
Higher-Order Pushdown Trees Are Easy

Teodor Knapik1, Damian Niwiński2�, and Pawe�l Urzyczyn2��

1 Université de la Réunion, BP 7151,
97715 Saint Denis Messageries Cedex 9, Réunion

knapik@univ--reunion.fr
2 Institute of Informatics, Warsaw University

ul. Banacha 2, 02–097 Warszawa, Poland
{niwinski,urzy}@mimuw.edu.pl

Abstract. We show that the monadic second-order theory of an infinite
tree recognized by a higher-order pushdown automaton of any level is
decidable. We also show that trees recognized by pushdown automata
of level n coincide with trees generated by safe higher-order grammars
of level n. Our decidability result extends the result of Courcelle on
algebraic (pushdown of level 1) trees and our own result on trees of
level 2.

Introduction

The Rabin Tree Theorem, stating the decidability of the monadic second-order
(MSO) theory of the full n-ary tree (SnS), is among the most widely applied
decidability results. Rabin himself [15] inferred a number of decidability results
for various mathematical structures interpretable in SnS (e.g., countable linear
orders). Muller and Schupp [14] gave rise to the study of graphs definable in
SnS, by showing decidability of the MSO theory of any graph generated by
a pushdown automaton; this result was further extended by Courcelle [2] to
equational graphs, and by Caucal [1] to prefix–recognizable graphs.

However, a more sophisticated use of the Rabin Tree Theorem allows to go
beyond the structures directly interpretable in SnS. Indeed, Courcelle [2] es-
tablished the decidability of the MSO theory of any algebraic tree, i.e., a tree
generated by a context–free (algebraic) tree grammar. Such a tree can be also
presented as a computation tree of a pushdown automaton. The interest in this
kind of structures (and their theories) arose in recent years in the verification
community, in the context of verification of infinite state systems (see [13] and
references therein, and [18] particularly for the model-checking problem on push-
down trees).

Context-free grammars and pushdown automata can be viewed as the first
level of an infinite hierarchy of higher-order grammars and higher-order push-
down automata. These hierarchies, introduced in the early eighties by Engel-
friet [6], have been subsequently extensively studied, in particular by Damm [4],
� Partly supported by KBN Grant 7 T11C 027 20.
�� Partly supported by KBN Grant 7 T11C 028 20.

M. Nielsen and U. Engberg (Eds.): Fossacs 2002, LNCS 2303, pp. 205–222, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

206 Teodor Knapik, Damian Niwiński, and Pawe8l Urzyczyn

and Damm and Goerdt [5]. We find it natural to examine the computation trees
of higher-order pushdown automata, as well as trees generated by higher-order
grammars, from the point of view of the decidability of their MSO theories. In-
deed, we would like to push the frontier of decidability in order to capture more
complex trees.

In [11], we have made the first step in this direction by showing decidability
of the MSO theory of trees generated by grammars of level two subject to an
additional restriction on grammars which we called safety . This constraint is
similar to the restriction to “derived types” in [4, 5]. It is still an open problem
if this restriction is essential for decidability, or whether it really reduces the
generating power of grammars. However, in the present paper we are able to
state two results.

(1) After a natural generalization of the concept of safety, a tree generated by a
safe grammar of any level enjoys a decidable MSO theory.

(2) A tree is generated by a safe grammar of level n if and only if it can be
recognized by a pushdown automaton of level n.

Consequently (by (1) and the “if” part of (2)), the monadic second order theory
of a tree recognized by a pushdown automaton of any level is decidable.

The “only if” part of (2) is of independent interest: it can be understood as an
implementation of higher-order recursion by higher-order stack. This implemen-
tation is simpler than that of [5] for the following reasons: because we are using
a simpler notion of a higher-order pushdown store, and because it works essen-
tially for arbitrary safe grammars, without any specific normal form restrictions.
(The few syntactic conditions we assume are merely for convenience.)

The question of decidability of MSO theories of higher-level trees has been re-
cently investigated also by Courcelle and Knapik [3]. Following ideas of Damm [4],
the authors study an operation of evaluation which, when applied to a tree (gen-
erated by a grammar) of level n, produces a tree of level n+ 1. They show that
this evaluation operation preserves MSO decidability, and that any algebraic
(level 1) tree can be obtained by evaluation of a regular tree. While multiple
application of evaluation leads to trees of arbitrary high level, it is not clear if
all trees generated by safe grammars can be obtained in this way.

Problems related to ours were addressed by H. Hungar, who studied graphs
generated by some specific higher-order graph grammars. He showed [7] decid-
ability of the monadic second-order theory (S1S) of paths of such graphs (not
the full MSO theory of graphs).

1 Preliminaries

Throughout the paper, the set of natural numbers is denoted ω and, for n ∈ ω,
the symbol [n] abbreviates {1, . . . , n}.

Types. We consider a set of types T constructed from a unique basic type 0: 0
is a type and, if τ1, τ2 are types, so is (τ1 → τ2) ∈ T . The operator → is assumed

Higher-Order Pushdown Trees Are Easy 207

to associate to the right. Note that each type is of the form τ1 → · · · → τn → 0,
for some n ≥ 0. A type 0→ · · · → 0 with n+ 1 occurrences of 0 is also written
0n → 0.

The level �(τ) of a type τ is defined by �(0) = 0, and �(τ1 → τ2) = max(1 +
�(τ1), �(τ2)). Thus 0 is the only type of level 0 and each type of level 1 is of the
form 0n → 0 for some n > 0. A type τ1 → · · · → τn → 0 is homogeneous (where
n ≥ 0) if each τi is homogeneous and �(τ1) ≥ �(τ2) ≥ . . . ≥ �(τn). For example a
type ((0→ 0) → 0) → (0→ 0) → (0→ 0→ 0) → 0→ 0 is homogeneous, but
a type 0→ (0→ 0) → 0 is not.

Higher–order terms. A typed alphabet is a set Γ of symbols with types in
T . Thus Γ can be also presented as a T -indexed family {Γτ}τ∈T , where Γτ is
the set of all symbols of Γ of type τ . We let the type level �(Γ) of Γ be the
supremum of �(τ), such that Γτ is nonempty.

Given a typed alphabet Γ , the set T (Γ) = {T (Γ)τ}τ∈T of applicative terms
is defined inductively, by

(1) Γτ ⊆ T (Γ)τ ;
(2) if t ∈ T (Γ)τ1→τ2 and s ∈ T (Γ)τ1 then (ts) ∈ T (Γ)τ2 .

