Meta-modeling Techniques Meet
Web Application Design Tools

Luciano Baresi, Franca Garzotto, Luca Mainetti, and Paolo Paolini

Dipartimento di Elettronica e Informazione - Politecnico di Milano
Piazza L. da Vinci 32, 1-20133 Milano, Italy
{baresi,garzotto,mainetti,paolini}eelet.polimi.it

Abstract Web-based hypermedia systems are becoming more and more sophis-
ticated, new modeling requirements constantly arise, and design models must
constantly evolve. Since design tools should complement models to support an
efficient design process, model evolution raises a technological issue: Design
tools must be modified when their underlying model changes. This is why the
paper proposes a general approach to efficiently update design tools in response
to model evolutions. The key ideas are: a) the description of a hypermedia model
in terms of a general meta-model, powerful enough to express the semantics of
current and future design constructs; b) the transformation of a hypermedia design
tool into a meta-CASE tool, able to cope with model updates without requiring
to be redefined and rebuilt from scratch.

The approach is presented by discussing a case study, that is, the feasibility study
to transform our design toolkit, Jweb, into a meta-CASE tool (Jweb3). This
tool will support the latest version of our model (called W2000), and will easily
evolve with the model it supports. We discuss the adoption of the OMG meta-
modeling standards MOF and XMI as enabling technology, we present a sample
of the representation of W2000 in terms of MOF, and we sketch the architecture
of the under-implementation Jweb3.

1 Introduction

Web-based hypermedia systems are becoming more and more sophisticated: New mod-
eling requirements constantly arise, and hypermedia design models must constantly
evolve. An example of this evolution is HDM (Hypertext Design Model). Since its first
definition in 1991 [8], HDM has originated a family of variants (HDM2 [[/], HDM-
lite [6]) and, more recently, W2000 [22]. W2000 has been defined in response to the
transformation of Web-based hypermedia from read-only navigational “repositories” to
complex applications that combine navigation and operations in a sophisticated way.
W2000 enriches the latest version of HDM with concepts and notations for modeling
richer information structures as well as operations and services accessible through the
Web. It exploits the Unified Modeling Language UML [[13]] and its customizability to
ascribe W2000 with a standard graphical syntax.

Along with HDM, we have been developing Jweb [13]], a CASE toolbox that assists
Web application designers during the whole development process: from conceptual de-
sign to semi-automatic generation of final applications. Jweb provides a set of tools that
enables the designer to specify, document, reuse, and prototype their design choices in

R.-D. Kutsche and H. Weber (Eds.): FASE 2002, LNCS 2306, pp. 294-307] 2002.
(© Springer-Verlag Berlin Heidelberg 2002

Meta-modeling Techniques Meet Web Application Design Tools 295

an efficient way. It has been evolving with the HDM family, but always a step beyond.
We have experimented that the evolution of a CASE tool is not as easy as the evolution
of the model it supports, and originates an almost chronic misalignment. This is why,
before starting the development of Jweb3, the latest version of our toolbox, which
should fully support W2000, we decided to investigate new solutions.

In this paper, we present the first results of the feasibility study that we conducted to
pave the ground to Jweb3. We started from the schema editor, which has been always
the first and most important tool in the Jweb chain of tools m, trying to meet the two
following requirements:

— Jweb3 should smooth the chronic misalignment between models and tools. It
should be able to absorb possible changes in the underlying W2000 model with-
out imposing that all tools be rebuilt from scratch.

— Since W2000 is based on UML, the prototype schema editor should exploit the
modeling features of commercial UML CASE tools, like Rational Rose [[15] or
SoftTeam Objecteering [[L7], without constraining the whole toolbox to adopt
strange and proprietary format to store produced artifacts.

The former requirements can be tackled using meta-CASE technology. Standard
CASE tools support fixed notations, whose definition is hard-coded in the tool. Even
slight changes in the notation would require that the tool(set) be rebuilt from scratch.
Meta-CASE tools, in contrast, separate editing facilities from the definition of the no-
tation they support and thus foster flexibility and evolvability. Meta-CASE technology
has been widely adopted by several software engineering environments, but to the best
of authors’ knowledge, it is new in the domain of hypermedia model: We do not know
other "meta” approaches to which our proposal can be compared. The advantage in
terms of flexibility is counterbalanced by the need of supplying the tool with a rig-
orous description of the supported notation. The latter requirement imposes to adopt
UML tools that are customizable and support a vendor-independent common format to
seamlessly exchange UML specifications among different tools.

