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Abstract. We introduce a new proof technique for showing the cor-
rectness of 0CFA-like analyses with respect to small-step semantics. We
illustrate the technique by proving the correctness of 0CFA for the pure
A-calculus under arbitrary (-reduction. This result was claimed by Pals-
berg in 1995; unfortunately, his proof was flawed. We provide a correct
proof of this result, using a simpler and more general proof method. We
illustrate the extensibility of the new method by showing the correctness
of an analysis for the Abadi-Cardelli object calculus under small-step
semantics.

1 Introduction

Sestoft [10] M1] has shown the correctness of 0CFA [12] with respect to call-by-
value and call-by-name evaluation, using an evaluation semantics for the former
and the Krivine machine for the latter. Palsberg [9] attempted to show that 0CFA
was correct with respect to small-step semantics under arbitrary S-reduction;
unfortunately, his proof was flawed. Our attempts to extend Palsberg’s proof to
more complex languages led us to discover flaws in the proof of one of the main
theorems upon which his correctness result depends.

In this paper, we fix Palsberg’s proof, working out some key details omitted
from his paper and introducing a new proof technique that we believe will be
easier to extend to more complex languages. Our proof is based on the observa-
tion that reduction carries most of the local structure of the source expression
into the result expression, modifying only a few key terms. We illustrate the
extensibility of our proof technique by showing the correctness of an analysis for
the Abadi-Cardelli object calculus [I].

We begin in Sect. Bl by presenting the syntax and semantics of the language
we will analyze, the A-calculus, along with a few syntactic annotations and their
properties. In Sect. [3, we present our control flow analysis, following Palsberg’s
constraint-generation system. In Sect. [l we present our reformulation of Pals-
berg’s proof of correctness, along with a description of precisely where his proof
goes wrong. In Sect. Bl we apply our proof technique to an analysis of the Abadi-
Cardelli object calculus.
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(© Springer-Verlag Berlin Heidelberg 2002
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2 The Language

The syntax of our language is shown in Fig.[l. It is the standard untyped lambda
calculus consisting of variable, abstraction, and application expressions. How-
ever, our analysis will require that expressions carry labels, so we define the
set of expression labels Lab, and we use [ to range over this set. We define two
restrictions of Lab: Lab® to the set of binding labels, and Lab™ to the set of
abstraction labels. We use 8 to range over Lab®. Binding labels appear only on
variable expressions, and on the bound variables in lambda expressions. (We
have adapted the use of binding labels from [4].) In Fig. Bl we define lab, the
obvious map from expressions to their labels.

l € Lab Labels
Lab™ C Lab Abstraction Labels
8 € Lab® C Lab Binding Labels
z € Var Variables
ex=1a" | (e1 e2)! | NaPeo Expressions

Fig. 1. Syntax

Iab(x )=0
Iab()\ T eo) l
|ab((€1 62) ) l

Fig. 2. The map lab from expressions to their labels

In Fig. Blwe show the definitions of change of variable, e{y/x}, and substitu-
tion, e[e’/z], to make explicit these two operations’ effects (or lack thereof) on
expression labels. The lemma which follows indicates precisely the limits of this
effect.

e {y/z} =y’ x [e/x} =
P {y/fay = 2° yle/2] = B
(e1 e2)'{y/z} = (er{y/a} ea{y/a})’ (ex ez)l[e/l‘} (61[6/55} ezle/z])’
(N aPeo){y/z} = (\zP.eo) (N aPeo)le/z] = (NaPeo)
(N'2"e0){y/a} = N'27.(eo{y/}) (Nyeo)le/x] = (N'2".eo{z/y}[e/x])
(z#y) (z fresh)

Fig. 3. Change of variables and substitution

Lemma 2.1. lab(egle/z]) = lab(eg), unless eg = x°, for some 8 € Lab®.