Note that each applicative term can be presented in a form Zt1 . . . tn, where
n ≥ 0, Z ∈ Γ , and t1, . . . , tn are applicative terms. We say that a term t ∈ T (Γ)τ
is of type τ , which we also write t : τ . A term t : τ is said to be of level k
iff τ is of level k. We adopt the usual notational convention that application
associates to the left, i.e. we write t0t1 . . . tn instead of (· · · ((t0t1)t2) · · ·)tn. For
applicative terms t, t1, . . . , tm, and symbols z1, . . . , zm, of appropriate types, the
term t[z1:=t1, . . . , zk:=tk] is defined as the result of simultaneous replacement
in t of zi by ti, for i = 1, . . . ,m.

Trees. The free monoid generated by a set X is written X∗ and the empty word
is written ε. The length of word w ∈ X∗ is denoted by |w|.

A tree is any nonempty prefix–closed subset T of X∗ (with ε considered as
the root). If u ∈ T , x ∈ X, and ux ∈ T then ux is an immediate successor of u
in T . For w ∈ T , the set T.w = {v ∈ X∗ : wv ∈ T} is the subtree of T induced
by w. Note that T.w is also a tree, and T.ε = T .

Now let Σ be a typed alphabet of level 1. A symbol f in Σ is of type 0n → 0,
for n ≥ 0, and can be viewed as a (first–order) function symbol of arity n. Let
T ⊆ ω∗ be a tree. A mapping t:T → Σ is called a Σ–tree provided that if
t(w) :0k → 0 then w has exactly k immediate successors which are w1, . . . , wk
(hence w is a leaf whenever t(w) :0). The set of Σ–trees is written T

∞
(Σ).

If t:T → Σ is a Σ–tree, then T is called the domain of t and denoted by
T = Dom t. For v ∈ Dom t, the subtree of t induced by v is a Σ–tree t.v such that
Dom t.v = (Dom t).v, and t.v(w) = t(vw), for w ∈ Dom t.v. It is convenient
to organize the set T

∞
(Σ) into an algebra over the signature Σ, where for each

f ∈ Σ0n→0, the operation associated with f sends an n–tuple of trees t1, . . . , tn

208 Teodor Knapik, Damian Niwiński, and Pawe8l Urzyczyn

onto the unique tree t such that t(ε) = f and t.i = ti, for i ∈ [n]. Finite trees in
T
∞
(Σ) can be also identified with applicative terms of type 0 over the alphabetΣ

in the usual manner.
We also introduce a concept of limit. For aΣ-tree t, let t�n be its truncation to

the level n, i.e., the restriction of the function t to the set {w ∈ Dom t | |w| ≤ n}.
Suppose t0, t1, . . . is a sequence of Σ–trees such that, for all k, there is an m, say
m(k), such that, for all n, n′ ≥ m(k), tn�k = tn′�k. (This is a Cauchy condition
in a suitable metric space of trees.) Then the limit of the sequence tn, in symbols
lim tn, is a Σ–tree t which is the set-theoretical union of the functions tn�m(n)
(understanding a function as a set of pairs).

Monadic second–order logic. Let R be a relational vocabulary , i.e., a set of
relational symbols, each r in R given with an arity ρ(r) > 0. The formulas of
monadic second order (MSO) logic over vocabulary R use two kinds of variables :
individual variables x0, x1, . . ., and set variables X0, X1, Atomic formulas
are xi = xj , r(xi1 , . . . , xiρ(r)), and Xi(xj). The other formulas are built using
propositional connectives ∨,¬, and the quantifier ∃ ranging over both kinds of
variables. (The connectives ∧,⇒, etc., as well as the quantifier ∀ are introduced
in the usual way as abbreviations.) A formula without free variables is called a
sentence. Formulas are interpreted in relational structures over the vocabulary
R, which we usually present by A = 〈A, {rA : r ∈ R}〉, where A is the universe
of A, and rA ⊆ Aρ(r) is a ρ(r)-ary relation on A. A valuation is a mapping v
from the set of variables (of both kinds), such that v(xi) ∈ A, and v(Xi) ⊆ A.
The satisfaction of a formula ϕ in A under the valuation v, in symbols A, v |= ϕ
is defined by induction on ϕ in the usual manner.

Clearly, the satisfaction of a formula depends only on the valuation of its free
variables. The monadic second–order theory of A is the set of all MSO sentences
satisfied in A, in symbols MSO(A) = {ϕ : A |= ϕ}.

Let Σ be a typed alphabet of level 1, and suppose that the maximum of the
arities of symbols in Σ exists and equals mΣ . A tree t ∈ T∞(Σ) can be viewed as
a logical structure t, over the vocabulary RΣ = {pf : f ∈ Σ}∪{di : 1 ≤ i ≤ mΣ},
with ρ(pf) = 1, and ρ(di) = 2:

t = 〈Dom t, {ptf : f ∈ Σ} ∪ {dt
i : 1 ≤ i ≤ mΣ}〉.

The universe of t is the domain of t, and the predicate symbols are interpreted
by ptf = {w ∈ Dom t : t(w) = f}, for f ∈ Σ, and dt

i = {(w,wi) : wi ∈ Dom t},
for 1 ≤ i ≤ mΣ . We refer the reader to [16] for a survey of the results on monadic
second-order theory of trees.

Grammars. We now fix two disjoint typed alphabets, N = {Nτ}τ∈T and
X = {Xτ}τ∈T of nonterminals and variables (or parameters), respectively. A
grammar is a tuple G = (Σ,V, S,E), where Σ is a signature (i.e., a finite alphabet
of level 1), V ⊆ N is a finite set of nonterminals, S ∈ V is a start symbol of type
0, and E is a set of productions of the form

Fz1 . . . zm ⇒ w

Higher-Order Pushdown Trees Are Easy 209

where F : τ1 → τ2 · · · → τm → 0 is a nonterminal in V , zi is a variable of type
τi, and w is an applicative term in T (Σ ∪ V ∪ {z1 . . . zm}).

We assume that for each F in V , there is exactly one production in E with
F occurring on the left hand side. Furthermore, we make a proviso that each
nonterminal in a grammar has a homogeneous type, and that ifm ≥ 1 then τm =
0. This implies that each nonterminal of level > 0 has at least one parameter of
level 0 (which needs not, of course, occur at the right-hand side). The level of a
grammar is the highest level of its nonterminals.

In this paper, we are interested in grammars as generators of Σ-trees. Let,
as before, Σ⊥ = Σ ∪ {⊥}, with ⊥ : 0. First, with any applicative term t over
Σ ∪ V , we associate an expression t⊥ over signature Σ⊥ inductively as follows.

• If t = f , f ∈ Σ, then t⊥ = f .
• If t = X, X ∈ V , then t⊥ = ⊥.
• If t = (sr) then if s⊥ �= ⊥ then t⊥ = (s⊥r⊥), otherwise t⊥ = ⊥.

