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1 Introduction

The Model. We consider networks of processors with arbitrary topology. A
network is represented as a connected, undirected graph where vertices denote
processors and edges denote direct communication links. Labels (or states) are
attached to vertices and edges. Labels are modified locally, that is, on a subgraph
of fixed radius 1 of the given graph, according to certain rules depending on the
subgraph only (local computations). The relabelling is performed until no more
transformation is possible, i.e., until a normal form is obtained.
The Problem. The election problem is one of the paradigms of the theory of
distributed computing. Considering a network of processors the election problem
is to arrive at a configuration where exactly one process is in the state elected
and all other processes are in the state non-elected see [Tel00]. The elected vertex
is used to make decisions, to centralize or to broadcast some information.
Known Results. Graphs where election is possible were already studied but
the algorithms usually involved some particular knowledge. Solving the problem
for different knowledge has been investigated for some particular cases including
(see [Tel00] for details): - the network is known to be a tree - the network is
known to be complete - the network is known to be a grid - the nodes have
different identification numbers - the network is known to be a ring and has a
known prime number of vertices.

The classical proof techniques used for showing the non-existence of election
algorithm are based on coverings [Ang80], which is a notion known from algebraic
topology [Mas91]. A graph G is a covering of a graph H if there is a surjective
morphism from G to H which is locally bijective. The general idea is as follows.
If G and H are two graphs such that G covers H and G �= H, then every local
computation on H induces a local computation on G and every label which
appears in H appears at least twice in G. Thus using H it is always possible to
build a computation in G such that the label elected appears twice. By this way
it is proved that there is no election algorithm for G and H [Ang80].

A graph G is called covering-minimal if every covering from G to some H is a
bijection. Mazurkiewicz has proved that, knowing the size of graphs, there exists
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an election algorithm for the class of covering-minimal graphs [Maz97]. This
distributed algorithm, applied to a graph of size n, assigns bijectively numbers
of [1..n] to vertices of G.

In [MMW97] the notion of quasi-covering has been introduced to study the
problem of termination detection. A graph G is a quasi-covering of a graph H
if G is locally a covering of H (locally means that there is a vertex v of G and
a positive integer k such that the ball centered on v of radius k is a covering of
a ball of H).
The Main Result. In this paper, using some techniques of [MT00] developed for
the termination detection problem, we characterize which knowledge is necessary
and sufficient to have an election algorithm, or equivalently, what is the general
condition for a class of graphs to admit an election algorithm. More precisely we
prove the following theorem (Theorem 15):

There is an election algorithm for a family I of graphs if and only if graphs
of I are minimal for the covering relation and every graph G of I has quasi-
coverings of bounded radius in I.

Sufficient conditions given below are just special cases of criteria of Theorem
15.

We explain new parts in this theorem. It is well known (see above) that
the existence of an election algorithm needs graphs minimal for the covering
relation. Analogously to [MMW97], we prove in this paper that if a graph is
minimal for the covering relation and admits quasi-coverings of arbitrary large
size in the family there is no election algorithm. This part can be illustrated
by the family of prime rings. Indeed, prime rings are minimal for the covering
relation nevertheless there is no election algorithm for this family: without the
knowledge of the size, a ring admits quasi-covering prime rings of arbitrary large
size.

These two results prove one direction of Theorem 15. To prove the converse:

– we extend the Mazurkiewicz algorithm to labelled graphs;
– we prove that the Mazurkiewicz algorithm applied in a graph G enables the
reconstruction, on each node of G, of a graph K such that G is a quasi-
covering of K; and when the computation is terminated G is a covering of
K;

– we use an extension of an algorithm by Szymanski, Shi and Prywes [SSP85]
which enables the distributed detection of stable properties in a graph;

– we prove that the bounded size of quasi-coverings of a given graph enables
to each node v to detect the termination of the Mazurkiewicz algorithm and
finally each node can decide if it has obtained the maximum number among
numbers computed by the Mazurkiewicz algorithm.

