
Data Space Oriented Tiling

Mahmut Kandemir

Department of Computer Science and Engineering
The Pennsylvania State University
University Park, PA 16802, USA

kandemir@cse.psu.edu

Abstract. An optimizing compiler can play an important role in en-
hancing data locality in array-intensive applications with regular data
access patterns. This paper presents a compiler-based data space ori-
ented tiling approach (DST). In this strategy, the data space (i.e., the
array index space) is logically divided into chunks (called data tiles) and
each data tile is processed in turn. In processing a data tile, our approach
traverses the entire iteration space of all nests in the code and executes
all iterations (potentially coming from different nests) that access the
data tile being processed. In doing so, it also takes data dependences
into account. Since a data space is common across all nests that access
it, DST can potentially achieve better results than traditional tiling by
exploiting inter-nest data locality. This paper also shows how data space
oriented tiling can be used for improving the performance of software-
managed scratch pad memories.

1 Introduction

Iteration space tiling (also called loop blocking) [9,1] is a loop-oriented opti-
mization aiming at improving data locality. The idea behind tiling is to divide a
given iteration space into chunks such that the data elements accessed by a given
chunk fit in the available cache memory capacity. Previously-published work it-
eration space tiling reports significant improvements in cache miss rates and
program execution times. Compilers use iteration space tiling mainly to create
the blocked version of a given nested loop automatically. Note that, in general,
it is difficult to guarantee that the array elements accessed by a given iteration
space tile will fit in the cache. This problem occurs because tile shapes and tiling
style are decided based on loop behavior rather than the data elements accessed.
In particular, most of the current approaches to tiling do not consider the shape
of the data regions (from different arrays) touched by an iteration space tile.

In this paper, we discuss and evaluate data space oriented tiling (DST), a
variant of classical iteration space oriented tiling, to achieve better data locality
than classical tiling. Instead of tiling iteration space first, and then considering
data space requirements of the resulting tiles (data regions) in data space, DST
takes a data space oriented approach. Specifically, it first logically divides data
space into tiles (called data space tiles or data tiles for short), and then processes

D. Le Métayer (Ed.): ESOP 2002, LNCS 2305, pp. 178–193, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



Data Space Oriented Tiling 179

each data tile in sequence. Processing a data tile involves determining the set
of loop iterations that access the elements in that data tile and executing these
iterations taking into account data dependences. Since it starts its analysis from
data space, DST has two main advantages over iteration space tiling:

– Since data space of a given array is shared across all nests that access the
corresponding array, DST has a more global view of the program-wide access
pattern (than iteration space tiling). This is especially true if one can come
up with strategies to summarize access patterns of multiple nests on a given
array.

– Working on data space allows compiler to take layout constraints into ac-
count better. For instance, in selecting a data tile shape, in addition to other
parameters, the compiler can also consider memory layout of the array in
question.

This paper describes a data space oriented tiling approach and presents a
strategy for determining data tile shapes and sizes automatically. It also shows
how DST can be used in conjunction with a scratch pad memory (SPM).

The remainder of this paper is organized as follows. Section 2 revises classi-
cal iteration space tiling and discusses how it improves data locality. Section 3
presents description of data space oriented tiling, focusing in particular on issues
such as selection of data tile shapes, traversing iteration space, and handling data
dependences. Section 4 discusses an application of DST to optimizing the effec-
tiveness of scratch pad memories, which are compiler-managed on-chip SRAMs.
Section 5 concludes the paper with a summary of our major contributions.

2 Review of Iteration Space Tiling

An important technique used to improve cache performance (data locality) by
making better use of cache lines is iteration space tiling (also called loop blocking)
[1,2,9]. In tiling, data structures that are too big to fit in the cache are (logically)
broken up into smaller pieces that will fit in the cache. In other words, instead of
operating on entire columns or rows of a given array, tiling enables operations on
multi-dimensional sections of arrays at one time. The objective here is to keep
the active sections of the arrays in faster levels of memory hierarchy (e.g., data
caches) as long as possible so that when a data item (array element) is reused,
it can be accessed from the faster memory instead of the slower memory.

For an illustration of tiling, consider the matrix-multiply code given in Fig-
ure 1(a). Let us assume that the layouts of all the arrays are row-major. It is
easy to see that, from the cache locality perspective, this loop nest may not
exhibit a very good performance (depending on the actual array sizes and cache
capacity). The reason is that, although array U2 has temporal reuse in the inner-
most loop (the k loop) and successive iterations of this loop access consecutive
elements from array U0 (i.e., array U0 has spatial reuse in the innermost loop),
the successive accesses to array U1 touch different rows of this array. Obviously,
this is not a good style of access for a row-major array. Using state-of-the-art



180 Mahmut Kandemir

optimizing compiler technology (e.g., [5]), we can derive the code shown in Fig-
ure 1(b), given the code in Figure 1(a). In this optimized code, the array U0 has
temporal reuse in the innermost loop (the j loop now) and the arrays U1 and
U2 have spatial reuses, meaning that the successive iterations of the innermost
loop touch consecutive elements from both the arrays.