In this paper, we adopt “standard” OMG (Object Management Group) to find a
solution to both problems: XMI (XML Metadata Interchange [|14]]) solves the first re-
quirement, while MOF (Meta-Object Facility [[12]) solves the second problem. XMI
is the XML-based stream format for metadata interchange. It is useful for storing ar-
tifacts in a vendor-independent format and all newer UML tools support it. MOF is
the standardized model for meta-data definition, that is, for describing the fundamental
concepts with which applications work. MOF can be used to define special-purpose no-
tations for particular application domains. These definitions can then drive subsequent
implementation steps, serve as basis for connecting independent software components,
or be used as oracle (i.e., reference) for assessing the correctness of specifications that
should be compliant with it.

The adoption of MOF-XMI as underlying enabling technology for Jweb3 would
transform Jweb in a meta-CASE tool that would allow us to update all modeling tools
each time a new version of W2000 is released. A rigorous definition of the notation
(i.e., of the meta-model) would provide a precise framework to accomplish all versions

! The schema editor is the CASE component that assists the designer to model the data, naviga-
tion, presentation, and operations that belong to the application.

296 Luciano Baresi et al.

and customizations of W2000 and would shorten the update effort from months to days.
Nevertheless, the adoption of this technology requires an in-depth and critical analysis
due to its novelty and continuous evolution.

All major UML tools are good at letting designers manipulate UML models visually
and export them using XMI-UML. MOF can proficiently be used to specify the W2000
meta-model, i.e., it can act as meta-meta-model for W2000. What is still missing is the
semantic validation, that is, the crosscheck of a W2000 model (for a particular appli-
cation) against its meta-model. This paper proposes a solution based on Schematron 2
([11]) to let W2000 designers validate their models within the framework described so
far. Even if the emphasis of the paper is on W2000 and Jweb, all identified solutions
are general enough to be adapted to other — mainly object-oriented — design models and
tools, in particular if object oriented (such as OOHDM [|16], WebML [4]] or similar).

The rest paper is organized as follows. Section 2 describes the feasibility study.
Section 3 sketches a fragment of the W2000 meta-model, defined using the technology
presented in Section 2. Section 4 describes how Jweb3 will exploit meta-modeling by
proposing a first high-level architecture, and Section 5 briefly lists our current and future
work and concludes the paper.

1.1 OMG Terminology

To explain our approach, it is important to clarify the OMG terminology (summarized in
Table 1), and give the terms models and meta-models a different meaning with respect
to traditional Web and database design. According to the OMG, a notation (e.g., UML)
is based on a meta-model, which can be used to design different models (i.e., definitions
of particular applications). This is against usual database or Web design jargon, where
an OMG meta-model is called model (e.g., the ER model or the HDM model), and an
OMG model is called schema (of a particular application).

Table 1. OMG hierarchy

OMG Levels OMG terminology DBterminology Examples
3 Meta-meta-model Meta-model MOF
2 Meta-model Model W2000 (UML)
1 Model Schema Web-based conference manager
0 Object Instance Papers, authors, etc.

2 Feasibility Study

Before updating (rebuilding) the Jweb toolset to make it become fully compliant with
W2000, we decided to start a feasibility study to better understand the key features of

2 Schematron is a structural schema language that differs from other schema languages since
it not based on grammars but on finding tree patterns in the parsed document. This approach
allows for the definition of simple and powerful validation engines.

Meta-modeling Techniques Meet Web Application Design Tools 297

the new toolbox. We wanted the new tool-suite to supply developers with a UML-like
graphical notation for application schema design, and we wanted also to find better
solutions to the severe problem of lack of flexibility and extensibility, i.e., the chronic
misalignment between Jweb and HDM evolutions.

As to the first aspect, we decided to probe the possibilities of using existing UML
CASE tools as temporary front-ends for the forthcoming schema editor. The idea was
not to select “the best” available tool, but simply do some experiments and delay the
implementation of a special-purpose editor to better refine W2000 constructs. As side
effect, this implied that we did not want to work with proprietary formats to store mod-
els (W2000 schemas), but we needed a cross-platform standard to be able to change the
front-end according to our needs.