Proof. By inspection of the definition of substitution, observing that variable
renaming preserves labels.
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Our semantics is unrestricted S-reduction, and we define the redex and re-
duction contexts in Fig. @

((Alomﬁ.eo) e)l — eole/z]
E:=[]|NaPE|(Ee)| (e E)

Fig. 4. Semantics: the redex and reduction contexts

We introduce a syntactic notion of well-labelledness for expressions, along
with binding environments. Intuitively, an expression is well-labelled when all
of the labels on variable expressions match the binding labels appearing on
the lambda expressions that bind them. To formulate well-labelledness, define
a binding environment to be a finite map from variables to the labels of their
respective binders:

I Var — Lab® .

Consider the expression M2%ep. A binding environment I" would be “correct”
for the expression ey only if I'(x) = 3. We formalize this notion of a binding
environment being correct for an expression into labelling judgements of the
form I' - e wl, which says simply that the expression e is well-labelled under the
binding environment I". Well-labelledness for expressions is captured precisely by
the set of rules for deriving labelling judgements shown in Fig.[5l For convenience,
we say that an expression e is well-labelled, written F e wl, iff there exists a
labelling environment I" such that I' F e wl.

F(m) = ﬁ /ﬁ = ﬁl [var-wl]
I'tz? wi

I'Feiwl I'keswl _wl
't (ex 62)l wl [app-wlj

Iz — B]Feo wl [abs-wl]

T'F 2P e wi

Fig. 5. The rules for deriving labelling judgements
Finally, we define a subterm relation €g, shown in Fig.

eo€ee iff (e =eo)
V (e = (NaPei) Aeoceer)
V (e=(e1 e2)" A(eoEeer Ve EEer))

Fig. 6. The subterm relation €
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The following lemma expresses some properties of well-labelledness that should
be familiar from typing. (See [7], pp. 244-5.)

Lemma 2.2. Let e be an expression and let I' be a binding environment.

1. If '+ ewl and €' €g e, then there exists a I extending I' such that I'" + e’ wl.
2. If x & fv(e), then for all B € Lab®, I'+ e wl iff Clx — B F e wl.

3. If 'z w— Bl Fewl and y ¢ dom(I'), then I'ly — B] F e{y/z} wl.

4. If Mz — Bl Fewl and I'F ey wl, then ' eleg/x] wl.

Proof. Each property is proved by a straightforward induction, the first by in-
duction on the definition of ¢’ € e, and the remaining three by induction on the
size of e.

Finally, we show that well-labelledness is preserved under reduction.
Lemma 2.3. If I'Fewlande — €, then I' - ¢’ wil.

Proof. Since e — €', choose the reduction context F and redex r such that r — s,
e = E[r], and ¢ = E[s]. We proceed by induction on the structure of E.

In the base case, we have E = []. Thene =17, ¢ = s, I' - r wl, and we must
show I' = s wl. Since 7 is a redex, r = ((Moxfeg) e1)!, so s = egler/x]. Since
' 7 wl, we have I' - MozPeg wl and I' F e wl by [app-wl]. Thus, I'[z — 3] -
eop wl by [abs-wl]. Then by Lemma [Z2] part 4, we have I" F egle1/z] wl and
thus I' - s wl.

In the induction step, consider first £ = Moaf Ey. In this case, e = E[r] =
NogB Ey[r], and we have

I MoxB Eylr] wl = Iz G] F Eg[r] wl (by [abs-wl])
= I'[z — ] F Eyls] wl (by IH)
= I'F Aozl Ey[s] wl (by [abs-wl])

Consider next E = (E; es)!. Then e = E[r] = (E1[r] e2)!, and we have

Tt (Eqfr] e2)! wl= I'F Ei[r] WIAT Feaywl  (by [app-wl])
= I'F Ey[s] wl (by IH)
= I'F (B[] e2)! wl (by [app-wl])

In the final case, E = (e; E3)!, and the proof is similar to the previous case.