However, unless the faster memory in question is large enough to hold the
entire N × N array U1, many elements of this array will probably be replaced
from the cache before they are reused in successive iterations of the outermost i
loop. Instead of operating on individual array elements, tiling achieves reuse of
array sections by performing the calculations (in our case matrix multiplication)
on array sections (in our case sub-matrices). Figure 1(c) shows the tiled version
of Figure 1(b). This tiled version is from [1]. In the tiled code, the loops kk and
jj are called the tile loops, whereas the loops i, k, and j are called the element
loops. It is important to choose the tile size (blocking factor) B such that all
the B2 + 2NB array items accessed by the element loops i, k, j should fit in
the faster memory (e.g., cache). In other words, the tiled version of the matrix-
multiply code operates on N ×B sub-matrices of arrays U0 and U2, and a B×B
sub-matrix of array U1 at one time. Assuming that the matrices in this example
are in main memory to begin with, ensuring that B2 + 2NB array elements
can be kept in cache might be sufficient to obtain high levels of performance. In
practice, however, depending on the cache size, cache associativity, and absolute
array addresses in memory, cache conflicts can occur. Consequently, the tile size
B is set to a much smaller value than necessary [1].

for(i = 1; i ≤ N ; i + +)
for(j = 1; j ≤ N ; j + +)
for(k = 1; k ≤ N ; k + +)
U2[i][j]+ = U0[i][k] ∗ U1[k][j];

(a)

for(i = 1; i ≤ N ; i + +)
for(k = 1; k ≤ N ; k + +)
for(j = 1; j ≤ N ; j + +)
U2[i][j]+ = U0[i][k] ∗ U1[k][j];

(b)

for(kk = 1; kk ≤ N ; kk = kk + B)
for(jj = 1; jj ≤ N ; jj = jj + B)
for(i = 1; i ≤ N ; i + +)
for(k = kk; k ≤ min(N, kk + B − 1); k + +)
for(j = jj; j ≤ min(N, jj + B − 1); j + +)
U2[i][j]+ = U0[i][k] ∗ U1[k][j];

(c)

Fig. 1. (a) Matrix-multiply nest. (b) Locality-optimized version. (c) Tiled version.



Data Space Oriented Tiling 181

3 Description of Data Space Oriented Tiling

The traditional iteration space tiling tiles the iteration space taking into account
data dependences in the code. In such a tiling strategy, it is not guaranteed
that the array elements accessed by a given iteration space tile form a region
(which we can refer to as data tile) that exhibits locality. Also, since each nest
is tiled independently from other nests in the code, it may not be possible to
exploit potential data reuse between different nests due to common array regions
accessed.

In contrast, data space oriented tiling (DST) takes a different approach.
Instead of focussing on iteration space, it first considers data space (e.g., an
array). Specifically, it divides a given array into logical partitions (data tiles) and
processes each data tile in turn. In processing a data tile, it traverses the entire
iteration space of all nests in the code and executes all iterations (potentially
coming from different nests) that access the current data tile being processed. In
doing so, it takes data dependences into account. Note that since a data space
is common across all nests that access it, DST can potentially achieve better
results than traditional tiling by exploiting inter-nest locality. Note also that, as
opposed to tradition tiling, this data oriented tiling approach can also handle
imperfectly-nested loops easily as it is not restricted by the way the loops in the
nests are structured.

In [4], Kodukula et al. present a data oriented tiling strategy called data
shackling, which is similar to our approach in spirit. However, there are signifi-
cant differences between these two optimization strategies. First, the way that a
data tile shape is determined in [4] is experimental. Since they mainly focus on
linear algebra codes, they decided that using square (or rectilinear) tiles would
work well most of the time; that is, such tiles lead to legal (semantics-preserving)
access patterns. In comparison, we first summarize the access patterns of mul-
tiple nests on data space using data relation vectors, and then select a suitable
tile shape so as to minimize the communication volume. Second, their optimiza-
tion strategy considers only a single imperfectly-nested loop at a time, while we
attempt to optimize all the nests in the code simultaneously. Therefore, our ap-
proach is expected to exploit inter-nest data reuse better. Third, we also present
an automated strategy to handle data dependences. Instead, their work is more
oriented towards determining legality for a given data tile (using a polyhedral
tool). Finally, the application domains of these two techniques are also differ-
ent. The approach discussed in [4] is specifically designed for optimizing cache
locality. As will be explained later in the paper, we instead mainly focus on
improving memory energy consumption of a scratch pad memory based archi-
tecture. Therefore, in our case, optimizing inter-nest reuse is more important.

To illustrate the difference between iteration space oriented tiling and data
space oriented tiling, we consider the scenario in Figure 2 where an array is
manipulated using three separate nests and there are no intra-nest or inter-nest
data dependences in the code. As shown on the upper-left portion of the figure,
the array is divided into two sections (regions): a and b. The iteration spaces
of the nests are divided into four regions. Each region is identified using letters
a or b to indicate the data region it accesses. Figure 2 also shows three possi-