Informally speaking, the operation t �→ t⊥ replaces in t each nonterminal, to-
gether with its arguments, by ⊥. It is easy to see that if t is an applicative term
(over Σ ∪ V) of type 0 then t⊥ is an applicative term over Σ⊥ of type 0. Recall
that applicative terms over Σ⊥ of type 0 can be identified with finite trees.

We will now define the single-step rewriting relation→G among the terms over
Σ ∪ V . Informally speaking, t→G t′ whenever t′ is obtained from t by replacing
some occurrence of a nonterminal F by the right–hand side of the appropriate
production in which all parameters are in turn replaced by the actual arguments
of F . Such a replacement is allowed only if F occurs as a head of a subterm
of type 0. More precisely, the relation →G⊆ T (Σ ∪ V) × T (Σ ∪ V) is defined
inductively by the following clauses.

• Ft1 . . . tk →G t[z1:=t1, . . . , zk:=tk] if there is a production Fz1 . . . zk ⇒ t
(with zi : ρi, i = 1, . . . , k), and ti ∈ T (Σ ∪ V)ρi , for i = 1, . . . , k.

• If t →G t′ then (st) →G (st′) and (tq) →G (t′q), whenever the expressions in
question are applicative terms.

A reduction is a finite or infinite sequence of terms in T (Σ∪V), t0 →G t1 →G
As usual, the symbol →→G stands for the reflexive transitive closure of →G . We
also define the relation t�∞G t′, where t is an applicative term in T (Σ ∪ V) and
t′ is a tree in T

∞
(Σ⊥), by

• t′ is a finite tree, and there is a finite reduction sequence t = t0 →G . . . →G
tn = t′, or

• t′ is infinite, and there is an infinite reduction sequence t = t0 →G t1 →G . . .
such that t′ = lim t⊥n .

To define a unique tree produced by the grammar, we recall a standard approxi-
mation ordering on T

∞
(Σ⊥): t′ � t if Dom t′ ⊆ Dom t and, for each w ∈ Dom t′,

t′(w) = t(w) or t′(w) = ⊥. (In other words, t′ is obtained from t by replacing
some of its subtrees by ⊥.) Then we let

[[G]] = sup{t ∈ T∞(Σ⊥) : S �∞G t}

210 Teodor Knapik, Damian Niwiński, and Pawe8l Urzyczyn

It is easy to see that, by the Church–Rosser property of our grammar, the above
set is directed, and hence [[G]] is well defined since T

∞
(Σ⊥) with the approxi-

mation ordering is a cpo. Furthermore, it is routine to show that if an infinite
reduction S = t0 →G t1 →G . . . is fair , i.e., any occurrence of a nonterminal
symbol is eventually rewritten, then its result t′ = lim t⊥n is [[G]].

If a tree t is generated by a grammar of level n, we will sometimes say that
t is of level n.

2 Infinitary Lambda Calculus

In this section we recall some concepts and results from [11]. Our motivation
for introducing infinite lambda terms comes from the strategy of our proof.
Basically, we wish to reduce the MSO theory of a tree t of level n to the MSO
theory of some tree t′ of level n − 1. However, like in [11], it will be useful to
view the latter tree as an infinite lambda term (intuitively, evaluating to t).

Infinitary lambda calculus is an extension of the ordinary lambda calculus,
which allows the use of infinite lambda terms. We will identify infinite lambda
terms with certain infinite trees. More specifically, we fix a finite alphabet Σ of
level 1 called signature, and let Σ⊥ = Σ ∪ {⊥}, where ⊥ is a fresh symbol of
type 0. All our finite and infinite terms, called lambda trees are simply typed and
may involve constants from Σ⊥, and variables from a fixed countably infinite
set. In fact, we only consider lambda trees of types of level at most 1.

@

��
��

��
��

��
��

�

��
��
��
��
��
��
�

λx

M N M

Fig. 1. Application and abstraction

Definition 2.1. Let Σ◦ be an infinite alphabet of level 1, consisting of

• A binary function symbol @;
• All symbols from Σ⊥, as individual constants, regardless of their actual

types;
• Infinitely many individual variables, as individual constants;
• Unary function symbols λx for all variables x.

The set of all lambda trees (over a signature Σ) is the greatest set of Σ◦-trees,
given together with their types, such that the following conditions hold.

• Each variable x is a lambda tree of type 0.
• Each function symbol f ∈ Σ⊥ of type τ is a lambda tree of type τ .

Higher-Order Pushdown Trees Are Easy 211

• Otherwise each lambda tree is of type of level at most 1 and is either an
application (MN) or an abstraction (λx.M) (see Figure 1).

• If a lambda tree P of type τ is an application (MN) then M is a lambda
tree of type 0→ τ , and N is a lambda tree of type 0.

• If a lambda tree P of type τ has the form (λx.M), then τ = 0→ σ, and M
is a lambda tree of type σ.

Strictly speaking, the above is a co-inductive definition of the two-argument
relation “M is a lambda tree of type τ”. Formally, a lambda tree can be presented
as a pair (M, τ), where M is a Σ◦-tree (as defined in section 1), and τ is its
type satisfying the conditions above. Whenever we talk about a “lambda tree”
we actually mean a lambda tree together with its type. We warn the reader
about a possible confusion: The types associated with lambda trees by the above
definition are not the types of these trees viewed as terms over Σ◦ (but rather
as terms over Σ).

Let M be a lambda tree and let x be a variable. Each node of M labeled x
is called an occurrence of x in M . An occurrence of x is bound , iff it has an
ancestor labeled λx. The binder of this occurrence of x is the closest of all such
ancestors λx (i.e., one occurring at the largest depth). An occurrence of x which
is not bound is called free. We say that a variable x is free in a lambda tree M
iff it has a free occurrence in M . The (possibly infinite) set of all free variables
of M will be denoted by FV (M). A lambda tree M with FV (M) = ∅ is called
closed .

Clearly, ordinary lambda terms can be seen as a special case of lambda trees,
and the notion of a free variable in a lambda tree generalizes the notion of a
free variable in a lambda term. The n-th approximant of a lambda tree M ,
denoted M�n is defined by induction as follows:

• M�0 = ⊥, for all M ;
• (MN)�n+1 = (M�n)(N�n);
• (λx.M)�n+1 = λx(M�n).

That is, the n-th approximant is obtained by replacing all subtrees rooted at
depth n by the constant ⊥.

Let P (z/x) denote the result of replacing in P all free occurrences of a vari-
able x by another variable z.