Related Works. Among models related to our model there are local com-
putation systems as defined by Rosenstiehl et al. [FHR72], Angluin [Ang80],
Yamashita and Kameda [KY96] and Boldi and Vigna [BV99]. In [FHR72] a syn-
chronous model is considered, where vertices represent (identical) deterministic
finite automata. The basic computation step is to compute the next state of
each processor according to its state and the states of its neighbours. In [Ang80]
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an asynchronous model is considered. A basic computation step means that two
adjacent vertices exchange their labels and then compute new ones. In [KY96]
an asynchronous model is studied where a basic computation step means that a
processor either changes its state and sends a message or it receives a message.
In [BV99] networks are directed graphs coloured on their arcs; each proces-
sor changes its state depending on its previous state and on the states of its
in-neighbours. Activation of processors may be synchronous, asynchronous or
interleaved.

2 Graphs, Labelled Graphs and Coverings

We only consider finite, undirected and connected graphs without multiple edges
and self-loops. If G is a graph, V (G) denotes the set of vertices and E(G) denotes
the set of edges. Let v be a vertex, we denote by BG(v, k), or briefly B(v, k), the
centered ball of radius k with center v. The set of neighbours of a vertex v in G
is denoted by NG(v).

A homomorphism between two graphs G and H is a mapping γ : V (G) →
V (H) such that if {u, v} is an edge of G then {γ(u), γ(v)} is an edge of H. Since
we deal only with graphs without self-loops, this implies that γ(u) �= γ(v) if
{u, v} is an edge of G. Note also that γ(NG(u)) ⊆ NH(γ(u)). We say that γ is
an isomorphism if γ is bijective and γ−1 is also a homomorphism. By G � G′

we mean that G and G′ are isomorphic. A class of graphs will be any class of
graphs in the set-theoretical sense containing all graphs isomorphic to some of
its members. The class of all graphs will be denoted G.

Throughout the paper we will consider only connected graphs where vertices
and edges are labelled with labels from a possibly infinite alphabet L. A graph
labelled over L will be denoted by (G, λ), where G is a graph and λ : V (G) ∪
E(G)→ L is the labelling function The graph G is called the underlying graph
and the mapping λ is a labelling of G. The class of labelled graphs over some
fixed alphabet L will be denoted by GL.

Let (G, λ) and (G′, λ′) be two labelled graphs. Then (G, λ) is a subgraph
of (G′, λ′), denoted by (G, λ) ⊆ (G′, λ′), if G is a subgraph of G′ and λ is the
restriction of the labelling λ′ to V (G)∪E(G). A mapping ϕ is a homomorphism
from (G, λ) to (G′, λ′) if ϕ is a graph homomorphism from G to G′ which pre-
serves the labelling, i.e. such that λ′(ϕ(x)) = λ(x) holds for every v ∈ V (G) and
if {u, v} is an edge of G then λ({u, v}) = λ({ϕ(u), ϕ(v)}). A labelled graph will
be designed by a bold letter like G, H etc ... If G is a labelled graph, G denotes
the underlying graph. An occurrence of (G, λ) in (G′, λ′) is an isomorphism ϕ
between (G, λ) and a subgraph (H, η) of (G′, λ′). We say that a graph G is a
covering of a graph H if there exists a surjective homomorphism γ from G onto
H such that for every vertex v of V (G) the restriction of γ to BG(v, 1) is a bi-
jection onto BH(γ(v), 1). The covering is proper if G and H are not isomorphic.
It is called connected if G (and thus also H) is connected. We extend the notion
of covering to labelled graphs in an obvious way. The labelled graph (H, λ′) is
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covered by (G, λ) via γ, if γ is a homomorphism from (G, λ) to (H, λ′) whose
restriction to BG(v, 1) is an isomorphism from (BG(v, 1), λ) to (BH(γ(v), 1), λ′).

A graph G is called covering-minimal if every covering from G to some H
is a bijection. Graphs with prime size (or with prime number of edges), trees,
labelled graphs with a distinguished vertex, graphs with nodes having different
identification numbers are examples of covering-minimal graphs.

Let H be a connected graph and let G be a covering of H via γ. Then there
exists an integer q such that, for every v ∈ V (H), we have card(γ−1(v)) = q.
The integer q is called the number of sheets of the covering.

3 Local Computations in Graphs

Graph relabelling systems and more generally local computations satisfy the fol-
lowing constraints which seem to be natural when describing distributed com-
putations with a decentralized control:

(C1) they do not change the underlying graph but only the labelling of its com-
ponents (edges and/or vertices), the final labelling being the result of the
computation,

(C2) they are local, that is, each relabelling step changes only a connected sub-
graph of a fixed size in the underlying graph,

(C3) they are locally generated, that is, the application condition of the relabelling
only depends on the local context of the relabelled subgraph.