182 Mahmut Kandemir

ble execution orders. In the execution order (I), the traditional tiling approach
is shown, assuming that the sections in the iteration space are processed from
left-to-right and top-to-bottom. We clearly see that there are frequent transi-
tions between a-blocks and b-blocks, which is not good from the data locality
perspective. The execution order (II) illustrates a data oriented approach which
restricts its optimization scope to a single nest at a time (as in [4]). That is,
it handles nests one-by-one, and in processing a nest it clusters iterations that
access a given data region. Consequently, it does not incur transitions between
a-blocks and b-blocks in executing a given nest, a big advantage over the scheme
in (I). However, in going from one nest to another, it incurs transitions between
a-blocks and b-blocks. Finally, the execution order (III) represents our approach.
In this strategy, we process data regions one-by-one, and in processing a region,
we execute all iterations from all nests that access the said region. Therefore,
our approach first executes iterations (considering all nests) that access a-block,
and then executes all iterations that access b-blocks. Consequently, there is only
one transition between a-blocks and b-blocks. However, there are many issues
that need to be addressed. First, in some cases, inherent data dependences in the
program may not allow interleaving loop iterations from different nests. Second,
in general, a given code may contain multiple arrays that need to be taken into
account. Third, shape of the data regions might also have a significant impact on
the success of the strategy (in particular, when we have data dependences). Data
space oriented tiling is performed in two steps: (i) selecting an array (called the
seed array) and determining a suitable tile shape for that array, and (ii) iterating
through data tiles and for each tile executing all iterations (from all nests in the
code) that manipulate array elements in the data tile. In the remainder of this
paper, we address these issues in detail.

a

a

b

b

1st Iteration Space

a

a

b

b

3rd Iteration Space

b

a

a

b

2nd Iteration Space

ba b a b a a bb a a b

aa aa aa

b b b b b b

Data Space

a b

a ab ba ba b b a a b

(I)

(II)

(III)

Fig. 2. Comparison of iteration space oriented tiling and data space oriented tiling.

The loop iterators surrounding any statement can be represented as an n×1
column vector: i = [i1, i2, · · · , in]T , where n is the number of enclosing loop
iterators. The loop bounds of the iterators can be described by a system of
inequalities which define the polyhedron Ai ≤ b where A is an l × n integer



Data Space Oriented Tiling 183

matrix and b is an l vector. The integer values taken by i define the iteration
space of the iterators.

The data storage of an array U0 can also be viewed as a (rectilinear) poly-
hedron. The index domain of array U0 can be described using index vectors:
a =

[
a1, a2, · · · , adim(U0)

]T
, where dim(U0) refers to the dimensionality of U0.

The index vectors have a certain range which describe the size of the array, or
data space: µLB ≤ a ≤ µUB , where the dim(U0) × 1 vectors µLB and µUB

correspond to lower and upper bounds of the array, respectively. In this paper,
we assume that µLB = [1, 1, · · · , 1, 1]; that is, the lowest index value in each
subscript position is 1.

The subscript function for a reference to array U0 represents a mapping
from iteration space to data space. An iteration vector i is said to access (or
reference) an array element indexed by a if there exists a subscript function (or
array reference) RU0(.) such that RU0(i) = a. In our context, an array reference
can be written as an affine mapping that has the form Li + o, where L is
a dim(U0) × n matrix and o is a dim(U0) × 1 vector. For example, an array
reference such as U0[i − 1][i + j + 2] in a two-level nested loop (where i is the
outer loop and j is the inner loop) can be represented as

RU0(i) = Li + o =
[

1 0
1 1

] [
i
j

]
+

[−1
2

]
,

where i = [i j]T . When there is no confusion, we write RU0 ∈ Nk to indicate
that the reference RU0(.) appears in nest Nk.

3.1 Array Selection and Tile Shapes

The first step in DST is selecting a suitable array (called the seed array) from
among the arrays declared in the code and determining a suitable data tile shape
for this array. Once the shape of the tile has been determined, its sizes in different
dimensions can be found by scaling up its shape.

Let us assume for now that we have already selected a seed array, U0. A data
tile corresponds to set of array elements in a data space (array). To define a
suitable data tile for a given seed array, we need to consider the access pattern
of each nest on the said array. For a given seed array U0 and a nest Ni, the seed
element of U0 with respect to nest Ni, denoted sU0,Ni, is the lexicographically
smallest element of the array accessed by Ni. Based on this definition, the global
seed element gU0 for array U0 is the smallest array element accessed by all nests
in the code. In cases where there is not such a global seed, we select an element
which is accessed by most of the nests.

Using this global seed element, we determine a seed iteration for each nest
as follows. The seed iteration of nest Ni with respect to array U0 is an iteration
isU0,Ni that among the elements accessed by this iteration, gU0 is the smallest
one in lexicographic sense. If there are multiple seed iterations (for a given nest),
we select the lexicographically smallest one. Then, we define the footprint of nest
Ni with respect to array U0 (denoted FU0,Ni) as the set of elements accessed by
isU0,Ni . More precisely, FU0,Ni = {f | f = RU0(isU0,Ni) for all RU0 ∈ Ni}.

Let us define a set of vectors (VU0,Ni), called data relation vectors, on the data
space of U0 using the elements in the footprint FU0,Ni . Specifically, let FU0,Ni =



184 Mahmut Kandemir

{f1, f2, · · · , fk}, where the elements in this set are ordered lexicographically,
f1 being the lexicographically smallest one. Each vj ∈ V represents a vector
between f i and fk, where k > i. In other words, by doing so, we define a set
of lexicographically positive vectors between all data point pairs in FU0,Ni. We
can write VU0,Ni as a matrix [v1; v2; · · · ; vL] . This matrix is termed as the local
data relation matrix.

