
end

end

A relation has a name and holds between a class of domain elements and a class of
range elements. A relation is essentially an association class that defines a constraint
on pairs of domain and range instances.

Engineering Modelling Languages: A Precise Meta-Modelling Approach 169

2.1.7 Instantiation

A key feature of the MMF approach is the definition of modelling languages in
terms of their abstract syntax and semantic domain. The abstract syntax is a model
of the legal sentences of the language. The semantic domain is a model of the legal
meanings that sentences can take. A language definition is completed by a model of
the mapping between the abstract syntax and the semantic domain.

The relation between abstract syntax and semantic domain is referred to as instanti-
ation. In general the instantiation relation between a model element and its instances
may be aribitrary (expressions denote values, classes denote objects, state machines
denote filmstrips, etc). However, if we know the structure of the abstract syntax and
semantic domain then this places structure on the instantiation relationship. This
structure can be expressed as templates.

Consider the following diagram:

ContainsInstances1{R1,A B R2.XY)

The diagram shows a typical instantiation relationship between two containers
called Containslnstances]. The instantiable model elements are shown on the left of
the diagram and the instances are shown on the right. Elements of type A contain
elements of type B and elements of type X contain elements of type Y. Elements of
type A have instances of type X and elements of type B have instances of type Y.
We wish to express the instantiation constraint that in order for an X to be classified
as an instance of an A (R1) every Y that the X contains must be an instance of some
B that the A contains (R2).

This form of instantiation relationship occurs between packages and snapshots
where every object in the snapshot must be an instance of some class in the package,
however not all classes need to be instantiated in the snapshot. This relationship is
defined as a template:

package ContainsInstancesl (
R1,ModelContainer,ModelContained,
R2, InstanceContainer, InstanceContained)
extends
Relation (R1,ModelContainer, InstanceContainer),
Relation (R2,ModelContained, InstanceContained)
class <<R1>>

170 Tony Clark et al.

left : <<ModelContainer>>;

right : <<InstanceContainer>>

inv
<<"InstancesOf"+ModelContainer+

"ContainsInstancesOf"+ModelContained>>
self.right.<<InstanceContained + "s">>()->forAll (i |
self.left.<<"all" + ModelContained + "s">>()->exists(m |
<<R2>>.new (Seqg{m,1i}) .check() = Set{}))
end
end

Other instantiation relationships are possible. For example, if we view slots as the
instances of attributes and objects as the instances of classes then classes contain
attributes and objects contain slots. An object is a well formed instance of a class
when all the attributes have instances. This relationship can be defined as a template
which we will call ContainsInstances2. Finally, there is an instantiation relationship
which is defined as follows:

package ContainsInstances(R1,A,B,R2,X,Y)
extends
ContainsInstancesl (R1,A,B,R2,X,Y),
ContainsInstances2 (R1,A,B,R2,X,Y)
end

2.1.8 Relationships between Attributes

package RelateAtt (R,Domain,Range,DomainAtt, RangeAtt, Pred)
extends Relation (R,Domain, Range)
class <<R>>

inv
<<"Relate"+Domain+"::"+DomainAtt+"To"+Range+"::"+RangeAtt>>
Pred(self.left.<<DomainAtt>>,self.right.<<RangeAtt>>)

end

end;
package SameName (R, Domain,Range)
extends RelateAtt (R,Domain,Range, "name", "name", =
end;
package TypeCorrect (R,Domain,Range)
extends RelateAtt (R,Domain,Range, "type","value", check)
end

An attribute relation involves a domain class and a range class. The relation specifies
the domain and range attributes that are to be associated and also specified the predi-
cate that will be used to check the values of the attributes. The invariant constraint in
RelateAtt simply applies the predicate to the values of the slots in domain and range
objects. SameName associates a domain and range object by requiring that they have
the same values for the slot ‘name’. In SML this constraint is required when associat-
ing the attributes of a class with the slots of an instance of the class. TypeCorrect
associates a domain class with an attribute named ‘type’ and a range class with an
attribute named ‘value’. The predicate is satisfied when all the invariant constraints
of the type return true for the value.