Definition 2.2. A bisimulation on lambda trees is a binary relation∼ satisfying
the following conditions:

(1) If M ∼ N then M and N are of the same type.
(2) If M ∼ N then the root labels of M and N are either the same or both M

and N are abstractions.
(3) If λx.M ∼ λy.N , then M(z/x) ∼ N(z/y), whenever z is a fresh variable

(neither free nor bound in λx.M and λy.N).
(4) If (MN) ∼ (M ′N ′) then M ∼M ′ and N ∼ N ′.

Lemma 2.3. (1) The union ≈ of all bisimulations is a bisimulation itself.

212 Teodor Knapik, Damian Niwiński, and Pawe8l Urzyczyn

(2) On ordinary lambda-terms, the relation ≈coincides with the α-equivalence=α.
(3) M ≈ N holds if and only if M�n =α N�n holds for all n.
(4) If M ≈ N then FV (M) = FV (N).

The above lemma provides evidence that the greatest bisimulation is a correct
generalization of the notion of α-equivalence. That is, M ≈ N holds iff M and
N are identical up to names of bound variables. Following a common practice
in lambda calculus, alpha-equivalent lambda trees will be identified. In conse-
quence, all three statements M ≈ N , M =α N and M = N will be understood
as expressing the same property.

Lemma 2.4 (Principle of co-induction [8]). In order to prove thatM =α N ,
it is enough to find a bisimulation ∼ such that M ∼ N .

2.1 From Grammar Terms to Lambda Trees

Given a grammar G, we define co-inductively a relation Gג as the greatest relation
between terms in T (Σ ∪ V ∪ X) and lambda trees (over Σ) such that, for all
(t,M) ∈ Gג ,
(1) if t is a function symbol f then M = f ,
(2) if t is a variable x ∈ X0 then M = x,
(3) if t = Ft1, . . . tm, where F is a nonterminal whose production in G is

Fφ1 . . . φmx1 . . . xn ⇒ r, with variables φ1, . . . , φm of level ≥ 1 and vari-
ables x1, . . . , xn of level 0, t1. . . . tm are terms such that type(φi) = type(ti),
for i ∈ [m] then

M ∈ {λx′1 . . . x′n.N | (r[φ1:=t1, . . . , φm:=tm, x1:=x′1, . . . , xn:=x
′
n], N) ∈ ,{Gג

where the variables x′1, . . . , x
′
n are chosen so that no x′i occurs free in any of

tj ,
(4) if t = (t1t2) where t1 :0→ τ and t2 :0 thenM ∈ {(M1M2) | (t1,M1), (t2,M2)

∈ .{Gג
It is easy to see that any term t of level ≤ 1 using variables only from X0 is

in the form (1)–(4).

Lemma 2.5. Gג is a partial function defined for all terms in T (Σ ∪ V ∪X0) of
level ≤ 1. That is, for any such t, there exists a unique M (up to α-equivalence)
such that (t,M) ∈ .Gג

From now on Gג is considered as a function. The conditions (1)–(4) of the
above definition can now be stated as follows.

(1) G(t)ג = f , if t is a function symbol f ∈ Σ,
(2) G(t)ג = x, if t is a variable x ∈ X0,
(3) G(t)ג = λx′1 . . . x

′
n.גG(r[φ1:=t1, . . . , φm:=tm, x1:=x′1, . . . , xn:=x

′
n]), if t =

Ft1 . . . tm, for some nonterminal F , such that Fφ1 . . . φmx1 . . . xn = r is
a production of G. The variables x′1, . . . , x

′
n are chosen so that no x′i occurs

free in any of tj ,

Higher-Order Pushdown Trees Are Easy 213

(4) G(t)ג = ,(G(t2)גG(t1)ג) if t = (t1t2) where t1 :0→ τ and t2 :0.

We will be mainly interested in ,G(S)ג where S is the start symbol of the gram-
mar. It can be viewed as a lambda term obtained by a usually infinite process
of expansion, according to the rules of the grammar. (Intuitively, it is a lambda
term “evaluating” to the tree [[G]].)

3 Safe Grammars

The following is an extension of the definition from [11] to higher types.

Definition 3.1. A term of level k > 0 is unsafe if it contains an occurrence of a
parameter of level strictly less than k, otherwise the term is safe. An occurrence
of an unsafe term t as a subexpression of a term t′ is safe if it is in the context
. . . (ts) . . ., otherwise the occurrence is unsafe. A grammar is safe if no unsafe
term has an unsafe occurrence at a right-hand side of any production.

Example: Let f, g, h, a, b be signature symbols of arity 2,1,1,0,0, respectively.
Consider a grammar of level 2 with nonterminals S : 0, and F : (0→ 0) → 0→
0→ 0, and productions

S ⇒ Fgab
Fϕxy ⇒ f(F(Fϕx)y(hy))(f(ϕx)y)

This grammar is not safe, because of the unsafe subterm Fϕx, which is not
applied to an argument. However, it is equivalent to an algebraic grammar with
the following productions:

S ⇒ G(ga)b

Gzy ⇒ f(G(Gzy)(hy))(fzy)
But life is not always so easy. If we replace the above production for F by a
slightly different one:

Fϕxy ⇒ f(F(Fϕx)y(hy))(f(ϕy)x)
we obtain a grammar which is conjectured not to be equivalent to a safe grammar
of any level.

The crucial observation is the following.

Lemma 3.2. If a grammar G is safe then the lambda tree G(S)ג can be con-
structed using only the original variables of the grammar. That is, whenever
clause (3) is applied, the variables x′1, . . . , x

′
n can be chosen just x1, . . . , xn.

Proof. We use safety only with respect to parameters of level 0. Observe that
substitution preserves safety and a subterm of a safe term is again safe. This fol-
lows that whenever clause (3) is applied, the terms t1, . . . , tm are safe. Formally,
we modify the definition of Gג to G′ג , such that the clause (3) applies only if the
terms t1, . . . , tm are safe (otherwise, say, G(t)′ג = ⊥), and show that G(S)′ג and
G(S)ג are bisimilar using the condition (3) of Lemma 2.3. ✷

214 Teodor Knapik, Damian Niwiński, and Pawe8l Urzyczyn

In [11], we have essentially established the result which, by combining The-
orem 2 and Proposition 4 from there with Lemma 3.2 above, can be rephrased
as follows.1

Theorem 3.3 ([11]). If a grammar G is safe then the MSO theory of the tree
[[G]] is reducible to the MSO theory of ,G(S)ג that is, there exists a recursive
mapping of sentences ϕ �→ ϕ′ such that [[G]] |= ϕ iff G(S)ג |= ϕ′.

By this, MSO theory of a tree generated by a safe grammar G reduces to the
MSO theory of .G(S)ג Our induction argument will consist in showing that the
latter can be generated by a grammar of level n− 1.