The global data relation matrix of array U0 (denoted GU0 ) is the combi-
nation of local data relation matrices coming from individual nests; that is,
GU0 = [VU0,N1;VU0,N2 ; · · · VU0,NP ], where P is the number of nests in the code.
If desired, the (column) vectors in GU0 can be re-ordered according to their fre-
quency of occurrence. Our approach uses GU0 to define tile shapes on data space.
Specifically, we first find the vectors in GU0 and cover the entire data space (of
the array in question) using these vectors. The positions of these vectors on the
data space is used in selecting a data tile shape. Our objective in selecting a data
tile shape is to ensure that, when executing a group of iterations that access the
elements in a given data tile, the number of non-tile elements accessed should
be minimized as much as possible. Obviously, the shape of the data tile plays a
major role in determining the number of the non-tile elements accessed.

Array Space Iteration Space

Data
Tile

Off-Tile
Element

Iteration
Tile(I)

(II)

Fig. 3. Going from data tile to iteration tile and off-tile (non-tile) elements.

We next define communication volume as the number of non-tile elements
accessed during the execution of iterations that manipulate the elements in the
tile. It should be noted that, for a given data tile, the execution of each nest might
incur a non-zero communication volume. We then try to minimize the global
(over all nests) communication volume. It should also be noted that a non-tile
element access occurs due to a relation vector that crosses a tile boundary (i.e.,
one of its end-points are inside the tile whereas the other end-point lies outside
the tile). As an example, consider the iteration space and data space shown in
Figure 3. Considering the data tile on the left side of the figure, our approach
determines an iteration tile (on the iteration space). This activity is marked (I)
in the figure. The iterations in the iteration tile are the ones that access the array
elements in the data tile. We will make a more accurate definition of iteration
tile later in the paper. Next, the entire set of array elements accessed by this
iteration tile is determined. This step corresponds to (II) in the figure. These
array elements are delimited using a dashed box in the figure. The array elements



Data Space Oriented Tiling 185

that are within the dashed box but outside the data tile are called off-tile (or
non-tile) elements. The objective of our tile selection strategy is to minimize the
number of off-tile elements.

A given data tile can be defined using a set of hyperplanes. Specifically,
data tiles in an M -dimensional space can be defined by M families of parallel
hyperplanes (or planes), each of which is an (M − 1)-dimensional hyperplane.
Data tiles so defined are parallelepipeds (except for those near the boundary of
the data space) and each tile is an M -dimensional subset of the data space. Thus,
the shape of the tiles is defined by the families of planes and the size of the tiles is
defined by the distance of separation between adjacent pairs of parallel planes in
each of the M families. We can represent a given tile to array U0 using M vectors,
where the ith vector pi (1 ≤ i ≤ M) corresponds to the ith boundary of the tile.
These vectors can collectively be written as a matrix PU0 = [p1; p2; · · · ; pM ] .
Alternatively, a given data tile can be defined using another matrix, HU0 , each
row of which is perpendicular to a given tile boundary. It can be shown that
HU0 = PU0

−1. Consequently, to define a data tile, we can either specify the
columns of PU0 or the rows of HU0 .

We then try to select a tile shape such that the number of data relation
vectors intersected by tile boundaries will be minimum. As mentioned earlier,
each such vector (also referred to as the communication vector) represents two
elements, one of which is within the tile whereas the other is outside the tile.
Note that such vectors are the most important ones to concentrate on as the
vectors with both the ends are outside can be converted to either the com-
munication vectors or the vectors which are contained completely in the tile by
making the tile large enough. It should also be noted that using HU0 and GU0 , we
can represent the communication requirements in a concise manner. Specifically,
since data tiles are separated by tile boundaries (defined by HU0), a communica-
tion vector must cross the tile boundary between the tiles. A non-zero entry in
G′

U0 = HU0GU0 , say the entry in (i, j), implies that communication is incurred
due to the jth communication vector poking the ith tile boundary. The amount
of communication across a tile boundary, defined by the ith row of HU0 , is a
function of the sum of the entries in the ith row of G′

U0 .
Based on this, we can formulate the problem of finding tiling planes as that

of finding a transformation HU0 such that the communication volume (due to
communication vectors) will be minimum. Note that the communication volume
is proportional to:

M∑

i=1

S∑

j=1

M∑

k=1

hi,kvk,j .

As an example, let us consider the code fragment given below, which consists
of two separate nests. Figure 4(a) shows the local data relation vectors for each
nest as well as the global data relation vector (only the first 3 × 3 portion of
the array is shown for clarity). Figure 4(b) shows how the global data relation
vectors can be used to cover the entire data space. This picture is then used
to select a suitable tile shape. It should be noted that the global data relation
matrix in this example is:

GU0 =
[
0 1
1 1

]
.