3.1 Local Computations

Local computations as considered here can be described in the following general
framework. Let GL be the class of L-labelled graphs and let R ⊆ GL × GL be a
binary relation on GL. Then R will denote a graph rewriting relation. We assume
that R is closed by isomorphism, i.e., whenever GRG′ if H � G then HRH′
for some labelled graph H′ � G′. In the remainder of this paper R∗ stands for
the reflexive and transitive closure of R. The labelled graph G is R−irreducible
if there is no G′ such that GRG′. Let G ∈ GL, then IrredR(G) denotes the set
of R−irreducible graphs (or just irreducible if R is fixed) which can be obtained
from G using R. The relation R is noetherian if there is no infinite relabelling
chain G1RG2R . . .

Definition 1. Let R ⊆ GL × GL be a graph rewriting relation. 1. R is a rela-
belling relation if whenever two labelled graphs are in relation then the underlying
graphs are equal i.e.: GRH =⇒ G = H. 2. R is local if only labels of a ball
of radius 1 may be changed by R, i.e., (G, λ)R(G, λ′) implies that there exists a
vertex v ∈ V (G) such that λ(x) = λ′(x) for every x /∈ V (BG(v, 1))∪E(BG(v, 1)).

The next definition states that a local relabelling relation R is locally gener-
ated if its restriction on centered balls of radius 1 determines its computation on
any graph.
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Definition 2. Let R be a local relabelling relation. Then R is locally generated
if the following is satisfied: For any labelled graphs (G, λ), (G, λ′), (H, η), (H, η′)
and any vertices v ∈ V (G), w ∈ V (H) such that the balls BG(v, 1) and BH(w, 1)
are isomorphic via ϕ : V (BG(v, 1)) −→ V (BH(w, 1)) and ϕ(v) = w, the following
three conditions

1. λ(x) = η(ϕ(x)) and λ′(x) = η′(ϕ(x)) for all x ∈ V (BG(v, 1)) ∪ E(BG(v, 1))
2. λ(x) = λ′(x), for all x /∈ V (BG(v, 1)) ∪ E(BG(v, 1))
3. η(x) = η′(x), for all x /∈ V (BH(w, 1)) ∪ E(BH(w, 1))

imply that (G, λ)R(G, λ′) if and only if (H, η)R(H, η′).

3.2 Local Computations and Coverings

The fundamental lemma which connects coverings and locally generated rela-
belling relations states that whenever G is a covering of H, every local compu-
tation in H can be lifted to a local computation in G which is compatible with
the covering relation. This is expressed in the following diagram:

G −−−−→
R∗

G′�covering

�covering

H −−−−→
R∗

H′

Lemma 3 (Lifting Lemma). Let R be a locally generated relabelling relation
and let G be a covering of H via γ. Moreover, let HR∗H′. Then there exists G′

such that GR∗G′ and G′ is a covering of H′.

3.3 Local Computations and Quasi-coverings

Definition 4. Let G,H be two labelled graphs and let γ be a partial function on
V (G) that assigns to each element of a subset of V (G) exactly one element of
V (H). Then G is a quasi-covering of H via γ if there exists a finite or infinite
covering G0 of H via δ, vertices z0 ∈ V (G0), z ∈ V (G), and an integer r > 0
such that:

1. BG(z, r) is isomorphic via ϕ to BG0(z0, r),
2. the domain of definition of γ contains BG(z, r), and
3. γ = δ ◦ ϕ when restricted to V (BG(z, r)).

The integer r is called the radius of the quasi-covering, card(V (BG(z, r))) is
called the size of the quasi-covering, and z the center. The graph G0 is the
associated covering of the quasi-covering.
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Fig. 1. G is a quasi-covering of H of radius r