3 The Analysis

We derive our analysis from the constraint-based analysis of [9]. The analysis
of an expression is specified by a constraint system (see Defn. ET)) that is gen-
erated from the program text [2]. A solution to these constraints will give an
approximation to the possible results of evaluating each program point.

The constraint system consists of a collection of conditional inclusions be-
tween sets. In general, there will be one set for each program point and for each
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bound variable. Palsberg uses two sets of metavariables [A!] and [v!] as names
for these sets; Nielson and Nielson [§] formulate these as abstract caches C and
p. Other researchers, e.g. [3,[6], convert terms to A-normal form or the like, and
use variables as program points. We introduce labels for each program point and
for each bound variable (following [4]). Because denoted and expressed values in
our language coincide, we need only a single cache ®.

The labelling behavior of our semantics follows Palsberg’s: when one term
reduces to another, the label on the source term will disappear, and the result
term will keep its previous label. This means that a given label may appear
in many different places as its term is copied. Our notion of well-labelledness
ensures that the label on a variable instance matches the label on its binder.

We express flow information using a single map. This abstract cache maps
labels to abstract values, which are sets of abstraction labels.

& € Cache = Lab — Val
Val = P(Lab*)

An abstract value is a set of abstraction labels because abstractions are the only
values in our language. If our language had scalars, they would also be abstracted
into the set Val.

The analysis of an expression e is the following set of constraints [9]:

= U  Rlae) o) v | {({}Cel)} .
MogBeycpe MogBesege
(e1 ea)l €ge

where the set R((e; ez)!, (\0xP.eq)) consists of the following two constraints:

{lo} € @(lab(e1)) = @(lab(ez)) C @(/)
{lo} € @(lab(e1)) = @(lab(eo)) € @(I)

The first comprehension ensures that every abstraction term in the expression is
matched against every application term in the expression. Palsberg gives a nice
description of the two constraints in R:

— The first constraint. If the operator of [the application] evaluates to
an abstraction with label [, then the bound variable of that abstrac-
tion may be substituted with everything to which the operand of [the
application| can evaluate.

— The second constraint. If the operator of [the application] evaluates
to an abstraction with label [y, then everything to which the body
of the abstraction evaluates is also a possible result of evaluating the
whole application. [9, p. 280]

The second comprehension consists of a single constraint {lo} C ®(ly) for every
abstraction label appearing in the source expression. These constraints ensure
that each abstraction is predicted as a possible value for itself.
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4 Correctness

Our proof of correctness for the analysis is based on an entailment relation
between constraint systems, A F A’. This entailment expresses the property
that all of the constraints in A’ can be derived from those in A by the formal
system in Def. 21 below. We have formulated the proof in this way so as to most
closely follow the results in [9].

We begin by formalizing our constraint language.

Definition 4.1. Let V and U be sets. A constraint system A over V and U is
a finite set of Horn clauses, defined by the following grammar:

s eV Set Variables
celU Constants
I:={c}Cs | sCs Atomic Formulas
H:= I | I=H Horn Clauses

A € fin(H) Constraint Systems

A solution of a constraint system of V and U is a map & : V. — P(U) such that
O = A, where & = A is defined by:

d=A iff VHeEAdEH
& E{c} Cs iff {c} C®(s)

O =51 Cse iff ®(s1) C B(s2)
d=I=H iff d=I=>dH

For our constraint systems, V will be Lab and U will be Lab™.

Definition 4.2. If A is a constraint system, and H is a Horn clause, then the
Jjudgement A+ H (“A entails H”) holds if it is derivable using the following five
rules:

T ifHe A (Discharge)
AFPCP (Reflexivity)
ArPC ,ﬁ . CAI;P’ cp (Transitivity)
A X - I—A)}/_ X=Y (Modus Ponens)

AP CP’ AFPCP'=Q CcqQ” AFQCQ
AFPCP=QCqQ

(Weakening)

If A, A’ are constraint systems, then A+ A’ if and only if for every H € A’, we
have A+ H.
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Definition is verbatim from [9], except that we overload the “turnstyle”
operator, I, so that the right hand side can be either a single constraint or a
constraint system (set of clauses) with the conjunction of these clauses implied,
as it already is for =.