186 Mahmut Kandemir

for(i = 1; i ≤ N − 1; i + +)
for(j = 1; j ≤ N − 1; j + +)
{U0[i][j], U0[i + 1][j + 1]};

for(i = 1; i ≤ N ; i + +)
for(j = 1; j ≤ N − 1; j + +)
{U0[i][j], U0[i][j + 1]};

Assuming a data tile capacity (size) of six elements, Figure 4(c) shows three
alternative data tile shapes with their communication vectors. It should be noted
that each tile in this figure has a different communication volume. For example,
the data tile in (I) has a communication volume of 12, corresponding to six
in-coming edges and six out-going edges. The tile in (II), on the other hand,
has a communication volume of 14. Finally, the tile (III) has a communication
volume of 10. Consequently, for the best results, tile (III) should be selected.
In fact, it is easy to see that, in this example, if the dimension sizes of the
rectangular data tile (as in (I) and (II)) are n (vertical) and m (horizontal),
then the communication volume is 4n + 2(m − 1). For the tile in (III), on the
other hand, the corresponding figure is 2(m+n). As an example, if n = m = 50,
the communication volume of the tile in (III) is 32% less than the one in (I).

To show how our approach derives the tile shown in (III) for the example
code fragment above, let us define HU0 as:

HU0 =
[
h11 h12

h21 h22

]
.

Consequently,

G′
U0 = HU0GU0 =

[
h11 h12

h21 h22

] [
0 1
1 1

]
=

[
h11 + h12 h12

h21 + h22 h22

]
.

To minimize the communication volume, the sum of (the absolute values of)
the entries in this last matrix should be minimum. This is because, as we have
discussed above, each non-zero entry in G′

U0 represents a communication along
one surface of the tile. In mathematical terms, we need to select h11, h12, h21,
and h22 such that |h11 + h12| + |h12| + |h21 + h22| + |h22| should be minimized.
A possible set of values for minimizing this is h11 = 1, h12 = 0, h21 = −1, and
h22 = 1, respectively, which gives us:

HU0 =
[

1 0
−1 1

]
,

which, in turn, means

PU0 = HU0
−1 =

[
1 0
1 1

]
.

Recall that each column of the PU0 matrix represents a boundary of data tile.
So, the PU0 matrix above represents the data tile (III) illustrated in Figure 4(c).
We next explain how a data tile is actually scaled up.

After selecting a data tile shape, it is scaled up in each dimension. In scal-
ing up a data tile, we consider the iterations that follow the seed iteration in
execution order. The left part of Figure 4(d) shows the global data relation vec-
tors defined by the seed iteration and three other iterations that follows it. We



Data Space Oriented Tiling 187

(b)

(a)

(I)
(II) (III)

(c)
(d)

Fig. 4. (a) Local and global data relation vectors. (b) Data space covered by global
data relation vectors. (c) Three different data tile shapes with their communication
vectors. (d) Scaling up tile size based on array layout. (e) Tiling the entire data space.

can include as many iterations as possible as long as the maximum (allowable)
capacity of a data tile is not exceeded. As will be discussed later in the paper,
the maximum capacity of a data tile depends on the application at hand and
the memory architecture under consideration. The iterations that (follow the
seed iteration and) are included in determining the size of a tile constitute an
iteration tile. It should be noted, however, that we do not necessarily include the
iterations that immediately follow the seed. Instead, we can take into account
array layout and determine a suitable iteration tile such that the spatial locality
is exploited as much as possible. For example, as we can see on the left portion of
Figure 4(d), for this example, progressing the relation vectors (that is, stretch-
ing the data tile) along the horizontal axis makes sense since the array layout
is row-major. If, however, the array layout was column-major, it would be more
beneficial to stretch the tile along the vertical exis as illustrated one the right
side of Figure 4(d). Our current implementation takes the maximum capacity
of the tile and the array layout into account, and determines the iterations in
the iteration tile. Note that, for a given data tile, each nest may have a different
iteration tile.

As will be explained in detail in the next section, once a suitable data tile
(shape/size) has been selected, our approach considers data tiles one-by-one,
and for each data tile, executes iterations that access the array elements in
the tile. It should be noted, however, iterations that manipulate elements in a
given tile may also access elements from different arrays. Assuming that we have
tiles for these arrays as well, these accesses may also incur communication (i.e.,
accesses to non-tile elements). Consequently, just considering the seed array
and its communication volume may not be sufficient in obtaining an overall
satisfactory performance (that is, minimizing the communication volume due to
all arrays and all nets). It should also be noted that the selection of the seed
array is very important as it determines the execution order of loop iterations,



188 Mahmut Kandemir

how the iterations from different nests are interleaved, and tile shapes for other
arrays. Our current approach to the problem of selecting the most suitable seed
array is as follows. Since the number of arrays in a given code is small, we
consider each array in turn as the seed array and compute the size of the overall
communication set. Then, we select the array which leads to overall minimum
communication when used as the seed.

3.2 Traversing Iteration Space

In this subsection, we assume that there exists no data dependences in the code.
Once a seed array has been determined and a data tile shape/size has been
selected, our approach divides the array into tiles. The tiles are exact copies
of each other except maybe at the boundaires of the array space. It then re-
structures the code so that the (re-structured) code, when executing, reads each
data tile, executes loop iterations (possibly from different nests) that accesses its
elements, and moves to the next tile. Since, as explained in the previous section,
we are careful in selecting the most suitable tile shape, in executing iterations
for a given tile, the number of off-tile (non-tile) elements will be minimum.