Flexibility and extensibility required something more sophisticated than the XML-
DTD solution used so far. The DTD description of HDM revealed to be insufficient and
did not support tool evolution seamlessly. We did not try to find independent solutions
to the two problems, but we decided to exploit the OMG novel way to meta-modeling
to find a cumulative solution.

When we think of meta-modeling, we have first to recall that a CASE tool can
roughly be schematized as software that supports a given notation and allows develop-
ers to create design artifacts according to that notation. Using the OMG jargon, we can
say that each model (i.e., artifact) must be compliant to a given meta-model (i.e., nota-
tion). This definition allows us to decompose a CASE tool into a provider of modeling
features, which depends on the supported meta-model, and a consistency checker be-
tween defined models and their meta-model. Meta-CASE tools ([[18]]) do a similar job
at a meta-meta-level. Meta-CASE tools let the developer define his own meta-model
and express the semantics of the primitives of this meta-model in terms of a meta-meta-
model. Describing a new modeling feature of a meta-model (e.g., a new primitive for
W2000) with a meta CASE tool would require the designer to describe the semantics of
the new construct in terms of the meta-meta-model. The key point is that a meta-meta-
model (MOF) supplies all modeling features to render extensions and mechanisms to
(automatically) update the tools with respect to consistency checking and manipulation
operations.

Borrowing and extending this definition, we decided to study how to describe
W2000 as a meta-model, how to identify what modeling features are specific to W2000
(with respect to other standard meta-models like pure UML), how to generate meta-
model updates automatically, and how to store and distribute designed models in a way
that would not be tight to any particular tool vendor and would reserve room for possi-
ble changes in the meta-model. As a side effect, a complete and powerful formalization
of the meta-model would have served also as rigorous description of W2000 itself.

2.1 W2000 as a Profilable MOF Meta-model

W2000 can be seen as a UML extension (profile, according to the UML terminology) [.
UML, in fact, supplies ad-hoc features (stereotypes, tagged values, and constraints) to
extend the original UML to cope with particular needs and specific application domains.

3 W2000 was born as a by-hand extension to UML. Its rigorous definition as a UML profile is
in progress.

298 Luciano Baresi et al.

Defining W2000 as a UML profile allows us to exploit UML commercial tools, but also
XMI-UML, that is, the UML instantiation of XMI [, which is rapidly becoming the
“lingua franca” to exchange UML models in a vendor-independent way. Any XMI-
compliant UML tool can then be used as graphical front-end for the schema generator;
we have only to implement our UML profile using the features offered by the particular
tool. Roughly speaking, we can say that no matter the tool we use to edit a W2000
schema, we should obtain an XML description compliant to an XMI-UML DTD.

The adoption of UML profiles is enough to use UML CASE tools as front-ends for
the schema editor, but does not allow semantic checks. Currently, available CASE tools
support profiles partially (only Objecteering [|17]] provides some support): Evolution and
consistency checks would not be possible. This is why we decided to adopt MOF (the
OMG standard way for designing meta-models) to describe the W2000 meta-model,
that is, to give a precise definition of W2000 concepts in terms of a flexible meta-meta-
model. This approach allows us to change W2000 the way we want and we have a
better means to assess the consistency of our models. Even if MOF is the means for
implementing meta-CASE technology, we did not want to get rid of the whole UML
and start our description of the W2000 meta-model from scratch. We decided for a
compromise solution: The W2000 meta-model reuses many UML concepts, and this
means that we can see W2000 as a UML profile and all possible versions of W2000
constructs can always be mapped onto instances of UML primitives, but with respect to
conventional UML profiles it satisfies also an additional condition: All concepts (both
new and borrowed ones) are defined using MOF. Thus, we can say that W2000 is a
profilable MOF meta-model (hereafter, p-meta-model).

The reason for introducing the concept of p-meta-model is that if the UML meta-
model can be described in terms of MOF, the opposite does not hold true, i.e., not
all meta-models described in MOF can be mapped onto the UML meta-model. Thus
we could not be able to check the consistency of a W2000 model (compliant with a
“purely UML” definition of W2000 and described using standard UML tools) against
the W2000 meta-model (compliant with the MOF-defined meta-model) directly. The
comparison would never be possible in the general case, but the profilability of the
W2000 meta-model allowed us to think of a translator to make the comparison happen.
Besides this, we had to bear in mind evolvability, thus the comparison/validation would
have been possible against evolutions of the W2000 meta-model.