Definition 3.4. Let G = (Σ,V, S,E) be a safe grammar of level n ≥ 2. We
may assume that the parameters of type 0 occurring in distinct productions are
different. Let X G0 = {x1, . . . , xL} be the set of all parameters of type 0 occurring
in grammar G. We define a grammar of level n − 1 Gα = (Σα, V α, Sα, Eα) as
follows.

It is convenient first to define a transformation α of (homogeneous) types,
that maps 0 to 0, 0� → 0 to 0 and maps a type τ1 → · · · → τn with �(τn) ≤ 1
and �(τn−1) > 1, inductively, to α(τ1) → · · · → α(τn). Note that, in particular,
α maps (0k1 → 0) → · · · → (0km → 0) → 0� → 0 to 0m → 0. We will denote
α(τ) by τα. Let Σα = Σ ∪ {@, λx1, . . . , λxL, x1, . . . , xL}, where all symbols
from Σ as well as (former) parameters x1, . . . , xL are of arity 0, the symbol
@ is binary, and the symbols λxi are unary. The set V α = {Fα : F ∈ V }
is a copy of V , with Fα : τα, whenever F : τ . Finally, whenever there is a
production Fφ1 . . . φmy1 . . . yn ⇒ r in E, where y1, . . . , yn are the parameters
of level 0, there is a production Fαφ1 . . . φm ⇒ λy1 . . . λyn.r

α in Eα, where the
transformation of typed terms r : τ �→ rα : τα is defined inductively by

• α : F �→ Fα,
• α : z �→ z, for any parameter z,
• α : (ts) �→ (tαsα), whenever s : τ with �(τ) ≥ 1,
• α : (ts) �→ ((@tα)sα), whenever s : 0 (hence consequently tα, sα : 0).

Note that all parameters of G of type τ become parameters of Gα of type τα

except for the parameters of type 0 which become constants.

The following is an immediate consequence of the definition.

Lemma 3.5. If G is safe then Gα is safe, too.

Lemma 3.6. The trees G(S)ג and [[Gα]] coincide.

Proof. By Principle of co-induction 2.4, we check that these trees are bisimilar
using the condition (3) of Lemma 2.3. ✷

1 The main step in [11] is a reduction of the MSO theory of [[G]] to the MSO theory of a
certain graph associated with G(S)ג (Theorem 2 and Proposition 4 there). Lemma 3.2
allows to interpret that graph in the MSO theory of .G(S)ג

Higher-Order Pushdown Trees Are Easy 215

Theorem 3.7. Let G be a safe grammar of level n. Then the monadic theory of
[[G]] is decidable.

Proof. For n = 0 the claim amounts to the decidability of the MSO theory of a
regular tree that was essentially established already by Rabin [15]. For grammars
of level 1 (algebraic), the result was proved by Courcelle [2]. (Clearly, for level
n ≤ 1, the safety assumption holds trivially.)

Now let t = [[G]] be a tree generated by a grammar of level n ≥ 2 and let
tα = [[Gα]]. By induction hypothesis, the MSO theory of tα is decidable. The
claim follows from Lemma 3.6 and Theorem 3.3. ✷

4 Pushdown Automata

We use the abbreviation “pds” for the expression “pushdown store”. A level 1 pds
(or a 1-pds) over an alphabet A is an arbitrary sequence [a1, . . . , al] of elements
of A, with l ≥ 1. A level n pds (or a n-pds), for n ≥ 2, is a sequence [s1, . . . , sl]
of (n − 1)-pds’s, where l ≥ 1. (That is, we assume that a pds is never empty.)
For a given symbol ⊥ ∈ A, we define ⊥k as follows: ⊥1 = [⊥] and ⊥k+1 = [⊥k].
Thus ⊥k is the level k pds which contains only ⊥ at the bottom.

Let s be an n-pds and let s′ be a k-pds, for some k ≤ n. We write s′ ⊂ s iff
one of the following cases holds:

• s = [s1, . . . , sl] and s′ = si, for some i = 1, . . . , l − 1.
• s = [s1, . . . , sl] and s′ ⊂ si, for some i = 1, . . . , l.

The following operations are possible on pushdown stores

• pusha1([a1, . . . , al−1, al]) = [a1, . . . , al, a], where a ∈ A;
• pop1([a1, . . . , al−1, al]) = [a1, . . . , al−1];
• top1([a1, . . . , al−1, al]) = al.

On pushdown stores of level n > 1 one can perform the following operations:

• pushn([s1, . . . , sl−1, sl]) = [s1, . . . , sl, sl];
• popn([s1, . . . , sl−1, sl]) = [s1, . . . , sl−1];
• pushk([s1, . . . , sl−1, sl]) = [s1, . . . , sl−1, pushk(sl)], where 2 ≤ k < n;
• pusha1([s1, . . . , sl−1, sl]) = [s1, . . . , sl−1, pusha1(sl)], where a ∈ A;
• popk([s1, . . . , sl−1, sl]) = [s1, . . . , sl−1, popk(sl)], where 1 ≤ k < n;
• topn([s1, . . . , sl−1, sl]) = sl.
• topk([s1, . . . , sl−1, sl]) = topk(sl), for 1 ≤ k < n.

The operation popk is undefined on a push down store, whose top pds of level k
consists of only one element.

Let Σ be a signature, and let Q and A be finite sets. Let ⊥ ∈ A be a
distinguished element of A. The set In of instructions of level n (parameterized
by Σ, Q and A) consists of all tuples of the following forms:

(1) (pushk, p), where p ∈ Q and 1 < k ≤ n;

216 Teodor Knapik, Damian Niwiński, and Pawe8l Urzyczyn

(2) (pusha1 , p), where p ∈ Q, and a ∈ A, a �= ⊥.
(3) (popk, p), where p ∈ Q and 1 ≤ k ≤ n.
(4) (f, p1, . . . , pr), where f ∈ Σr and p1, . . . , pr ∈ Q;

A pushdown automaton of level n is defined as a tuple

A = 〈Q,Σ,A, q0, δ,⊥〉,
where Q is a finite set of states, with an initial state q0, Σ is a signature, A is a
pds alphabet, with a distinguished bottom symbol ⊥, and

δ : Q×A → In
is a transition function.

A configuration of an automaton A as above is a pair 〈 q, s 〉, where q ∈ Q
and s is an n-pds over A. The initial configuration is 〈 q0,⊥n 〉. The set of all
configurations is denoted by C.

We define a relation →A on configurations as follows:

(1) If top1(s) = a and δ(q, a) = (pushk, p), with k > 1, then 〈 q, s 〉 →A
〈 p, pushk(s) 〉.