However, we need to be precise in defining the iterations that manipulate
the elements in a given tile. This is because even iterations that are far apart
from each other can occasionally access the same element in a given tile. For this
purpose, we use the concept of the iteration tile given above. Let us focus on a
specific data tile of T elements:

DTU0 = {a1, a2, · · · , aT−1, aT },
assuming that gU0 = a1 and HU0 is the corrsponding tile matrix. Let

ITU0,Ni = {i1, i2, · · · , aT−1, aT }
be the corresponding iteration tile for nest Ni, where isU0,Ni = i1.

When DTU0 is processed, the corresponding ITU0 is determined. This IT , in
turn, determines the data tiles for the other arrays in the code. This is depicted
in Figure 5, assuming that there are three arrays in the code and a single nest:
U0 (the seed array), U1, and U2. We first determine the data tile for U0 (the
seed array). Then, using this data tile, we find the corresponding iteration tile.
After that, using this iteration tile, we determine data tiles for arrays U1 and U2.
Once this iteration tile is executed, our approach processes the next tile from
U0 and so on. If there exist multiple nests in the code being optimized, when we
process the data tile, we execute all iterations from the corresponding iteration
tiles of all nests. Let us number the tiles in a given data space (array) from 1 to
Y . Let us also denote DTU0(j) the jth data tile (from array U0) and ITU0,Ni(j)
the corresponding iteration tile from nest Ni. We process data tiles and execute
corresponding iteration tiles in the following order (in Y steps):

DTU0(1) : ITU0,N1(1), ITU0,N2(1), · · · , ITU0,NP (1)
DTU0(2) : ITU0,N1(2), ITU0,N2(2), · · · , ITU0,NP (2)

... :
...

...
...

DTU0(Y ) : ITU0,N1(Y ), ITU0,N2(Y ), · · · , ITU0,NP (Y )



Data Space Oriented Tiling 189

In other words, the iterations from different nests are interleaved. This is possible
as we assumed that no data dependence exists in the code. When there are
data dependences, however, the execution order of loop iterations is somewhat
restricted as discussed in the next section.

U0 (seed)Array

U1

U2

Array

Array

Data

Data
Tile

Data
Tile

Tile

Iteration
Tile

Iteration
Space

Fig. 5. Determining data tiles of non-seed arrays using the iteration tile defined by
the data tile of the seed array.

3.3 Handling Data Dependences

As mentioned earlier, ideally, we would like to execute loop iterations as follows.
We consider data tiles from the array one-by-one, and for each data tile, we
execute all loop iterations (and only those iterations) that access array elements
in the tile. However, if the communication volume of data tile is not zero, this
ideal execution pattern would not happen. This is because, in executing some
iterations, we might need to access elements from other tiles as well. Obviously,
if we are able to select a good data tile (using the strategy explained earlier), the
number of such non-tile accesses will be minimized. Note that, even in a loop
without data dependences, we can experience non-tile accesses. However, when
data dependences exist in the code, we can expect that such off-tile accesses
will be more as the iterations that access the elements in the current tile might
involve in data dependence relationships with other iterations.

For the sake of presentation, let us assume that there are two nests in the
code (N1 and N2) and a single array (U0). Assume that DTU0(1) is a data
tile for array U0 and let ITU0,N1(1) and ITU0,N2(1) be the corresponding it-
eration tiles for nests N1 and N2. Assume further that IT ′

U0,N1(1) is the set
of iterations (in N1) other than those in ITU0,N1(1). Note that ITU0,N1(1) and
IT ′

U0,N1(1) are disjoint and their union gives the iteration space of nest N1.
We can define a similar IT ′

U0,N2(1) set for nest N2. Consider now the iteration
sets ITU0,N1(1), IT ′

U0,N1(1), ITU0,N2(1), and IT ′
U0,N2(1) shown in Figure 6(a).

If there are no data dependences in the code, when processing DTU0(1), we



190 Mahmut Kandemir

can execute ITU0,N1(1) followed by ITU0,N2(1). Note that this corresponds to
the ideal case as these two iteration sets, namely, ITU0,N1(1) and ITU0,N2(1),
access the same data tile, so executing them one after another (without an in-
tervening iteration from IT ′

U0,N1(1) or IT ′
U0,N2(1)) represents the best possible

scenario. Note also that even if there are data dependences between iterations
in ITU0,N1(1) (and/or between iterations in ITU0,N2(1)) but not across itera-
tions of different sets, we can still execute ITU0,N1(1) followed by ITU0,N2(1),
provided that we execute iterations in ITU0,N1(1) (and also in ITU0,N2(1)) in
their original execution order. This execution order is also valid if there are de-
pendences from ITU0,N1(1) (resp. ITU0,N2(1)) to IT ′

U0,N1(1) (resp. IT ′
U0,N2(1))

only. These cases are superimposed in Figure 6(b). Once all the iterations in
ITU0,N1(1) and ITU0,N2(1) have been executed, we can proceed with DTU0(2).
The dashed arrow in Figure 6(b) represents the execution order of these sets.