We have formulated our proof in terms of constraint systems and deductions
so as to most closely follow the results in [9]. Our results could easily be refor-
mulated in terms of preservation of solutions (for all @, if & = A then & | A').
Such a formulation would also expose the analogy with the Subject Reduction
Theorem.

Lemma 4.3. + is reflexive, transitive, and solution-preserving. If A D A’, then
AR A.

Proof. Trivial, relying on the definition of & = A above. See Lem. 4.2 in [9].

Since our analysis is a comprehension over applications and abstractions that
occur in the expression to be analyzed, it will be useful to have a characterization
of the applications and abstractions that occur in the result expression, in terms
of the applications and abstractions that occur in the source expression. The
following relation captures the possible differences between terms in the result
of a reduction and the terms in the source expression that gave rise to them.

Definition 4.4. If r is a B-redex and s is an expression such thatr — s, E is
a reduction context, and e, e’ are expressions such that e €g E[r] and €' €g E[s],
then define S(e,e’) iff either

1. lab(e) = lab(¢), or
2. e=r ande =s, or else
3. r=((NoxPe) e1)!, s = epler/x], e = 2 and & = e;.

The following lemma shows that every abstraction or application in the result
expression arises from an abstraction or application in the original term with the
same label and with immediate subterms that either have the same label as the
subterms in the original, or else whose subterms differ in the very specific ways
delineated by Definition 4l

Lemma 4.5. Assume r is a redex and s an expression such thatr — s, and E
is a reduction context such that + E[r] wl. Then

1. If (€} e4) €g Els], then there exists a (e1 es)! €g E[r] such that S(ey,€}) and
S(ea,€5).
2. If NlzP.el €g E[s], then there exists a NaP.ey €g E[r] such that $(eq,e}).

Proof. Since r is a redex, it must be of the form ((A°y%eq) e)! and thus s =
eole/y]. We must show that for each (¢} e4)! €g E[s], there exists an applica-
tion (e; e)’ € E[r], and for each Mox?'.e} g E[s], there exists an abstraction
MozP 3 eg E[r], such that for i =1...3, $(e;, €}).

Consider every abstraction or application node in E[s]. Each such node in e
and in the interiors of E/ and eg looks like the node labelled /3 in Fig. [l These
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Fig. 7. The tree representations of E[r] and E|[s]

nodes were unaffected by the reduction, and their children are covered by case
(1) of Defn. 4]

The remaining nodes in E[s] are like those labelled I4 and I5. Since there is
a unique hole in F, there is exactly one node like that labelled 4, which has the
hole in F as a child. This node is covered by case (2) of Defn. B4, since it has s
as a child after the reduction, and it had r as a child before the reduction.

This leaves nodes in E[s] like that labelled 5 in the figure. These nodes are
covered by case (3) of Defn. I, since they have a copy of e as a child after
the reduction, as a result of substituting for an occurrence of y in the redex.
However, Defn. L4 requires that the labels on these occurrences of y must all
have been (3, the label on the bound variable in the redex. This requirement
is satisfied easily using the well-labelledness of E[r]. Since F E[r] wl, choose a
labelling environment I" such that I' b E[r] wl. Thus, since r €g E[r], by part
(1) of Lem. 22 there exists a I extending I' such that I" = r wl. Then by
[app-wl] and [abs-wl], we have I'[y — ] | eg wl. Thus, since any instance of
y substituted for in the reduction must have been a free occurrence of y in eg,
by inspection of the rules for labelling judgements, we can see that the label on
each such occurrence must have been I''[y — S](y) = (.