2.2 Our Technological Solution

All these requirements led us to define the software architecture for the schema editor
of Jweb3, i.e., the editor of W2000 models, as depicted in Figure [l

The gray box in the upper left corner identifies meta-modeling technology; all other
tools belong to the usual modeling chain, which must be enabled by a set of preliminary
meta-modeling steps. We start by defining the W2000 p-meta-model: Usually we do
this using Rational Rose integrated with the Unisys add-on for XMI ([119]). This model,
stored in XMI-MOF, is the main input to the two meta-modeling tools. The translator
generator produces a translator from XMI-UML to XMI-W2000 as a set of XSLT

4 XMI-UML means the XMI format for the UML meta-model. XMI can be employed with any
meta-model defined using MOF.

Meta-modeling Techniques Meet Web Application Design Tools 299

Translator . W2000 Checker

Generator ’“‘(’;‘;‘ﬁ’g‘;‘)‘e' Generator

UML
Editor . wecoo . Translator . waoow . Checker
(XMI-UML) (XMI-W2000)|

MOF/W2000

Figure 1. Our proposal

rules. The checker generator uses the same meta-model to produce a set of Schematron
rules. Schematron can be used to find specific patterns in an XML document; in this
case it is used to validate W2000 models against the constraints identified in the meta-
model. These tools exploit the IBM XMI toolkit ([9]) to produce the DTD needed by
XMI-W2000.

Moving to the modeling chain, the designer specifies his W2000 models using his
preferred UML editor and stores them in XMI-UML. The translator, through the XSLT
rules, transform the XML file compliant to XMI-UML to another XML file, but com-
pliant to XMI-W2000. This file is then the input to the checker that validates it through
the Schematron rules. Model validation would have been accomplished using a MOF
repository, that is, using a repository that is aware of the “format” its stored models
should be compliant with. These repositories should exploit OCL as language to spec-
ify constraints and thus the rules that define a valid model. Unfortunately, none of the
MOF repositories (for example, IMOF [5]]) we used during our experiments fully sup-
ported all these features and thus we decided to move to a temporary solution based on
Schematron. Also, other more standard technologies, like XPath, XLink, and XQuery,
would be applicable, but the supporting frameworks need further attention and analysis
before being usable to mimic a MOF repository.

Some excerpts of the meta-modeling process are presented in the next section, but
the presented solution deserves two more remarks:

— Even if p-meta-models have been defined to solve a specific problem, that is, to
define the meta-model of W2000, they are absolutely general and can be used in
all those cases where either we need (want) a MOF definition of an extended UML
notation or simply we want to integrate MOF-based and UML-based tools.

— We implemented all logical components of Figure [T]through special-purpose scripts
(batch files and javascript) and XSLT sheets, all coordinated by HTML interfaces.
We think that this implementation style should better fit evolution and simplify
maintenance. More conventional solutions (for example, Java-based solutions) will
be investigated in the near future as soon as both the technological and method-
ological landscapes are more defined and clearer.

300 Luciano Baresi et al.

3 W2000

This section presents an example application of the p-meta-model of W2000. We present
both a simplified p-meta-model and its use for modeling the Web-based conference
manager described in [2]]. Lack of space obliges us to present some excerpts of both
models; the whole formalizations are presented in [[10]. We have also to assume that
readers are proficient in HDM/W2000. Interested readers are referred to [[2I8]] for in-
depth presentations of both notations.

3.1 A P-Meta-model for W2000

The p-meta-model for W2000 (Figure P)) comprises the three standard UML packages
(see the UML meta-model, [[13]]), and the new W2000 package.

]]

<<metamodel>> <<metamodel>>
Foundation BehavioralElements

]]

<<metamodel>> <<metamodel>>
ModelManagement W2000

Figure 2. The high-level organization of the W2000 p-meta-model

This organization allows W2000 to share all main modeling elements with UML.
The Foundation package supplies all basic modeling elements (i.e., classes, attributes,
associations, etc.), the BehavioralElements package supplies the elements to specify the
dynamic behavior of a model, the ModelManagement package supplies the means to
cope with complexity and organize a model into submodels according to the different
viewpoints. The new package, W2000, defines how we extended UML to represent
W2000 constructs.