(2) If top1(s) = a and δ(q, a) = (pushb1, p), then 〈 q, s 〉 →A 〈 p, pushb1(s) 〉.
(3) If top1(s) = a and δ(q, a) = (popk, p), then 〈 q, s 〉 →A 〈 p, popk(s) 〉, provided

popk(s) is defined.

The symbol →→A stands for the reflexive and transitive closure of →A.
Now let t : T → Σ be a Σ-tree. A partial function 6 : T → C defined on an

initial fragment of T is called a partial run of A on t iff the following conditions
hold:

• 〈 q0,⊥n 〉 →→A 6(ε).
• If w ∈ T and 6(w) = 〈 q, s 〉 then δ(〈 q, top1(s) 〉) = (f, p1, . . . , pr), where
t(w) = f ∈ Σr and p1, . . . , pr ∈ Q. In addition, 〈 pi, s 〉 →→A 6(wi), for each
i = 1, . . . , r when 6(wi) is defined.

If a partial run is total, it is called a run. If A has a run on t, then we say that t
is accepted by A. It should be clear that any given automaton A can accept at
most one tree.

Remark: The above definition of a pushdown automaton is based on the
definitions from [12, 17, 9] rather than the original definition of Engelfriet, used
in [6, 5]. The latter differs from ours in that a pushdown store of level k, for
k > 1, is defined as a sequence of pairs [(s1, a1), . . . , (sl, al)], where the si are
pds’s of level k − 1, and the ai are symbols from the alphabet. An automaton
has access to the symbol al, as well as to the top symbol of sl, the top symbol
of the top pds of sl, etc. However, it is not difficult to see that these two models
are equivalent. Indeed, the additional label of a k-pds can be stored on the top
of its top 1-pds. (Note that a 1-pds on top of a k-pds is also on top of pds’s of
level 2, 3, . . . , k − 1, and thus must carry up to k additional labels.) Each move
of an Engelfriet style automaton is then simulated by a sequence of moves of our
automaton.

Higher-Order Pushdown Trees Are Easy 217

It should also be clear that our higher-order pushdown trees generalize to
higher levels the pushdown trees considered by Walukiewicz in [18]. In the con-
text of verification, pushdown automata (in general, nondeterministic) are con-
sidered as processes rather than acceptors, i.e., the input alphabet is omitted.
The interest is focused on the graph of all possible configurations of a process.
However, by suitable choice of a signature, it is easy to identify the tree of
configurations of a higher-order pushdown process with the tree recognized by
an automaton in our sense. The branching nodes in the tree correspond to the
points of nondeterministic choice of the process.

5 Automata and Grammars

Theorem 5.1. Let t be accepted by a pushdown automaton of level n. Then it
is generated by a safe grammar of level n.

Corollary 5.2. The MSO theory of every tree recognized by a higher-order push-
down automaton is decidable.

Theorem 5.3. A tree generated by a safe grammar of level n is accepted by a
pushdown automaton of level n.

5.1 Proof of Theorem 5.1

Assume that our automaton A = 〈Q,Σ,A, q0, δ,⊥〉 has m states 0, . . . ,m − 1.
(It is convenient to simply identify the states with their numbers.) We use the
following abbreviations: 1 = 0m → 0, 2 = 1m → 1, and so on: k = (k-1)m → k,
up to n = (n-1)m → n-1. Observe that k = (k-1)m → (k-2)m → · · · → 1m →
0m → 0, for each k = 0, . . . , n.

We construct a grammar which generates the tree t, with the following non-
terminals:

• For each q ∈ Q and each a ∈ A, there is a nonterminal Faq of type n.
• For each k = 1, . . . , n there is a nonterminal Voidk of type n-k.
• And there is an initial nonterminal S of type 0.

The initial production of our grammar is:

S ⇒ F⊥q0
→
Void1

→
Void2 . . .

→
Voidn,

where
→
Voidk stands for m repetitions of Voidk. Other productions apply to the

nonterminals Fai and depend on δ(qi, a). In order to understand the productions
below, one should interpret an expression of the form

Faq
→
x1
→
x2 . . .

→
xn

as a representation of a configuration 〈 q, s 〉, where top1(s) = a, and each vector
→
xk= x0k . . . x

m−1
k refers to the possible configurations to which the automaton

218 Teodor Knapik, Damian Niwiński, and Pawe8l Urzyczyn

may return after executing popk. There is always m such possible configurations,
corresponding to the m internal states. (A call to Voidk corresponds to an at-
tempt to pop an “empty” stack.) Observe that the types of variables in

→
xk are

more complex for lower level pds’s. We think of it as follows: the information
contained in a parameter xik : n-k occurring in the sequence

→
xk represents di-

rectly the contents of topk(s). The actual state of the n-pds should then be seen
as a function depending on the contents of popk(s), understood as a sequence of
pds’s of levels k + 1, k + 2, . . . , n. Here are the productions:

• Faq
→
x1
→
x2 . . .

→
xn ⇒ Fap

→
x1 . . .

→
xk−1 (Fa0

→
x1 . . .

→
xk) . . . (Fam−1

→
x1 . . .

→
xk)

→
xk+1 . . .

→
xn,

if δ(q, a) = (pushk, p), with k > 1.
• Faq

→
x1
→
x2 . . .

→
xn ⇒ Fbp(Fa0

→
x1) . . . (Fam−1

→
x1)

→
x2 . . .

→
xn,

if δ(q, a) = (pushb1, p).
• Faq

→
x1
→
x2 . . .

→
xn ⇒ xpk

→
xk+1 . . .

→
xn,

if δ(q, a) = (popk, p).
• Faq

→
x⇒ f(Fap1

→
x) . . . (Fapr

→
x),

if δ(q, a) = (f, p1, . . . , pr), where
→
x stands for

→
x1
→
x2 . . .

→
xn.

Note that, in particular, the production corresponding to a popn is simply
Faq . . . ⇒ xpn. Also note that the maximal incomplete applications of level k
at the right hand side do not contain variables of level less than k. It follows
that our grammar is safe.

In order to show the correctness of the simulation we must make precise how
an expression of type n-k should represent a k-pds. More precisely, we define
terms Codeq,s meant to represent the contents of s in state q. If s is an n-pds
then Codeq,s represents the whole configuration. The definition is by induction
with respect to the length of the pds.

We begin with k = 1. If s = [⊥], then Codeq,s = F⊥q
→
Void1, and if s =

pusha1(s
′) then Codeq,s = Faq Code1,s′ . . .Codem,s′ .

For k > 1, and s = [s1] we define Codeq,s = Codeq,s1
→
Voidk. If s =

[s1, . . . , sl], with l > 1, then Codeq,s = Codeq,slCode1,s′ . . .Codem,s′ , where
s′ = [s1, . . . , sl−1].