Suppose now that there exists a dependence from an iteration i′ ∈ IT ′
U0,N1(1)

to an iteration i ∈ ITU0,N1(1) as shown in Figure 6(c). Assume further that
there exists a dependence from an iteration i′ ∈ IT ′

U0,N2(1) to an iteration
i ∈ ITU0,N2(1). In this case, it is not possible to execute ITU0,N1(1) followed by
ITU0,N2(1) as doing so would modify the original semantics of the code (i.e., vi-
olate data dependences). To handle this case, our approach breaks IT ′

U0,N1(1)
into two groups, IT ′

U0,N1(1a) and IT ′
U0,N1(1b), such that there is a depen-

dence from IT ′
U0,N1(1a) to ITU0,N1(1), but not from IT ′

U0,N1(1b) to ITU0,N1(1).
This situation is depicted in Figure 6(d). Note that in the degenerate case
one of IT ′

U0,N1(1a) and IT ′
U0,N1(1b) can be empty. Similarly, we also divide

IT ′
U0,N2(1) into two groups: IT ′

U0,N1(1a) and IT ′
U0,N1(1b). Then, a suitable

order of execution (during processing DTU0(1)) is IT ′
U0,N1(1a), IT ′

U0,N2(1a),
ITU0,N1(1), ITU0,N2(1), which is also illustrated in Figure 6(d). It should be
noticed that, in this scenario, although we need to execute sets IT ′

U0,N1(1a),
IT ′

U0,N2(1a) before ITU0,N1(1), ITU0,N2(1), we are still able to execute ITU0,N1(1)
and ITU0,N2(1) one after another, which is good from the locality viewpoint.

Let us now consider the scenario in Figure 6(e) that indicates data dependences
from ITU0,N1(1) and IT ′

U0,N1(1) to ITU0,N2(1) and IT ′
U0,N2(1). To handle this

case, we break IT ′
U0,N1(1) into two subsets, IT ′

U0,N1(1a) and IT ′
U0,N1(1b), such

that there are no dependences from the set IT ′
U0,N1(1b) to the set IT ′

U0,N2(1).
Then, the preferred execution order is shown Figure 6(f).

4 Application of Data Space Oriented Tiling

There are several applications of data space oriented tiling. One of these is
improving cache locality in array-dominated applications. Since DST captures
data accesses in a global (procedure-wide) manner, it has better potential for
improving cache locality compared to conventional iteration space oriented tiling.
In this section, however, we focus on a similar yet different application area: using
data space oriented tiling for exploiting an on-chip scratch pad memory (SPM).

Scratch pad memories (SPMs) are alternatives to conventional cache mem-
ories in embedded computing world [7,8]. These small on-chip memories, like



Data Space Oriented Tiling 191

U , N (1)IT
0 1

’

U , N (1)IT
0

’
2

U , N (1)IT
0 2

U , N (1)IT
0 1

(a)

U , N (1)IT
0 1

’

U , N (1)IT
0

’
2

U , N (1)IT
0 2

U , N (1)IT
0 1

(c)

U , N (1)IT
0 1

’

U , N (1)IT
0

’
2

U , N (1)IT
0 2

U , N (1)IT
0 1

(b)

U , N (1)IT
0 2

U , N (1)IT
0 1

U , NIT
0 1

’
(1a)

U , NIT
0 1

’
(1b)

U , NIT
0

’
2

(1a)

U , NIT
0

’
2

(1b)(d)

U , N (1)IT
0 1

’

U , N (1)IT
0

’
2

U , N (1)IT
0 2

U , N (1)IT
0 1

(e)

U , N (1)IT
0 2

U , N (1)IT
0 1

U , NIT
0 1

’
(1a)

U , NIT
0 1

’
(1b)

U , N (1)IT
0

’
2

(f)

Fig. 6. Different iteration sets and dependences between them. Note that a solid arrow
denotes a data dependence, whereas a dashed arrow denotes a legal execution order.

caches, provide fast and low-power access to data and instructions; but, they
differ from conventional data caches in that their contents are managed by soft-
ware instead of hardware. Since the software is in full control of what the contents
of the SPM will be at a given time, it is easy to predict memory access times in
an SPM-based system, a desired property for real-time embedded systems. Since
there is a large difference between access latencies and energy consumptions of
these memories, it is important to satisfy as many data requests as possible from
SPM. Our compiler-based approach to SPM management determines the con-
tents of the SPM (at every program point) and schedules all data movements
between the SPM and off-chip data memory at compile-time. The actual data
movements (between SPM and off-chip data memory), however, take place at
run-time. In other words, we divide the task of exploiting the software-controlled
SPM between compiler and run-time (hardware). It should also be mentioned
that in order to benefit from an SPM, the energy (and performance) gains ob-
tained through optimized locality should not be offset by the runtime overheads
(e.g., explicit data copies between SPM and off-chip memory). That is, a data
item (array element) should be moved to the SPM only if it is likely that it will
be accessed from the SPM large number of times (that is, if it exhibits high data
reuse).