A more formal, but considerably more lengthy, proof could be constructed
based on the concept of case analysis of tree addresses in the style of Brainerd
[B].
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The next lemma states that terms in the result of a reduction have smaller
flow information than the terms in the source expression to which they are
related by 5.

Lemma 4.6. If r is a redex and s an expression such that r — s, E is a re-
duction context such that F E[r] wl, and e and €' are expressions such that
e€g Er], ¢ €g E[s], and S(e,e’), then [E[r]] F &(lab(e’)) C ®(lab(e)).

Proof. We note that since r is a redex and 7 — s, we have r = ((AMozf.ep) e1)!

and s = egler/x]. We have
[ElF]F [r] = [(Xa"e0) en)'T

and thus,
[r] = {{lo} C @(lo) .
{lo} € ®(lo) = ®(lab(e1)) C ®(B) ,
{lo} € ®(lo) = ®(lab(eo)) € ®(1) } -

Therefore, by two applications of Modus Ponens, we have

[r] = @(lab(e1)) € (8) , (1)

and
[r] = ®(lab(eo)) € (1) - (2)
We proceed by cases on the definition of $(e, e’):

1. Trivial.

2. Since e = r and € = s, we have lab(e) = lab(r) = [ and lab(e’) = lab(s) =
lab(egp[e1/x]). By Lem. 1] unless eq = z, lab(eg[e1/x]) = lab(eg), and the
result follows trivially. Consider instead eq = z. Since + E[r] wl, choose a
labelling environment I" such that I - E[r] wl. Then by Lem.[Z2] there exists
a I extending I' such that I F r wl, and thus, we have I''[x — (] I eo wl
by [app-wl]| and [abs-wl]. Now, since I"'[z +— ] F eq wl, [z — [](x) = S,
and eg = x, we must have lab(eg) = 8 by [var-wl]. We also have egle;/z] =
2Ple;/x] = e1, and thus, lab(s) = lab(e;). By (@) and (2) then, we have
[r] F ®(lab(e1)) € ®(5) C &(I), and thus, since e = r and €’ = s, we have
[E[r]] F ®(lab(e)) C ®(lab(e)), by Transitivity of both - and C.

3. Since e = 2% and ¢ = ey, lab(e) = 3 and lab(e’) = lab(ey), by () and
Transitivity of -, we have [E[r]] - ®&(lab(e’)) C &(lab(e)).

Now we turn to the main theorem, which shows that constraints are preserved
under reduction. That is, the constraints of the result term are entailed by the
constraints of the source term. The correctness of the analysis is a consequence of
this entailment: the flow information of the result term is predicted by (contained
in) the flow information of the source term.

We replace the inductive structure of Palsberg’s proof of the equivalent the-
orem (]9, Thm. 4.10]) by a flat structure that matches the flat, non-inductive
structure of the definition of the analysis.
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Theorem 4.7. If ex — ey, and there exists a I'x such that I'x - ex wl, then
lex] t [ey] and [ex] F ®(lab(ey)) C ®(lab(ex)).

Proof. Since ex — ey, choose a reduction context F, redex r, and corresponding
reductum s such that ex = E[r] — E[s] = ey. Since r is a redex, it must be of
the form ((AoyP.ep) e)! and thus s = egle/y]. We need to show [E[r]] F [E[s]],
where

[Els]] = U R((e} e5)", Noa'e) U U {{rce@y
)\léxﬁl.e% €g E[s] Moz el eg Els]
(€} €5)" e B3]

Let (¢) €,)! e E[s] and Moa? e} e E[s]. Since ex = E[r] is well-labelled,
by Lem. 5] there exists an application (e; ez)! €g E[r], and there exists an
abstraction Noz?".e3 eg E[r], such that $(e;, ;) for i = 1...3. By Lem. {6] then,
we have [E[r]] F ®(lab(e})) C &(lab(e;)) for i =1...3.