The idea behind quasi-coverings is to enable the simulation of local computations
on a given graph in a restricted area of a larger graph, such that the simulation
can lead to false conclusions. The restricted area where we can perform the simu-
lation will shrink while the number of simulated steps increases. They have been
introduced to study the problem of the detection of the termination [MMW97].
The following lemma makes precise the shrinking of the radius when one step of
simulation is performed :
Lemma 5 (Quasi-Lifting Lemma). Let R be a locally generated relabelling
relation and let G be a quasi-covering of H of radius r via γ. Moreover, let
HRH′. Then there exists G′ such that GR∗G′ and G′ is a quasi-covering of
radius r − 2 of H′.
Definition 6. We define the number of sheets q of a quasi-covering to be the
minimal cardinality of the sets of preimages of vertices of H which are in the
ball: q = minv∈V (H) |{w ∈ δ−1(v)|BG(w, 1) ⊂ BG(z, r)}|.
Using the notation of the definition of a quasi-covering, we say that a quasi-
covering is strict if BG(z, r − 1) is not equal to G. Note that any non-strict
quasi-covering is a covering. We have:
Lemma 7. Let G be a strict quasi-covering of H of radius r via γ. Then, for
any q ∈ IN, if r ≥ q|V (H)| then γ has at least q sheets.

4 Two Fundamental Algorithms

4.1 The Mazurkiewicz Enumeration Algorithm

A distributed enumeration algorithm on a graph G is a distributed algorithm
such that the result of any computation is a labelling of the vertices that is a
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bijection from V (G) to {1, 2, . . . , |V (G)|}. In particular, an enumeration of the
vertices where vertices know whether the algorithm has terminated solves the
election problem. In [Maz97] Mazurkiewicz presents a distributed enumeration
algorithm for the class of graphs minimal for the covering relation. In [Maz97],
the computation model consists exactly in relabelling balls of radius 1. The
Mazurkiewicz algorithm will be denotedM. In the following we give a description
of the Mazurkiewicz algorithm including its extension to labelled graphs.

Description. We first give a general description of the algorithmM applied to
the graph G. Let G = (G, λ), let v0 be a vertex of G, let {v1, ..., vd} be the set
of neighbours of v0.

The label of the vertex v0 used byM is the couple (λ(v0), c(v0)) where c(v0)
is a triple (n(v0), N(v0), M(v0)) representing the following information during
the computation(formal definitions are given below) :

– n(v0) ∈ IN is the number of the vertex v0 computed by the algorithm
– N(v0) ∈ N is the local view of v0, it is the set of triples defined by :

{(n(vi), λ(vi), λ({v0, vi}))|1 ≤ i ≤ d}
– M(v0) ⊂ IN × L × N is the mailbox of v0 and contains all the information
received by v0 at this step of the computation.

Every vertex v attempts to get its own number n(v), which shall be an integer
between 1 and |V (G)|. A vertex chooses a number and broadcasts it together
with its label and its labelled neighbourhood all over the network. If a vertex
u discovers the existence of another vertex v with the same number, then it
compares its label and its local view, i.e., its number-labelled ball, with the local
view of its rival v. If the label of v or the local view of v is “stronger”, then u
chooses another number. Each new number, with its local view, is broadcasted
again over the network. At the end of the computation it is not guaranteed that
every node has a unique number, unless the graph is covering-minimal. However,
all nodes with the same number will have the same label and the same local view.

The crucial property of the algorithm is based on a total order on local views
such that the local view of any vertex cannot decrease during the computation.
We assume that the set of labels L is equipped with a total order denoted > .
Let v0 be a vertex and let {v1, ..., vd} the neighbours of v0 we assume that:
n(v1) ≥ n(v2) ≥ ... ≥ n(vd), if n(vi) = n(vi+1) then λ(vi) ≥ λ(vi+1), if n(vi) =
n(vi+1) and λ(vi) = λ(vi+1) then λ({v0, vi}) ≥ λ({v0, vi+1}). Then to N(v), the
local view, we associate the d-tuple ((n(v1), λ(v1), λ({v0, v1})), . . . , (n(vd), λ(vd),
λ({v0, vd}))).

Let N> be the set of such ordered tuples. We define a total order, ≺, on N>
by comparing the numbers, then the vertex labels and finally the edge labels.
Formally, let ((n1, l1, e1), ..., (nd, ld, ed)) and ((n′1, l

′
1, e
′
1), ..., (n

′
d′ , l
′
d′ , e′d′)) be two

elements of N> then

((n′1, l
′
1, e
′
1), ..., (n

′
d′ , l
′
d′ , e

′
d′)) ≺ ((n1, l1, e1), ..., (nd, ld, ed))
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if one of the following holds

1. n1 = n′1, ..., ni−1 = n′i−1 and n′i < ni for some i or
2. d′ < d and n1 = n′1, ..., nd′ = n′d′ or
3. d = d′, n1 = n′1, ..., nd = n′d and l1 = l′1, ..., li−1 = l′i−1 and l′i <L li for some

i or
4. d = d′ and n1 = n′1, ..., nd = n′d and l1 = l′1, ..., ld = l′d and e1 = e′1, ..., ei−1 =

e′i−1 and e′i <L ei for some i.