Engineering Modelling Languages: A Precise Meta-Modelling Approach 171

2.2 Definition of SML

We have described the MMF approach to language definition which is to model all
components of the languages and to employ object-oriented techniques to achieve
modularity and reuse. The previous section has used the novel technology of pack-
age specialization and templates to define a library of modelling language patterns.
This section shows how the patterns can be used to construct a simple modelling
language called SML.

2.2.1 Abstract Syntax
package AbstractSyntax

extends
SelfContains ("Package"), SpecializableContainer ("Package", "Pack-
age"),
SpecializableContainer ("Package","Class"),

SpecializableContainer ("Class", "Attribute"),

Specializable ("Attribute"),

Contains ("Package","Class"), Contains("Class","Attribute"),
Clonable ("Package", "Class"), Clonable ("Package", "Package"),
Clonable ("Class", "Attribute"),

Named ("Package"), Named("Class"), Named("Attribute"),
NameSpace ("Package", "Package"), NameSpace ("Package","Class"),
NameSpace ("Class", "Attribute")

class Attribute

type : Class

cloneAux (me:Attribute ,nameSpace:Class)

me.type := (nameSpace.Package.lookupClass (me.type.name))
end
end

The definition of the abstract syntax model for SML is given above. It is interesting
to note that the MMF approach achieves a declarative specification of the model in
terms of its properties explicitly listed in the ‘extends’ clause for the package. For
example, we know that a package has the properties of a specializable container,
that a package contains both packages and classes, and so on. If we were to define
the abstract syntax as the result of flattening this definition, many of these properties
would be implicit and therefore difficult to extract.

2.2.2 Semantic Domain

package SemanticDomain
extends
SelfContains ("Snapshot"),
Contains ("Snapshot", "Object"),Contains ("Object","Slot"),
Named ("Snapshot"), Named("Slot")
class Slot value : Object end
end

The domain is much simpler than the abstract syntax model. In our work using tem-
plates to define a UML 2.0 infrastructure we have a much richer semantic domain
(for example, snapshots, objects and slots have parents). One of the benefits of the

172 Tony Clark et al.

MMF approach is that we can easily refactor the structure of a model in terms of its
properties by adding new templates to the ‘extends’ clause of the package.

2.2.3 Semantic Mapping

package SemanticMapping
extends
AbstractSyntax, SemanticDomain,
ContainsInstancesl (
"PackXSnap", "Package","Class",
"ClassXObj", "Snapshot", "Object"),
ContainsInstances (
"ClassXObj","Class", "Attribute",
"AttXSlot","Object","Slot"),
SameName ("AttXSlot","Attribute","Slot")
TypeCorrect ("AttXSlot","Attribute","Slot")
end

The semantic mapping includes all of the elements from the abstract syntax and
semantic domain and then constructs relations between them. For example, the rela-
tion PackXSnap is defined to check that every object contained in a snapshot is an
instance of some class in the corresponding package.

3 Conclusion and Future Work

This paper has described the MMF approach to engineering Modelling Languages.
The approach separates the issues of how to model syntax and semantics domains
and allows languages to be developed from modular units. The approach also sup-
ports reusable patterns for language engineering. The paper has illustrated the
approach with a small modelling language. MMF aims to provide coherent methods,
technology and tools for engineering modelling languages. The core technology is
not new, the methods for defining languages are well developed, the technology has
its roots in Catalysis [7] and has been developed further in [5] and [8]. The novelty in
MMF arises from bringing these otherwise disparate technologies together within a
single consistent object-oriented framework. The MMF approach does not use a for-
mal mathematical language to express the semantics of the languages; however, it is
sufficiently expressive to support the infrastructure of these approaches and therefore
can benefit from many of the results such as [1] and [17]. The MMT tool is still
under development. Other tools exist, such as Argo and USE [16] [11] that can be
used to model languages; however, unlike MMT, these tools tend to have a fixed
meta-model.

We are applying the approach to the definition of rich and expressive visual model-
ling languages, such as [12] and [10]. In particular, the syntax employed in these dia-
grams is more sophisticated than that typically employed in UML. We are engaged in
the UML 2.0 revision process [4] [19], and using MML ideas to help redefine aspects
of UML with one of the main submission teams. The interested reader is directed to
[4] which contains many examples of templates in a diagram format. But perhaps our
most ambitious plans are in applying the MMF approach to realise the OMG MOdel
Driven Architecture (MDA) initiative.