Now, by the definition of [E[r]], since (e1 e2)! € E[r] and Noz?.e3 e E[r],
we have o

[E[F]] F R((e1 e2)", NoaP e3) .
Thus we have
L[] F {15} € d(lab(e1)) = d(lab(es)) C &(5)
and
[E[]F {lo} € @(lab(e1)) = @(lab(es)) € () -
Now, since we have [E[r]] F ®(lab(e})) C ®(lab(e;)) for each €] and its corre-
sponding e;, we have
[Elr]] F ®(lab(e})) € ®(lab(e1))
[E[]T - {lo} € @(lab(e1)) = @(lab(e2)) € ©(9)
[Elr]] - ®(lab(e3)) € @(lab(es))
[E[F] - {lo} < @(lab(e})) = @(lab(es)) € (')

and
[Elr]] F @(lab(é))) € @(lab(er))
LB - {15} € B(lab(er)) = B(lab(es)) € B(V)
[Elr]] F ®(lab(ez)) € ®(lab(es))
[E[r]] - {lo} € ®(lab(e])) = (lab(ez)) € @(I')
by Weakening in both cases. But these two constraints are exactly the constraints
in R((e} eh)", NoaP.ey), and so we have shown
[ElrF U R((e) ep)", Noael) .
NozP' el eg Els)
(¢) eh)" € Els]




A Modular, Extensible Proof Method for Small-Step Flow Analyses 223

Now, since MozP'.eq g E[r], we have [E[r]] - { {I,} € ®(l}) }, and so we
have

[E[]]F U {{lo} celo) } -

MNozf' el eg Els]

Thus we have [E[r]] F [E[s]], which is [ex] F [ey].

Finally, we show [ex] F ®(lab(ey)) C ®(lab(ex)). Since ex = E[r] and
ey = EJ[s], obviously we have ex €g E[r] and ey €g E[s]. Now, if E = [ ], then
E[r] = r and E[s] = s, and we have $(E[r], E[s]). If instead E # [ ], then
lab(E[r]) = lab(E[s]), and again we have $(E[r], E[s]). Thus, since r — s, and
F Elr] wl, by Lem. [£8] we have [ex] F ®(lab(E[r])) C &(lab(E][s])).

The following corollary states that if an expression converges to a value, then
the label on the value is among those predicted by the analysis of the expression.

Corollary 4.8. If e wl and e converges to a value v, then [e] F {lab(v)} C

o(lab(e)).

Note that much information is lost by this corollary: while it shows that the
label of a result value is predicted, it does not tell us anything about the internal
structure of this value, which may be arbitrarily complex, but is guaranteed to
obey the constraints of [e].

We can now characterize the difficulty in Palsberg’s theorem [9] Thm. 4.10]
corresponding to our Thm. [£.7] Palsberg’s proof proceeds by induction on the
structure of ex. While considering the case in which ex = (e; 62)Z and e; — €]
(that is, the reduction occurs in the operator subterm), he invokes the induc-
tion hypothesis to get [e;] F [¢}]. He then shows that for every Aoz.e’ in
(e} e2)t, [(e1 e2)'] F R((€} e2)!, Nloz.e’). However, he needs to show [(e; e2)!] F
R((e} ef)t, Noz.e') for every (e e4)! in (e} e2)t.

Any repair of this error would require an induction hypothesis that accounted
for the context in which the reduction appeared. This approach is complicated
by the mismatch between any inductive approach and the non-inductive formu-
lation of the analysis used by Palsberg. We made several increasingly baroque
attempts to repair the proof, and were eventually led to abandon a formal in-
ductive structure in favor of the “flat” characterization of Lem. 43l

5 The Abadi-Cardelli Object Calculus

We presume the reader is familiar with the Abadi-Cardelli Object Calculus [1].
Our syntax is shown in Fig. Rl We have adopted a slightly non-standard syntax
to facilitate the presentation. Subterms are labelled with superscripts; bound
variables of comprehensions are presented as subscripts, e.g. (.. >i We elide the
range of the bound variable i, relying on the fact that this calculus neither adds
nor removes methods from an object. For any program, the set of method names
is finite.