The profilability of the p-meta-model implies that all new W2000 concepts be spec-
ified as extensions to standard UML elements, that is, W2000 elements are subclasses
of standard UML meta-model classes. This organization is partially shown in Figure [3
which collects some excerpts from the W2000 package. Figure [Bla) shows the main
elements of the Information Model Design: classes Entity and Component are both
subclasses of class Class (defined in the Core subpackage of the UML Foundation
package). Both classes are abstract classes because Entity are always specialized
in either EntityTypes or SpearEntities, while Components become Com-
ponentTypes or SpearComponents. Types are similar to classes: They will be
instantiated as many times as needed in the running application; spear elements corre-
spond to singletons: They specify special-purpose elements singularly instantiated in
the application. Figure B(b), which shows the main elements for Access Layer Design,

Meta-modeling Techniques Meet Web Application Design Tools 301

has a similar organization. A Collection, abstract concept, comes from a Class
and is specialized in SpearCollections and CollectionTypes. Moreover,
each collection has a CollectionCenterType, which is a subclass of Center-
Type. Figure [3(c) shows links and nodes, the two main elements as to Navigation De-
sign. Once more, Nodes must be either NodeTypes or SpearNodes. Links must be
either CollectionLinks or SemanticLinks, or StructuralLinks. Collec-
tion links relate the elements of a collection with their center, semantic links correspond
to semantic associations, and structural links render the component-based decomposi-
tion of complex entities.

The whole W2000 package comprises some 40 different elements, which are special-
purpose refinement of UML elements. Besides adding new properties (attributes) to
these elements, we defined also some 60 constraints among the elements in the new
package. These constraints range from very simple constraints, like: each W2000 model
must comprise at least an entity, to more complex constraints. For example: An Asso-
ciationEnd, which defines the connections of either a SemanticAssociation
or a SemanticAssociationCenterType, must refer to an EntityType or a
ComponentType ora CollectionType,or a CenterType.

Class
(from Core)
Class
ﬁ \ (from Core)
Entity Component %
Node
Entity Component
Type Type
Node Spear
Spear Spear Type Node
Entity Component

(a) Information Design

Association
(from Core)

Class
(from Core)
Center

Type
. Collection
% % Link Link
Collection Collection
CenterType
» Semantic
Link
Spear Collection
Collection Type
: » Structural
Link
(b) Access Layer Design

(c) Navigation Design

Figure 3. Excerpts from the W2000 p-meta-model

302 Luciano Baresi et al.

To formalize this constraint as a Schematron rule, we have first to recall all depen-
dencies in the p-meta-model:

SemantiAssociationis a specialization of Association;

— AssociationClass is a specialization of Association;
SemanticAssociationCenterTypeis aspecialization of Association-
Class;

EntityType, ComponentType, CollectionType, CenterType are spe-
cializations of Class.

All these specializations, together with the knowledge of how XMI works, permit the
construction of the Schematron pattern of Figure [4l The name of the pattern simply
identifies its meaning. The context defines the ’scope” of the rule and identifies the
types of the AssociationEnds connected to either SemanticAssociation or
SemanticAssociationCenterType, that is, the two specialization of Asso-
ciation. The test statement checks that the types of the previously identified ends
are compliant with the constraint and outputs a warning in case of violation.

This solution, even if should only be a temporary one, supplies an interesting way
for assessing the correctness of XML files with respect to external constraints. It would
be redundant in our solution if all technology were available, but could be an interesting
way for checking the consistency of XML files that simply come from a DTD.

3.2 An Example W2000 Model

After defining a simplified p-meta-model for W2000, we can show some excerpts of
the model of the Web-based management system described in [2]. The goal is not the
presentation of W2000 as modeling means for Web application, but rather we want
to describe how well known concepts are rendered using the p-meta-model. Interested
readers are referred to [[10] for a complete specification of the application.

Figure [3 presents the information model for the paper entity type. The entity is
structured in three main components: The abstract is always part of the paper and it
presents some basic information, like the paper title, authors, and affiliation, along with
other information required by the conference, that is, paper id (number) and review
status.