Lemma 5.4. Let 〈 q, s 〉 →A 〈 p, s′ 〉. Then Codeq,s →G Codep,s′ .

Proof. By inspection of the possible cases. ✷

Theorem 5.1 now follows from the following fact:

Lemma 5.5. Let 6 be the run of A on t : T → Σ and let w ∈ T . Let 6(w) =
〈 q, s 〉, with top1(s) = a, and let δ(〈 q, a 〉) = (f, p1, . . . , pr). Then S →→G t′, for
some finite tree t′ with t′(w) = Codeq,s.

Proof. Induction with respect to the length of w. ✷

Higher-Order Pushdown Trees Are Easy 219

5.2 Proof of Theorem 5.3

The proof is based on an idea from [10], where it was shown how to implement
recursive programs with level 2 procedures with help of a 2-pds. The simulation
of [10] was possible at level 2 because the individual parameters were passed by
value. Thus, a nonlocal access to an individual meant an immediate access to a
register value and did not require any additional evaluation. Under the safety
restriction, one can generalize the construction in [10] to all levels.

Suppose a safe grammar G of level n generates t : T → Σ. With no loss of
generality we may assume the following:

• Whenever a right hand side of a production in G is of the form fu1 . . . ur,
where f ∈ Σr, then each of the terms u1, . . . , ur begins with a nonterminal
or a variable (but not with a signature constant).

• The initial nonterminal S does not occur at the right hand sides of produc-
tions.

In addition, we assume that the formal parameters of any m-ary nonterminal F
are always x1, . . . , xm.

For each expression u we define formal parameters of u, not to be confused
with variables actually occurring in u.

• If u begins with a nonterminal F : σ, then the formal parameters of u are
the formal parameters of F .

• If u begins with a variable or a signature constant of type σ = τ1 → · · · →
τd → 0 then the formal parameters of u are xi : τi, for i ≤ d.

In addition, with every expression u = F . . ., we associate a formal operator,
which is a variable head of the same type as F .

We construct a level n automatonA accepting t. The pushdown alphabet ofA
consists of all safe subexpressions of all the right hand sides of the productions
of G. Every element of A represents a possible call to a nonterminal, or to
a variable, together with a (possibly incomplete) list of actual parameters. In
order to distinguish between identifiers of G and pds symbols, the latter will be
called items.

The bottom pds symbol is S, the initial nonterminal. The set of states in-
cludes q0, q1, . . . qg, where g is the maximal arity of an identifier2 occurring in the
grammar. The intended meaning of these states is as follows: in a configuration
〈 q0, s 〉 the automaton attempts to evaluate the expression top1(s), while in a
configuration 〈 qi, s 〉 with i > 0 and top1(s) = Fu1u2 . . . the goal is to evaluate
the i-th argument of F . The automaton works in phases beginning and ending
in the distinguished states qi, using some auxiliary states in between.

We now describe the possible behaviour in each phase, assuming the following
induction hypothesis to hold for every configuration 〈 qi, s 〉.
• All the “internal” items (not on top of 1-pds’s) begin with nonterminals.

2 Variables, signature constants and nonterminals are all called identifiers. An identi-
fier of type τ1 → τ2 → · · · → τn → 0 is said to be of arity n.

220 Teodor Knapik, Damian Niwiński, and Pawe8l Urzyczyn

• If an item t occurs on a 1-pds directly atop of another item of the form F . . .
then all variables occurring in t are formal parameters of F .

• If i �= 0 then top1(s) has at least i formal parameters.
• Let s′ ⊂ s be a pds of level n − k, and let s′′ be a (n − k)-pds occurring

directly atop s′ on the same (n− k + 1)-pds. Then
• top1(s′) is an expression beginning with a variable ϕ : τ of level k.
• If i �= 0 and s′′ = topn−k+1(s) and the i-th formal parameter xi of
top1(s) is of level k then xi has type τ .

• Otherwise, the topmost incomplete application on s′′ of level k has
type τ .

Assume that the current configuration of the automaton is 〈 q0, s 〉.
Case 1: Let top1(s) = Fu1 . . . ud where F is a nonterminal and Fx1 . . . xn ⇒ t
is the corresponding production. Then the automaton executes the instruction
pusht1, and remains in state q0.
Case 2: If top1(s) = f or top1(s) = ft1 . . . tr with f ∈ Σr then the next
instruction is (f, q1, . . . qr).
Case 3: If top1(s) = x : 0 then x must be a formal parameter of the previous
item top1(pop1(s)), say the j-th one. The automaton executes (pop1, qj).
Case 4: Let top1(s) = ϕt1 . . . td, where ϕ is a variable of level k > 0 and arity at
least d. Assume that ϕ is an r-th formal parameter of top1(pop1(s)). The actions
to be executed are pushn−k+1 followed by pop1, and the next state is qr.
That is, a call to a variable of level 1, 2, . . . , n− 1 results in a “push” operation
respectively of level n, n − 1, . . . , 2. The higher is the level of the variable, the
lower is the level of the corresponding pds operation.
Now consider a current configuration of the automaton of the form 〈 qi, s 〉,
with i > 0.
Case 5: If top1(s) = Ft1 . . . tr and i ≤ r then the top item is simply replaced
by ti and the next state is q0.
Case 6: Let top1(s) = Ft1 . . . tr, but i > r. Assume that top1(s) : τ is of level k.
The action to be performed is (popn−k+1, qi−r).

Now we prove the correctness of this construction. First we define themeaning
of an expression u at s, written as [[u]]s.

• If F is a signature constant or a nonterminal, then [[F]]s = F .
• If u is an application t1t2 then [[u]]s = [[t1]]s[[t2]]s.• If top1(s) = Ft1 . . . tr, then [[head]]s = [[F]]pop1(s)

. An exception is when
top1(s) = S, in which case we set [[head]]s = S.

• Let top1(s) = Ft1 . . . tr, and let xd be the d-th formal parameter at top1(s).
If d ≤ r then [[xd]]s = [[td]]pop1(s)

.
• Otherwise, [[xd]]s = [[xd−r]]popn−k+1(s)

, where k is the level of Ft1 . . . tr.

If top1(s) = Ft1 . . . tr, where F is an identifier of arity m ≥ r, then we define
[[s]] = [[headx1 . . . xr]]s.

Lemma 5.6. For an arbitrary identifier x of level k = 1, . . . , n− 1, we have
[[x]]s = [[x]]topn−k+1(s)

In other words, the meaning of x is determined by the top pds of level n− k.