Engineering Modelling Languages: A Precise Meta-Modelling Approach 173

References

(1]

(2]

(3]

(4]

(10]

[11]

Bottoni P., Koch M., Parisi-Presicce F., Taentzer G. (2000) Consistency Checking and
Visualization of OCL Constraints. In Evans A., Kent S., Selic B. (eds) UML 2000 pro-
ceedings volume 1939 LNCS, 278 -- 293 , Springer-Verlag.

Clark A., Evans A., Kent S. (2000) Profiles for Language Definition. Presented at the
ECOOP pUML Workshop, Nice.

Clark A., Evans A., Kent S, Cook S., Brodsky S., (2000) A feasibility Study in Rear-
chitecting UML as a Family of Languages Using a Precise OO Meta-Modeling Ap-
proach. Available at http://www.puml.org/mmt.zip.

Clark A., Evans A., Kent S. (2001) Initial submission to the UML 2.0 Infrastructure
RFP. Available at http://www.cs.york.ac.uk/puml/papers/
uml2submission.pdf

Clark A., Evans A., Kent S. (2001) The Specification of a Reference Implementation
for UML. Special Issue of L'Objet on Object Modelling, 2001.

Clark A., Evans A., Kent S. (2001) The Meta-Modeling Language Calculus: Founda-
tion Semantics for UML. ETAPS FASE Conference 2001, Genoa.

D'Souza D., Wills A. C. (1998) Object Components and Frameworks with UML -- The
Catalysis Approach. Addison-Wesley.

D'Souza D., Sane A., Birchenough A. (1999) First-Class Extensibility for UML - Pack-
aging of Profiles, Stereotypes, Patterns. In France R. & Rumpe B. (eds) UML '99 pro-
ceedings volume 1723 LNCS, 265 -- 277, Springer-Verlag.

Evans A., Kent S. (1999) Core meta-modelling semantics of UML -- The pUML ap-
proach. In France R. & Rumpe B. (eds) UML '99 proceedings volume 1723 LNCS, 140
-- 155, Springer-Verlag.

Howse J., Molina F., Kent S., Taylor J. (1999) Reasoning with Spider Diagrams. Pro-
ceedings of the IEEE Symposium on Visual Languages '99, 138 -- 145. IEEE CS Press.
Hussmann H., Demuth B., Finger F. (2000) Modular Architecture for a Toolset Sup-
porting OCL In Evans A., Kent S., Selic B. (eds) UML 2000 proceedings volume 1939
LNCS, 278 -- 293 , Springer-Verlag.

Kent S. (1997) Constraint Diagrams: Visualizing Invariants in Object-Oriented Models.
In Proceedings of OOPSLA '97, 327 -- 341.

UML 2.0 Infrastructure Request for Proposals, available from http://www.omg.org/uml
The pUML Home Page http://www.puml.org.

Richters M., Gogolla M. (1999) A metamodel for OCL. In France R. & Rumpe B. (eds)
UML '99 proceedings volume 1723 LNCS, 156 -- 171, Springer-Verlag.

Richters M., Gogolla M. (2000) Validating UML Models and OCL Constraints. In
Evans A., Kent S., Selic B. (eds) UML 2000 proceedings volume 1939 LNCS, 265 --
2717, Springer-Verlag.

Richters M., Gogolla M. (2000) A Semantics for OCL pre and post conditions. Present-
ed at the OCL Workshop, UML 2000.

Object Management Group (1999) OMG Unified Modeling Language Specification,
version 1.3. Available at http://www.omg.org/uml.

The UML 2.0 Working Group Home Page http://www.celigent.com/omg/
adptf/wgs/uml2wg.html.

Warmer J., Kleppe A. (1999) The Object Constraint Language: Precise Modeling with
UML. Addison-Wesley.

	Engineering Modelling Languages: A Precise Meta-Modelling Approach
	1 Introduction
	1.1 A Method for Meta-Modelling (MMM)
	1.2 A Language for Meta-Modelling (MML)
	1.3 A Tool for Meta-Modelling (MMT)

	2 The Definition of a Simple Modelling Language
	2.1 Templates for SML Definitions
	2.2 Definition of SML

	3 Conclusion and Future Work
	References