The other two components are mutually exclusive: Either we havea first sub-
mission, or after accepting the paper, we have its camera-ready version. The
XOR label between the two aggregations codes this dependence. These components
reuse also some information already defined in the abstract. Each time an attribute
(slot) is reused in a component, we simply refer to its original definition, instead of
re-specifying it. This way, we avoid inconsistent redefinitions and we maximize reuse.
For example, the paper id is repeated in all components, but the abstract defines it and
the others reuse the definition.

When we move to navigation design, Figure [l a), we see that the paper has been de-
composed in three nodes. Once more, the main one contains all base information, while
the other two nodes correspond to the first submission and camera-ready respectively.
The actual contents of these nodes is specified using the keyword body, which make
readers refer to the information design to understand the actual contents. For example,

Meta-modeling Techniques Meet Web Application Design Tools 303

<pattern name="SemanticAssociation">
<rule context="
//W2000.SemanticAssociation
/Foundation.Core.Association.connection
/Foundation.Core.AssociationEnd
/Foundation.Core.AssociationEnd.type/*
|
//W2000.SemanticAssociationCenterType
/Foundation.Core.Association.connection
/Foundation.Core.AssociationEnd
/Foundation.Core.AssociationEnd.type/*
">
<assert test="
(local-name (id (@xmi.idref))=
'W2000.EntityType’) or
(local-name (id (@xmi.idref))=
'W2000.SemanticAssociationCenterType’) or
(local-name (id (@xmi.idref))=
'W2000.CollectionType’) or
(local-name (id (@xmi.idref))=
'W2000.ComponentType’)
">A SemanticAssociation link only EntityTypes, ComponentType,
SemanticAssociationCenterType, and CollectionType</assert>
</rule>
</patterns>

Figure4. Sample Schematron rule

, +paper
<<W2000:Entity Type>> <> <<W2000:ComponentType>>
Paper 0.1 CameraReady

(XOR) number : Integer = paper.abstract.number
title : Text = paper.abstract.title
authors : Text = paper.abstract.authors
authorAddresses : Text =
paper.abstract.authorAddresses
authorE-mails : Text = paper.abstract.authorE-mails
article : Text
session : Text
+abstract | 1
<<W2000:ComponentType>> +paper 0.1
Abstract
<<W2000:ComponentType>>
qumber: Integer Submission
title : Text
authors : Text
. number : Integer = paper.abstract.number
authorAddresses : Text title : Text = paper.abstract title
authorE-mails : Text authors : Text = paper.abstract.authors
abstract : Text author, : Text = paper.abstract.authorAddi
topic : Text authorE-mails : Text = paper.abstract.authorE -mails
submissCategory : Text a;gs‘cc?r_le_ : Ie’“
reviewState : ReviewState article - Tex

Figure 5. Information model for the paper entity type

304 Luciano Baresi et al.

<<W2000:EntityType>> | <<W2000:Default>> | <<W2000:NodeType>>
Paper AbstractNode
body : Paper::Abstract

1 1
<<W2000:Stm@_ink>> <<W2008StructuralLink>>

0..1 0..1
<<W2000:NodeType>> <<W2000:NodeType>>
SubmissionNode CameraReadyNode
body : Paper::Submission body : Paper::CameraReady
:>° elype> =< TNode Types
- >
Pap:;l;lode <<W2000:SemanticLink>> AuthorNode
By) (from
1.% 1.7 By)
{GuidedTour {GuidedTour
}

Figure 6. Excerpts from the navigation design

the contents of the AbstractNode node is defined by the body of the Abstract
component. The correspondence between nodes and components is not mandatory, but
it helps modularize the design. Users are free to specify the contents of nodes as lists of
attributes taken from the entities and components that they embody.

Figure [6(b) shows how the user of the Web application can navigate among pa-
pers and authors. PaperNode nodes have been defined in Figure [fl(a); we assume we
have a similar definition for AuthorNode nodes. These two node types are connected
through a semanticLink object, that is, a kind of association with a navigational seman-
tics. The diagram specifies that given a paper, we can navigate its authors (at least one,
but possibly many) through a guided tour. The same is true if we consider an author and
we would like to know his papers. We could navigate them using another guided tour.

