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Abstract. Graph-based specification formalisms for Access Control
(AC) policies combine the advantages of an intuitive visual framework
with a rigorous semantical foundation. A security policy framework spec-
ifies a set of (constructive) rules to build the system states and sets of
positive and negative (declarative) constraints to specify wanted and
unwanted substates. Models for AC (e.g. role-based, lattice-based or an
access control list) have been specified in this framework elsewhere. Here
we address the problem of inconsistent policies within this framework.
Using formal properties of graph transformations, we can systematically
detect inconsistencies between constraints, between rules and between a
rule and a constraint and lay the foundation for their resolutions.

1 Introduction

Access Control (AC) deals with decisions involving the legitimacy of requests to
access files and resources on the part of users and processes. One of the main
advantages of separating the logical structure from the implementation of a sys-
tem is the possibility to reason about its properties. In [KMPP00,KMPP01a]
we have proposed a formalism based on graphs and graph transformations for
the specification of AC policies. This conceptual framework, that we have used
in [KMPP00,KMPP01a] to specify well-known security models such as role-
based policies [San98], lattice-based access control (LBAC) policies (examples
of mandatory policies) [San93] and access control lists (ACL) (examples of dis-
cretionary policies) [SS94], allows for the uniform comparison of these different
models, often specified in ad hoc languages and requiring ad hoc conversions to
compare their relative strength and weaknesses.

Our graph-based specification formalism for AC policies combines the advan-
tages of an intuitive visual framework with a rigor and precision of a semantics
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founded on category theory. In addition, tools developed for generic graph trans-
formation engines can be adapted to or can form the basis for applications that
can assist in the development of a specific policy.

We use in this paper examples from the LBAC and the ACL models to
illustrate the different concepts, with no pretense of giving complete or unique
solutions by these examples.

The main goal of this paper is to present some basic properties of a formal
model for AC policies based on graphs and graph transformations and to ad-
dress the problem of detecting and resolving conflicts in a categorical setting.
A system state is represented by a graph and graph transformation rules de-
scribe how a system state evolves. The specification (”framework”) of an AC
policy contains also declarative information (”invariants”) on what a system
graph must contain (positive) and what it cannot contain (negative). A crucial
property of a framework is that it specifies a coherent policy, that is one with-
out internal contradictions. Formal results are presented to help in recognizing
when the positive and the negative constraints of a framework cannot be si-
multaneously satisfied, when two rules, possibly coming from previously distinct
subframeworks, do (partly) the same things but under different conditions, and
when the application of a rule produces a system graph that violates one of the
constraints (after one or the other has been added to a framework during the
evolution of a policy). The solutions proposed on a formal level can be made part
of a methodology and incorporated into an Access Control Policy Assistant.

The paper is organized as follows: the next section reviews the basic notations
of graph transformations and recalls the formal framework to specify AC poli-
cies [KMPP01a]; Sect.3 discusses the notion of a conflict of constraints, Sect.4
introduces conflicts between rules and mentions strategies to resolve conflicts;
Sect.5 discusses how to modify a rule so that its application does not contradict
one of the constraints; the last section mentions related and future work.

2 Graph-Based Security Policy Frameworks

We assume that the reader is familiar with the basic notation for graph trans-
formations as in [Roz97] and in [KMPP01a]. Parts of a LBAC model are used
throughout the section to illustrate the explanations by examples.

Graphs G = (GV , GE , sG, tG, lG) carry labels taken from a set X of variables
and a set C of constants. A path of unspecified length between nodes a and b is
indicated by an edge a

∗→ b as an abbreviation for a set containing all possible
paths from a to b through the graph.

A total morphism f : G → H is a pair (fV : GV → HV , fE : GE → HE)
of total mappings that respect the graph structure and may replace a variable
with other variables or constants. A partial graph morphism f : G ⇀ H is a
total graph morphism f̄ : dom(f)→ H from a subgraph dom(f) ⊆ G to H.

Graphs can be typed by defining a total morphism tG : G → TG to a fixed
type graph TG that represents the type information in a graph transformation
system [CELP96] and specifies the node and edge types which may occur in the
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O valSLP

Fig. 1. The type graph for the LBAC model.

instance graphs modeling system states. For example, the type graph in Figure 1
shows the possible types for the LBAC graph model. The node U is the type
of nodes representing users, the node O the objects, the node val the actual
information of objects and the node P the processes that run on behalf of users.
The node SL with its loop represents a whole security lattice, and there is an
edge from security level SL1 to SL2 if SL1 > SL2. The attachment of security
levels to objects, users and processes is modeled by an edge to a security level
of the security lattice. The typing morphism tG maps a node with label Tx to
the type T , and morphisms must preserve the typing.

A rule p : r consists of a name p, and a label preserving injective morphism
r : L ⇀ R. The left-hand side L describes the elements a graph must contain for
p to be applicable. The partial morphism r is undefined on nodes/edges that are
intended to be deleted, defined on nodes/edges that are intended to be preserved.
Nodes and edges of R, right-hand side, without a pre-image are newly created.
Note that the actual deletions/additions are performed on the graphs to which
the rule is applied. The application of a rule p : r to a graph G requires a total
graph morphism m : L → G, called match, and the direct derivation G

p,m⇒ H
is given by the pushout of r and m in the category of graphs typed over TG
[EHK+97].