224 Mitchell Wand and Galen B. Williamson

m Method Names
T Identifiers
pioa=m="(be Methods
bo=2P Variables

ex=0b | () | (em) | (e< (u))' Expressions

Fig. 8. Syntax of the Object Calculus

The reduction rules of the object calculus are shown in Fig. @1 Reductions
may be carried out in arbitrary contexts, and well-labelledness works in the usual
manner.

((mi =" (a))es)tmy)'2
= e;[(ms =" (@f)en)it /s (Red Sel)

(ms =" (2)e0)y < (m; =" (27)e))"
— (my =" (mﬁ)ﬁ m; = ($?1)€z ls, i;éj)l?’ (Red Upd)

Fig. 9. Reduction Rules of the Object Calculus

We think of objects as sets of abstractions, indexed by method name. As
with the lambda-calculus, we label each object by the expression in which it was
created, either by an object expression or by an update expression. Methods are
similarly identified by labels.

For this analysis, the cache will have two arguments: a label and a method
name, and will return a set of method labels. The intention is that &(I,m) will
contain all the labels of methods that might be the m-method of an object
labelled .

We define &(1) C ®(I') as the conjunction of the formulas ®(I,m) C &(I',m)
for all method names m.

For dealing with the analysis, ordinary comprehensions are cumbersome. We
introduce reverse comprehensions:

(ForEachz € X > f(x))

in place of the more usual {f(z) | € X} or |,y f(z), depending on whether
f(z) is a formula or a set of formulas.

We may now define the analysis [e] of a term e as the set of Horn clauses
defined by:
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[e] = (ForEach (m; =% (7)e)) ege > {I;} C (1, m,))
U (ForEach (el.m) cee,m =" (2F)ey e
> {I'} C ®(lab(er), m) = ®(lab(eq))
{I'} C ®(lab(e1), m) = ®(lab(ez))
U (ForEach (e; <= (m =" (29)e})) €ge
> (Vn # m)(®(lab(e1),n) € ®(l,n)),
{h} € o(l,m))

As in Sect. Bl each comprehension in the analysis has an intuitive relation to
the semantics:

(B),
M)

Co
Co

— Every m-method that appears in an object is a possible m-method of that
object.

— If an m-method of an object is selected, then the object is among the possible
values of the method’s bound variable, and the value of the method’s body
is among the possible values of the selection expression.

— If an object is created by updating the m-method of some object, then every
n-method of the old object is a possible n-method of the new object (for
n # m), and the new method is a possible m-method of the new object.

We now proceed as in Sect. Al

Definition 5.1. If r is a redex and s is an expression such that r — s, E is
a reduction context, and e, e’ are expressions such that e €g E[r] and €' €g E[s],
then define S(e,e’) iff either

lab(e) = Iab(e’)
2. e=r and e =s, or else
3 r=m; =l (x Zﬂ Je Z> m;)2 and s = e;[(m; = (x Bi)el>ll/x]] and e = xf
and e = (m; =4 (x ﬁl)@)
Lemma 5.2. Assume r is a redex and s an expression such that r — s, E is
a reduction context, and + Er] wl. Then

1. If (m =' (2P)e}) €g E[s], then there exists a (m =' (z7)e1) €g E[r] such that
S(er,eh).

2. If (¢).m)! €g E[s], then there exists a (e1.m)! €g E[r] such that $(eq,e}).

3. If (¢} <= (m =2 (2°)e}))hr € E[s], then there exists a (e1 <= (m =2 (27)ey))
€e E[r] such that S(e1,e}) and $(eq, €h).