The few excerpts presented in this section are not enough to demonstrate if W2000
is powerful enough, but they show how each W2000 concept has a clean and neat repre-
sentation in the p-meta-model and how the concept can be rendered using an UML-like
syntax to supply designers with a usable means. Moreover, simple annotations or the
use of the dotted notation allow us to trace and relate all concepts to define consistent
specifications.

4 Impact on Jweb

Before describing how meta-modeling could affect Jweb and its tools, we have to
briefly introduce the toolset and clarify its main components. Jweb assists designers
during the whole design process: from information design to prototype and enactment.
Figure[7] shows its main logical components: The editor lets designers design their ap-
plications using HDM/W?2000 and produces a HDM/W2000 schema. The mapper takes
this schema and automatically generates the relational schema for the editorial reposi-
tory, suitable interfaces for populating the repository, and a general description (XML
mapping) of the relational schema. The configurator reads the HDM schema, the de-
scription of the editorial repository, and the editorial contents and allows for the cre-

Meta-modeling Techniques Meet Web Application Design Tools 305

ation of special-purpose filters to select data; the description of these filters is rendered
in XML. The generator uses the HDM/W2000 schema, the description of the editorial
repository and its contents, together with the filters defined to select data, and generates
the run-time database, populating it with the editorial contents suitably filtered. The en-
gine reads the contents from the run-time database, presents this contents to users and
is responsible for managing the interaction between the user and the application.

Schema
Definition

E Editor I
HDM
Schema

» . Logic Page
| Mapping, l Definition
X \ ¢

Description * Filtering

Mapping
Parameters

M y

Mapper I—> @ —» Configuratorl — @ —» Runtime
Database

Database Filter

A Schema
+ Schema ¢ Description \\A @
Standard || Filter
DataEntry Runtime r_
Interfaces Database
V Data
Editorial
Logic
Page
Templates
Runtime
Database
v /
HTML Visualization .
Pages Engine

Parameters

—

)

n

Database specific

D@D
)

Figure7. Logical architecture of Jweb

The work done so far concentrated on the edifor, but since its output (application
schema) is then used by all other components, its being meta affects also these other
tools. The ideal foreseen situation is that all the meta-tools interact with a centralized
repository, which contains the current definition of W2000, that is, its p-meta-model,
and through suitable interfaces it allows for the generation of all data needed by the
chain of tools. In other words, all tools would play a dual role: They would have a part
that belongs to the design process, but their meta component would be in charge of
generating/customizing the element according to the specific W2000 p-meta-model in
use.

5 Conclusions and Future Work

Our experiments in using meta-modeling technology to support design tools are so far
limited to the editor, but starting from the p-meta-model presented in the paper, we

306 Luciano Baresi et al.

induced a non-trivial modification and we studied the impact of these modifications.
The main bottleneck was the definition and test of all (new) constraints in Schematron,
but all other changes were almost trivial and they could be obtained automatically. This
exercise suggested two interesting considerations:

— The availability of a real MOF repository together with a friendlier notation for
specifying constraints would further shorten the maintenance process.
— If we had done the same exercise using our standard way, we would have used the
following process:
1. The new meta-model would have been coded directly using a DTD, with suit-
able comments to explain the meaning of the new/changed features;
2. The implementer in charge of working on the new editor (component) would
have taken this definition as the reference for his work.

Thus, no automatic steps can easily be identified and misunderstandings and errors
would be highly possible. In contract, the new approach should pay both in terms of
avoiding misunderstandings and errors due to different interpretations, and in the possi-
bility of making several maintenance activities automatic. In conclusion, the feasibility
study gave encouraging results as to the use of meta-CASE technology, but it revealed
also the extreme youth of available implementations of OMG standards. While waiting
for more robust implementations and completing the whole design of Jweb3, we can
summarize the feasibility study as follows:

— It gave us the opportunity to identify new technologies for Jweb3 and permitted
a thorough analysis of problems (known) and possible solutions (still to be com-
pletely identified).

— We defined the family of profilable MOF meta-models (p-meta-models), which are
characterized by their intrinsic UML extended notation.

— We exploited XML, UML, MOF, XMI, XSL, and Schematron to implement the
software components that support p-meta-models.

— We applied p-meta-models to a first prototype of the new schema editor.

— We defined the first p-meta-model for W2000 and also a first evolution to better
understand and evaluate the soundness of our proposal as to evolution and mis-
alignments.