The initial labelling of the vertex v0 is (λ(v0), (0, ∅, ∅)). The rules are de-
scribed below for a given centered ball B = B(v0, 1) with center v0. The vertices
v of B have labels (λ(v), (n(v), N(v), M(v)). The labels obtained after applying
a rule are (λ(v), (n′(v), N ′(v), M ′(v))). To make the rules easier to be read, we
omit labels that are left unchanged.

M–1 : Diffusion rule
Precondition :
• ∃v ∈ B(v0, 1), M(v) �= M(v0)

Relabelling :
• For all v ∈ B(v0, 1), M ′(v) :=

⋃
w∈B

M(w)

M–2 : Renaming rule
Precondition :
• ∀v, M(v) = M(v0)
• 1. n(v0) = 0

or
2. (n(v0) > 0 and ∃ (n(v0), l, N) ∈M(v0))

such that ((λ(v0) < l) or
((λ(v0) = l) and (N(v0) ≺ N)))

Relabelling :
• n′(v0) = 1 +max{n ∈ IN | (n, l′, N) ∈M(v0)}
• ∀v ∈ B(v0, 1), N ′(v) is obtained from N(u) by replacing the value
of n(v0) by n′(v0).
• ∀v ∈ B(v0, 1), the mailbox contents M(v) changes to

M ′(v) = M(v) ∪ ⋃
w∈B
{(n′(w), λ(w), N ′(w))}.

Let G be a labelled graph, if v is a vertex of G, the label of v after the
run ρ of the Mazurkiewicz algorithm is denoted (λ(v), cρ(v)) with cρ(v) =
(nρ(v), Nρ(v), Mρ(v)) and (λ, cρ) denotes the final labelling.

Similar to [Maz97], for covering-minimal graphs the algorithm computes a
one-to-one correspondance nρ between the set of vertices of G and the set of
integers {1, . . . , |V (G)|}.

We interpret the final labelling as a graph that each vertex could compute.
For a mailbox M , we define for each integer n in {1, . . . , |V (G)|} the maximal
mail box element of the form (n, l, N) :

F (M) = {(n, l, N) ∈M | there is no (n, l′, N ′) ∈M verifying
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l′ > l or (l = l′ and N ≺ N ′)}.
For a given M , we define the graph GM as the following graph:

V (GM ) = {n | ∃N, l, (n, l, N) ∈ F (M)}
E(GM ) = {{n, n′} | (n, l, N) ∈ F (M), and N = (..., (n′, l′, l′′), ...)}

We also define a labelling on GM as follows, λM (n) = l, such that there exists
N, (n, l, N) ∈ F (M). Note that uniqueness of l comes from the definition of
F (M). Let ρ be a run of M, then (GMρ(u), λMρ(u)) does not depend on u. We
then define ρ(G) = (GMρ(u), λMρ(u)). As F (Mρ(u)) represents the final numbers
and neighbourhoods, we have the following.

Proposition 8. For a given execution ρ of the Mazurkiewicz algorithm, we have
V (ρ(G)) = {nρ(v) | v ∈ V (G)} and E(ρ(G)) = {{nρ(v), nρ(w)} | {v, w} ∈
E(G)}.

The proposition means that ρ(G) is the quotient graph of G by nρ. Before
we emphasize the role of ρ(G), note that ρ(G) can be locally computed by every
vertex, and that the graph depends only on the label Mρ.

If G = (G, λ) is a labelled graph ρ(G) denotes the labelled graph defined on
(V (Gρ), E(Gρ)) by the labelling such that the label of nρ(v) is λ(v).

The next proposition states that we can see a run ofM as computing a graph
such that:

Proposition 9. Let G be a labelled graph. For all runs ρ ofM, G is a covering
of ρ(G). For all H such that G is a covering of H, there exists a run ρ such
that H � ρ(G) (fairness).