Our approach works as follows. It first optimizes the code using DST as
explained above. It then reads data tiles from off-chip data memory to SPM
and executes all iterations that manipulate the data in the SPM. When these
iterations are finished, a new set of data tiles are brought into SPM and the
corresponding loop iterations are executed, and so on. It should be noted that
if, during its stay in the SPM, the data tile has been modified (through a write
command) it should be written back to the off-chip memory when it needs to be
replaced by another data tile. Figure 7 gives a sketch of the SPM optimization
algorithm based on data space oriented tiling. To keep the presentation clear, we
assume that all arrays are of the same size and dimensionality, and all arrays are



192 Mahmut Kandemir

accessed in each nest. After determining the seed array and the most suitable
tile shape from the viewpoint of communication volume, the first loop in this
figure iterates over data tiles. In each iteration, we read the corresponding data
tiles from the off-chip memory to the SPM. Then, the second loop nest deter-
mines the corresponding iteration tiles from all nests and also computes the set
of iterations (I ′) that should be executed before these iterations (due to data
dependences). The compiler then generates code to execute these iterations and
updates the iteration sets by eliminating the already executed iterations from
further consideration. It should be noted that this is a highly-simplified presen-
tation. In general, the iterations in I ′ and ITU0,Nj(i) might be dependent on
each other. In executing the iterations in a given set, we stick to the original ex-
ecution order (not to violate any dependences). After that, it checks whether the
data tiles have been updated while they are in the SPM. If so, they need to be
written back to the main memory. This concludes an iteration of the outermost
for-loop in Figure 7.

INPUT: a set of nests Nj , 1 ≤ j ≤ P accessing K arrays
Ij : the iteration set of the jth nest

ALGORITHM:
determine the seed array U0 and data tile shape;
for each data tile i, 1 ≤ i ≤ Y

generate code to read DTU0 (i), DTU1 (i), · · · , DTUK
(i)

from main memory;
Ires = ∅;
for each nest Nj , 1 ≤ j ≤ P

Irem =
⋃

Ik, 1 ≤ k ≤ j

determine ITU0,Nj
(i) and IT ′

U0,Nj
(i);

determine I ′ ⊂ Irem such that:
(i) there is a dependence from I ′ to ITU0,Nj

(i)

(ii) there is no dependence from (Irem − I ′)
to ITU0,Nj

(i)

Ires = Ires

⋃
I ′;

endfor;
for each nest Nj , 1 ≤ j ≤ P

generate code to execute iterations in I ′

(if they have not been executed so far);
generate code to execute iterations in ITU0,Nj

(i)

(if they have not been executed so far);
endfor;
update Ik, 1 ≤ k ≤ j
for each Ul, 1 ≤ l ≤ K

if DTUl
(i) is modified, then write it back

to main memory;
endfor;

endfor;

Fig. 7. An SPM optimization algorithm based on DST.



Data Space Oriented Tiling 193

5 Conclusions

This paper presents a compiler-based strategy for optimizing data accesses in
regular array-dominated applications. Our approach, called data space oriented
tiling, is a variant of classical iteration space tiling. It improves over the latter
by working with better data tile shapes and by exploiting inter-nest data reuse.
This paper also shows how data space oriented tiling can be used to improve the
effectiveness of a scratch pad memory.

References

1. S. Coleman and K. McKinley. Tile size selection using cache organization and data
layout. In Proc. the ACM SIGPLAN Conference on Programming Language Design
and Implementation, June 1995. 178, 179, 180, 180

2. F. Irigoin and R. Triolet. Super-node partitioning. In Proc. the 15th Annual ACM
Symposium on Principles of Programming Languages, pages 319–329, January
1988. 179

3. M. Kandemir, J. Ramanujam, M. Irwin, N. Vijaykrishnan, I. Kadayif, and A.
Parikh. Dynamic management of scratch-pad memory space. In Proc. the 38th
Design Automation Conference, Las Vegas, NV, June 2001.

4. I. Kodukula, N. Ahmed, and K. Pingali. Data-centric multi-level blocking. In Proc.
the SIGPLAN Conference on Programming Language Design and Implementation,
June 1997. 181, 181, 181, 182

5. W. Li. Compiling for NUMA Parallel Machines. Ph.D. Dissertation, Computer
Science Department, Cornell University, Ithaca, NY, 1993. 180

6. M. O’Boyle and P. Knijnenburg. Non-singular data transformations: Definition,
validity, applications. In Proc. the 6th Workshop on Compilers for Parallel Com-
puters, pages 287–297, 1996.

7. P. R. Panda, N. D. Dutt, and A. Nicolau. Efficient utilization of scratch-pad-
memory in embedded processor applications. In Proc. the European Design and
Test Conference (ED&TC’97), Paris, March 1997. 190

8. L. Wang, W. Tembe, and S. Pande. Optimizing on-chip memory usage through loop
restructuring for embedded processors. In Proc. the 9th International Conference
on Compiler Construction, March 30–31 2000, pp. 141–156, Berlin, Germany. 190

9. M. Wolfe. High Performance Compilers for Parallel Computing, Addison-Wesley
Publishing Company, 1996. 178, 179

10. J. Xue and C.-H. Huang. Reuse-driven tiling for data locality. In Languages and
Compilers for Parallel Computing, Z. Li et al., Eds., Lecture Notes in Computer
Science, Volume 1366, Springer-Verlag, 1998.


	Data Space Oriented Tiling
	Introduction
	Review of Iteration Space Tiling
	Description of Data Space Oriented Tiling
	Array Selection and Tile Shapes
	Traversing Iteration Space
	Handling Data Dependences

	Application of Data Space Oriented Tiling
	Conclusions