Even if we applied p-meta-models to W2000, they are much more general and can be
exploited each time we have a UML extension defined using MOF and we want to
integrate MOF-based and UML-based tools.

In the new future, we will continue working on these ideas, trying to simplify our
approach and to identify the right compromises between technological and method-
ological solutions ([11]]). We will complete the design and start the implementation of
Jweb3. But we are also investigating other possible uses of p-meta-model technology
to improve the potentialities of Jweb. For example, we have ideas for two new compo-
nents: a simulator and a report generator. The former should allow the designer to probe
the quality of his models by playing with them before generating the real application.
The latter should allow for the customizable generation of design documentation. Both
these components will exploit p-meta-models and all needed information will be coded
using special-purpose tags in the W2000 p-meta-model.

Meta-modeling Techniques Meet Web Application Design Tools 307

References

10.

11.

12.
13.
14.
15.
16.

17.
18.

19.

. Academia Sinica Computer Center. The Schematron,

http://www.ascc.net/xml/resource/schematron/schematron.html

L. Baresi, F. Garzotto, Paolo Paolini. From Web Sites to Web Applications: New Issues for
Conceptual Modeling. In Proceedings WWW Conceptual Modeling Conference, Salt Lake
City, October, 2000.

M. Bochicchio, R. Paiano, P. Paolini. JWEB: An Innovative Architecture for Web Applica-
tions. ICSC 1999: 453-460

S. Ceri, P. Fraternali, S. Paraboschi. Web Modeling Language, (WebML): a modeling lan-
guage for designing Web sites. Proceedings of the 9th. International World Wide Web Con-
ference, Elsevier 2000, pp 137-157

DSTC. dMOF User Guide, 2000, v1.01,
http://www.dstc.edu.au/Products/CORBA/MOF/

P. Fraternali and P. Paolini. A Conceptual Model and a Tool Environment for Developing
More Scalable, Dynamic, and Customizable Web Applications. EDBT 1998: 421-435

F. Garzotto, L. Mainetti, P. Paolini. HDM2: Extending the E-R Approach to Hypermedia
Application Design. In Proc.12th Int’l Conf. on the Entity-Relationship Approach, Arlington,
Tx, Dec. 1993

F. Garzotto, P. Paolini, D. Schwabe. HDM - A Model-Based Approach to Hypertext Appli-
cation Design, TOIS 11(1) (1993), pp.1-26

IBM Alphaworks. IBM XMI Toolkit v1.15,
http://www.alphaworks.ibm.com/tech/xmitoolkit

V. Miazzo. Strumenti di supporto per Modeling Ipermediale ad elevata dinamicita: ambiente
di meta-modeling basato su MOF e UML. Laurea Thesis. Politecnico di Milano, February
2001. In Italian.

J. Nanard and M. Nanard. Hypertext Design Environment and the Hypertext Design Process,
Communications of the ACM, Vol.38, No.8, Aug.1995, pp. 49-56.

OMG. Meta Object Facility Specification, version 1.3, March 2000.

OMG. Unified Modeling Language Specification version 1.4, Beta 1, November 2000.
OMG. XML Metadata Interchange (XMI) version 1.1, November 2000.

Rational Software. Rational Rose. http://www.rational .com/rose

D. Schwabe, G. Rossi. An object-oriented approach to web-based application design. Theory
and Practice of Object Systems (TAPOS), Special Issue on the Internet, v. 4#4, pp.207-225,
October, 1998

Softeam. Objecteering UML Modeler and Profile Builder, http: //www.softeam. fr
J. Tolvanen. ABC to Metacase Technology. MetaCase Consulting Ltd, white paper, July
1999

Unisys. Unisys Rose XMI Tool v1.3, http://www.rational.com

http://www.ascc.net/xml/resource/schematron/schematron.html
http://www.dstc.edu.au/Products/CORBA/MOF/
http://www.alphaworks.ibm.com/tech/xmitoolkit
http://www.rational.com/rose
http://www.softeam.fr
http://www.rational.com

	Meta-modeling Techniques Meet Web Application Design Tools
	Introduction
	OMG Terminology

	Feasibility Study
	W2000 as a Profilable MOF Meta-model
	Our Technological Solution

	W2000
	A P-Meta-model for W2000
	An Example W2000 Model

	Impact on Jweb
	Conclusions and Future Work