4.2 An Algorithm to Detect Stable Properties

In this section we describe in our framework the algorithm by Szymanski, Shi
and Prywes (the SSP algorithm for short) [SSP85]. We consider a distributed al-
gorithm which terminates when all processes reach their local termination condi-
tions. Each process is able to determine only its own termination condition. The
SSP algorithm detects an instant in which the entire computation is achieved.
Let G be a graph, to each node v is associated a predicate P (v) and an inte-
ger a(v). Initially P (v) is false and a(v) is equal to −1. Transformations of the
value of a(v) are defined by the following rules. Each local computation acts on
the integer a(v0) associated to the vertex v0; the new value of a(v0) depends
on values associated to vertices of BG(v0, 1). More precisely, let v0 be a vertex
and let {v1, ..., vd} be the set of vertices adjacent to v0. If P (v0) = false then
a(v0) = −1; if P (v0) = true then a(v0) = 1 + Min{a(vk) | 0 ≤ k ≤ d}. In
[SSP85] the following assumption is considered: for each node v the value of
P (v) eventually becomes true and remains true for ever.

In this paper we use a variant of the SSP algorithm presented in [MT00]. For
each node v the value of P (v) eventually becomes true and either remains true
for ever or becomes false and remains false for ever. Thus the predicate P (v) may
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change twice: initially P (v) is false and a(v) is equal to −1, P (v) may become
true and then a(v) is equal to 0, if P (v) is true it may become false, in this case
it remains false for ever and a(v) is equal to −1. We denote this variant by VSSP
algorithm. We will use the following notation. Let (Gi)0≤i be a relabelling chain
associated to the VSSP algorithm. We denote by ai(v) (resp. Pi(v)) the integer
(resp. the boolean) associated to the vertex v of Gi. The fundamental property
is:
Proposition 10. Let (Gi)0≤i be a relabelling chain associated to the VSSP al-
gorithm. Let v ∈ V (G), i > 0 such that ai(v) > 0. Let p > 0, we suppose that
for some integer j > i : aj(v) = ai(v) + p. Let k < Min(ai(v), p2 ). Then :
∀w ∈ B(v, k) ai(w) ≥ 0.

5 The Mazurkiewicz Algorithm + the VSSP Algorithm
= Reconstruction Algorithm with Local Agreement

Following [MT00], the main idea develloped in this section is to use the VSSP
algorithm for computing the radius of stability of M in a relabelling chain at
a given step and at a given vertex. In other words, any vertex will know until
which distance all vertices agree with its topology reconstruction.

Let G = (G, λ) be a labelled graph, let (Gi)0≤i be a relabelling chain asso-
ciated to a run of the Mazurkiewicz algorithm on the graph G. To the node v
of Gi is associated the label (λ(v), (ni(v), Ni(v), Mi(v))). Using the interpreta-
tion of Subsection 4.2 by defining F (Mi), this label enables in some cases the
reconstruction of a graph.

We introduce on the node v of the graph Gi the predicate pH(v), that will
be true if label of v in Gi enables the reconstruction of H = GMi

(v) and
(ni(v), λ(v), Ni(v)) ∈ F (Mi(v)). The associated value aH(v) is computed by
the VSSP algorithm. We note Q the merging of the two algorithms.

First, we formalize the output of Q. We note

H(v) =

{
GMi(v)if it is defined and (ni(v), λ(v), Ni(v)) ∈ F (Mi(v))
⊥ otherwise.

(1)

a(v) =

{
−1 if H(v) = ⊥
aH(v)(v) otherwise.

(2)

Note that, while H(v) = ⊥, the node knows that it is in a non final state.
The output of Q is now, on each vertex v, < H(v), a(v) >.

For a run of the Mazurkiewicz algorithm on G, we note (G(i))(0≤i) the la-
belled graph obtained by adding on each node v ofG the number ni(v) computed
by the Mazurkiewicz algorithm at step i on the vertex v. The main property of
the computations is now:
Proposition 11 (quasi-covering progression). At all step j, for all vertex
v, the output of Q on v is a couple < H, a > such that if H �= ⊥, then there
exists a previous step i < j, such that G(i) is a quasi-covering of H of center v
and of radius �a3 �.
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6 Main Result: A Characterization of Families of Graphs
in Which Election Is Possible

6.1 Impossibility

Considering a labelled graph, we say that a given vertex v has been elected when
the graph is in a global state such that exactly one vertex has the label elected
and all other vertices have the label non-elected.

Let I be a class of connected labelled graphs. Let R be a locally generated
relabelling relation, we say that R is an election algorithm for the class I if R
is noetherian and for any graph G of I and for any normal form G′ obtained
from G, GR∗G′, there exists exactly one vertex with the label elected all other
vertices have the label non-elected.