Higher-Order Pushdown Trees Are Easy 221

Proof. Induction with respect to s. Note that to define [[x]]s one never has to
consider variables of levels less than k. This is because the grammar G is assumed
to be safe. ✷

Lemma 5.7. Assume that the configuration 〈 qi, s 〉 with i > 0 satisfies our in-
duction hypothesis. Then 〈 qi, s 〉 →→A 〈 q0, s′ 〉, for some s′ with [[s′]] = [[xi]]s.

Proof. The proof is by induction with respect to s. If the automaton moves
according to Case 5, the hypothesis is immediate. Otherwise we have [[xr]]s =
[[xi−r]]popn−k+1(s)

and we apply induction. ✷

Lemma 5.8. Assume that the configuration 〈 q0, s 〉 satisfies our induction hy-
pothesis, and let the top item top1(s) begin with a variable. Then 〈 q0, s 〉 →→A
〈 q0, s′ 〉, where [[s′]] = [[s]] and top1(s) begins with a nonterminal or a signature
constant.

Proof. If the head variable ϕ is of level k then we have [[ϕ]]pop1(s)
=

[[ϕ]]pop1(pushn−k+1(s))
, by Lemma 5.6. Thus the actions performed according to

Case 4 do not change the meaning of the pds. Termination follows by induction
on n− k and the size of topn−k+1(s). ✷

Lemma 5.9. Assume that the configuration 〈 q0, s 〉 satisfies our induction hy-
pothesis, and that [[s]] = t. Suppose that t →G t1 →G · · · →G tm and let tm =
gu1 . . . ur be the first term in the reduction sequence which begins with a signature
constant. Then 〈 q0, s 〉 →→A 〈 q0, s′ 〉, where [[s′]] = gu1 . . . ur.

Proof. The proof is by induction with respect to the number of steps in the reduc-
tion sequence t→→G gu1 . . . ur. There are cases depending on the first reduction
step t→G t1. The nontrivial case is when top1(s) begins with a variable ϕ, i.e.,
not with the same symbol as t. This corresponds to Case 4 in the definition of
the automaton. But it follows from Lemma 5.8 that the meaning [[s]] remains
unchanged until a head nonterminal or terminal is exposed. ✷

Lemma 5.10. Suppose that S →G t1 →G · · · →G tm is an outermost reduction
sequence and that tm is the first in the sequence term with tm(w) = f , where f is
a signature constant. Let the subterm of tm occurring at w be fu1 . . . uk. Then A
has a partial run 6 on t such that 6(w) = 〈 q0, s 〉, with top1(s) = fv1 . . . vk and
[[s]] = fu1 . . . uk.

Proof. Induction with respect to the length of w. Assuming induction hypothesis
for the immediate predecessor of w, the automaton then simulates grammar
reductions. First, a “split” action is executed without changing the pds, and we
apply Lemma 5.7. Then we evaluate the expression on top of the pds and the
correctness of this evaluation follows from Lemma 5.9. ✷

The conclusion is that for every w ∈ Dom t there is a partial run that
reaches w. Thus the unique tree accepted by A coincides with t.

222 Teodor Knapik, Damian Niwiński, and Pawe8l Urzyczyn

References

1. D. Caucal. On infinite transition graphs having a decidable monadic second–order
theory. In F. Meyer auf der Heide and B. Monien, editors, 23th International
Colloquium on Automata Languages and Programming, LNCS 1099, pages 194–
205, 1996. A long version will appear in TCS.

2. B. Courcelle. The monadic second–order theory of graphs IX: Machines and their
behaviours. Theoretical Comput. Sci., 151:125–162, 1995.

3. B. Courcelle and T. Knapik. The evaluation of first-order substitution is monadic
second–order compatible. Theoretical Comput. Sci., 2002. To appear.

4. W. Damm. The IO– and OI–hierarchies. Theoretical Comput. Sci., 20(2):95–208,
1982.

5. W. Damm and A. Goerdt. An automata-theoretic characterization of the OI-
hierarchy. Information and Control, 71:1–32, 1986.

6. J. Engelfriet. Iterated push-down automata and complexity classes. In Proc. 15th
STOC, pages 365–373, 1983.

7. H. Hungar. Model checking and higher-order recursion. In L. Pacholski,
M. Kuty8lowski and T. Wierzbicki, editors, Mathematical Foundations of Computer
Science 1999, LNCS 1672, pages 149–159, 1999.

8. B. Jacobs and J. Rutten. A tutorial on (co)algebras and (co)induction. Bulletin
of EATCS, 1997(62):222–259.

9. A.J. Kfoury, J. Tiuryn and P. Urzyczyn. On the expressive power of finitely typed
and universally polymorphic recursive procedures. Theoretical Comput. Sci., 93:1–
41, 1992.

10. A. Kfoury and P. Urzyczyn. Finitely typed functional programs, part II: compar-
isons to imperative languages. Report, Boston University, 1988.

11. T. Knapik, D. Niwiński, and P. Urzyczyn. Deciding monadic theories of hyperal-
gebraic trees. In Typed Lambda Calculi and Applications, 5th International Con-
ference, LNCS 2044, pages 253–267. Springer-Verlag, 2001.

12. W. Kowalczyk, D. Niwiński, and J. Tiuryn. A generalization of of Cook’s auxiliary-
pushdown-automata theorem. Fundamenta Informaticae, 12:497–506, 1989.

13. O. Kupferman and M. Vardi. An automata-theoretic approach to reasoning about
infinite-state systems. In Computer Aided Verification, Proc. 12th Int. Conference,
Lecture Notes in Computer Science. Springer-Verlag, 2000.

14. D. Muller and P. Schupp. The theory of ends, pushdown automata, and second-
order logic. Theoretical Comput. Sci., 37:51–75, 1985.

15. M. O. Rabin. Decidability of second-order theories and automata on infinite trees.
Trans. Amer. Soc, 141:1–35, 1969.

16. W. Thomas. Languages, automata, and logic. In G. Rozenberg and A. Salomaa,
editors, Handbook of Formal Languages, volume 3, pages 389–455. Springer-Verlag,
1997.

17. J. Tiuryn. Higher-order arrays and stacks in programming: An application of
complexity theory to logics of programs. In Proc. 12th MFCS, LNCS 233, pages
177–198. Springer-Verlag, 1986.

18. I. Walukiewicz. Pushdown processes: Games and model checking. Information and
Computation, 164(2):234–263, 2001.

	Higher-Order Pushdown Trees Are Easy
	Introduction
	1 Preliminaries
	2 Infinitary Lambda Calculus
	2.1 From Grammar Terms to Lambda Trees

	3 Safe Grammars
	4 Pushdown Automata
	5 Automata and Grammars
	5.1 Proof of Theorem 5.1
	5.2 Proof of Theorem 5.3

	References