4. If (m; =4 (b;)el) €e E[s] then either
(a) There exists (m; =" (b;)e;)! € E[r] such that $(e;,€}) for all i, or
(b) r — s is an instance of (Red Upd) and s = (m; =% (b;)e})! and there

exists ((m; = (z ﬁl) O < (mj = (2P)e))! € E[r] such that for all i,
=1, by = 2 e,=e; fori#j

7 )

=1y, bj=2° e =e fori=j
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Proof. By an analysis like the one for Lem. EE5. The only additional case is that
of an object constructed by (Red Upd). But in this case we know exactly what
the redex must have looked like, and it is described in the last case of the lemma.

Lemma 5.3. If r is a redex and s an expression such that r — s, F is a re-
duction context, + E[r] wl, and e and €' are expressions such that e €g E[r],

e’ g E[s], and $(e,€'), then [E[r]] F ®(lab(e’)) E &(lab(e)).
Proof. By cases on the definition of $(e, €¢’), as in the proof of Lem. 0.

Theorem 5.4. If ex — ey, and + ex wl, then [ex] + [ey] and [ex] +
d(lab(ey)) C ®(lablex)).

Proof. From the constraints in [E[r]], we need to deduce each of the constraints
in [E[s]], given by

[E[s]] = (ForEach {m; =" («/*)e)! €e Els] > {11} € &(1,m;))
U (ForEach (e1.m)! €g E[s],m =!" (2°)es g E[s]
> {l'} C ®(lab(er), m) = ®(lab(e1)) C &(0),
{I'} € ®(lab(e1),m) = ®(lab(e2)) E ®(1))
U (ForEach (e; < (m =" (2%)e}))! € Es]
> (Vn # m)(®(lab(e1),n) C (I, n)),
{li} € ®(l,m))

First consider the case (ForEach (m; =l (x ﬁl) Dbee B[s] > {IL} C ®(1,m;)).
By Lem. B2, if (m; =% (b;)e})! eg E[s] then either

1. There exists (m; =" (b;)e;)} €g E[r] such that $(e;,e}) for all i, or
2. r — sisan instance of (Red Upd) and s = (m; =% (b;)e})! and there exists
r=((m; =b (27)e;)) < (m; =" (7)e))! € E[r] such that for all 4,

=1, bi:%@i, e;=e; fori#j

K3
U=l bj=aP, e, =e fori=j

/

In the first case, each of the formulas {I} C ®(I,m;) is already in [E[r]].
In the second case, since E[r] contains the update term r, [E[r]] contains the
formulas

(I, mi) S O(l,m;) i #j

{la} € @(1,m;)
which describe the possible methods in abstract object [. Since r contains an
object term, [E[r]] also contains the formulas {/;} C &(l1,m;) for each i.

We can now consider each of the formulas {I}} C &(l,m;). For i # j, [E[r]] F
{L:i} C ®(ly,m;) € ®(,my), and I} = 1;, so [E[r]] F {l;} C &(l,m;), as desired.
For i = j, [E[r]] F {l2} C ®&(I,m;), but I} = I3 and m; = m;, so [E[r]] F {l}} C
®(1,m;) as desired.

For the remaining cases, we rely on Lem. [£6], as in Thm. [£7]1 The second
half follows analogously to the second half of Thm. 1.
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6 Conclusion and Further Work

We have introduced a novel proof technique for the correctness of constraint-
based flow analyses, and used it to provide a complete proof for the central
theorem of [9]. By matching the structure of the proof to the flat structure
of the analysis, we have not only clarified the overall flow of the proof, but
we have also exposed the crucial effects of reduction on the subterms of the
expression under analysis. Furthermore, by structuring the case analysis of the
proof around reduction contexts and redices instead of around the reductions of
whole expressions, we have simplified the necessary steps of the proof. Finally,
we have demonstrated our technique’s extensibility by applying it to an analysis
for a larger language.

We intend to investigate how well our proof technique will scale up to analyses
of larger, more realistic languages. In particular, we would like to know how
well it handles analyses that do not take the whole program into account. A
related investigation is to consider coinductive analyses like [8], in which not all
expressions are analyzed.
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