Angluin showed that no election algorithm exists for a family of graphs con-
taining a graph H and a proper covering of H [Ang80]. In fact there is no election
algorithm for a not covering-minimal labelled graph. Furthermore if we consider
a class I of labelled graphs containing a graph and quasi-coverings of arbitrary
large size there is no election algorithm for this family. More precisely:
Proposition 12. Let G be a labelled graph which is not covering-minimal. Then
there is no election algorithm for G.

Proposition 13 (Necessary condition). Let I be a class of connected co-
vering-minimal labelled graphs such that there is an algorithm of election for
this class. Then there exists a computable function τ : I → IN such that for all
graph H of I, there is no quasi-covering of H, distinct of H, of radius greater
than τ(H) in I.
Proof. Let R denote an algorithm of election on I. For a graph H ∈ I, define
τ(H) = 2|V (H)| + 2n where n is the number of steps of an entire execution of
R on H. Then τ has the desired property.

We prove this by contradiction. Let H ∈ I. Let C be the relabelling chain of
length n on H used for the definition of τ(H). C = (H = H0,H1, ...,Hn) such
that Hn is a normal form. By hypothesis the label elected appears exactly once
in Hn.

Let G be a quasi-covering of H of radius τ(H), distinct of H. By iteration of
Lem. 5, we get G′ such that GR∗G′ and G′ is a quasi-covering of Hn of radius
τ(H)− 2n = 2|V (H)|. The graph G being covering minimal and distinct of H,
the quasi-coveringG′ ofHn is strict. Hence, by Lem. 7, the label elected appears
at least twice in G′. A contradiction.

6.2 Possibility

Let R denote a locally generated relabelling relation and let G denote a labelled
graph. Let I be a class of labelled graphs, terminal configurations obtained from
I are said to be locally characterized if there exists a set F of labels such that for
any G ∈ I and for any G′, with GR∗G′, G′ is a terminal configuration if and
only if there exists a vertex v of G′ having its label in F. In this case termination
is said to be explicit. First we have the following theorem :
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Proposition 14 (Graph reconstruction). Let I be a class of connected co-
vering-minimal labelled graphs. Suppose that there exists a computable function
τ : I → IN such that for all graphs G of I, there is no quasi-covering of G of
radius greater than τ(G) in I, except G. Then there exists a locally generated
relabelling relation with explicit termination which computes for any graph G in
I and for any vertex v in V (G) the graph G.

Proof. We use Q with the termination condition on the output H ∈ I and a ≥
3τ(H). Termination is a corollary of the fact thatM will eventually terminate
and then the counter a will increase indefinitely. When this termination condition
is fulfilled, by Prop. 11, we have that there exists a previous step n such that
G(n) is a quasi-covering of radius τ(H(v)) of H(v) and by hypothesis on τ , we
deduce that G(n) = H(v).

The knowledge of this reconstructed graph implies that each node knows if
its number is the maximal or not among numbers of the graph. Finally, each
node can decide if it is elected or not. The result of this subsection and of the
previous are summarized in the the following theorem.

Theorem 15. Let I be a class of connected labelled graphs. There exists an
election algorithm for I if and only if graphs of I are minimal for the covering
relation, and there exists a computable function τ : I → IN such that for all
graph G of I, there is no quasi-covering of G of radius greater than τ(G) in I,
except G itself.

6.3 Applications

Known results appears now as simple corollaries of Th. 15, for possibility:

– [Maz97] Covering minimal networks where the size is known ;
– Trees, complete graphs, grids, networks with identities: those families con-
tains no q-sheeted quasi-covering of a given graph for q ≥ 2, hence the τ
function can be twice the size of the graph, see Lem. 7.

We also get some new possiblity results, in particular for covering-minimal
graphs with at least 1 and at most k distinguished vertices or for covering-
minimal graphs where a bound of the size is known (it is new and cannot be
directly derived from [Maz97]). On the impossibility side, it is a corollary of
Th. 15 that there is no election algorithm for the family of covering-minimal tori
(prime rings are a particular case).

We also notice that the complexity of the algorithm of Mazurkievicz, com-
puted in [Godar], is often worse than the optimal known bounds. That lack of
optimality is the counterpart of the universality of the algorithm.
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