Example 1 (LBAC graph rules). Figure 2 shows the rules for the LBAC policy.
The labels for the nodes (Ux, Px, SLx, SLy, ...) of the rules are variables.

Ux

Ux

Ux
Ux

valx

new object

delete object

Sx SxSLx SLx Ox

delete process

Pxnew process
* *

SLy

SLx

Px SLy

SLx

Fig. 2. Graph rules for the LBAC policy.

The rule new object creates a new object Ox connected to a node valx (the
initial value of the object) and assigned to the security level SLx. The label
SLx is generic and is substituted by the actual security level of the process
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when the rule is applied. The rule delete object for the deletion of objects is
represented by reversing the partial morphism of the rule new object. The rule
new process creates a process Px on behalf of a user Ux. The new process is
attached to a security level SLy that is no higher in the security lattice graph
than the security level SLx of the user Ux. This requirement is specified by the
path from SLx to SLy. Processes are removed by the rule delete process.

For the specification of AC policies by graph transformations, negative appli-
cation conditions for rules are needed. A negative application condition (NAC)
for a rule p : L r

⇀ R consists of a set A(p) of pairs (L,N), where the graph L is
a subgraph of N . The part N \ L represents a structure that must not occur in
a graph G for the rule to be applicable. In the figures, we represent (L,N) with
N , where the subgraph L is drawn with solid and N \ L with dashed lines. A
rule p : L r

⇀ R with a NAC A(p) is applicable to G if L occurs in G via m and
it is not possible to extend m to N for each (L,N) in A(p).

Example 2 (NAC). Figure 3 shows the rules for modifying the security lattice.
New security levels can be inserted above an existing security level (rule new
level 1), below (new level 2) or between existing levels (new level 3). (No-
tice that the lattice structure is not preserved by these rules.) The rule delete
level removes a security level. Since users, processes and objects need a security
level, security levels cannot be removed if a user, process or object possesses this
level. Thus, the NAC of the rule delete level, whose left-hand side contains
the node SLx, has three pairs (L,N): the first one prevents the deletion of secu-
rity levels that are assigned to a process, the second one concerns users and the
last one objects. Only if the NAC is satisfied, a security level can be removed.

Px Ux Ox

new level 1
SLx SLxSLy

SLySLx SLy

SLz

SLx

SLx SLx SLx

new level 3

new level 2
SLx SLySLx

delete level

Fig. 3. LBAC rules for modifying the security lattice.

Negative application conditions are a form of constraint on the applicability
of a rule. Constraints can be defined independently of rules.

Definition 1 (Constraints). A constraint (positive or negative) is given by a
total morphism c : X → Y . A total morphism p : X → G satisfies a positive
(negative) constraint c if there exists (does not exist) a total morphism q : Y → G

such that X
c→ Y

q→ G = X
p→ G.

A graph G satisfies a constraint c if each total morphism p : X → G satisfies c.
A graph G vacuously satisfies c if there is no total morphism p : X → G; G
properly satisfies c otherwise.
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Example 3 (Constraints for LBAC). Figure 4 shows a positive and a negative
constraint for the LBAC model. The morphism for the negative constraint is
the identity on the graph shown (to simplify the presentation, we depict only
the graph). The constraints require that objects always have one (the positive
constraint) and only one (negative constraint) security level.

O SLO SL O SL

positive constraint: negative constraint:

Fig. 4. Positive and negative constraints for LBAC.

We now review the specification of AC policies based on graph transforma-
tions [KMPP00]. The framework is called security policy framework and consists
of a type graph that provides the type information of the AC policy, a set of rules
(specifying the policy rules) that generate the graphs representing the states ac-
cepted by the AC policy, a set of negative constraints to specify graphs that shall
not be contained in any system graph and a set of positive constraints to specify
graphs that must be explicitly constructed as parts of a system graph.

Definition 2 (Security Policy Framework). A security policy framework,
or just framework, is a tuple SP = (TG, (P, rulesP ), Pos,Neg), where TG is
a type graph, P a set of rule names, rulesP : P → Rule(TG) a total mapping
from names to TG–typed rules, Pos is a set of positive constraints, and Neg is
a set of negative constraints.

The graphs constructed by the rules of a framework represent the system
states possible within the policy model. These graphs are called system graphs.

Definition 3 (Coherence). A security policy framework is coherent if all sys-
tem graphs satisfy the constraints in Pos and Neg.

Integration is concerned with the merging of AC policies and consists of two
levels, a syntactical level, i.e. a merge of the security policy frameworks, and
a semantical level, i.e. the merge of the system graphs representing the state
at merge time. The integration of two AC policies on the syntactical level is a
pushout of the frameworks in the category SP. It has been shown in [KMPP01b]
that the category SP of frameworks and framework morphisms is closed under fi-
nite colimit constructions. An important aspect of integration is the preservation
of coherence: if two frameworks are coherent, is their gluing also coherent? Gen-
erally, this is not the case. Conflicts also arise when modifying a framework by
adding/removing a rule or by adding/removing a positive/negative constraint.
In the next three sections, the problems of conflicting constraints, conflicting
rules and conflicts between a rule and a constraint are addressed.
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3 Constraint-Constraint Conflict

One way to determine whether a framework is contradictory is to analyze con-
straints in pairs.

Definition 4 (Conflict of Constraints). Given constraints ci : Xi → Yi for
i = 1, 2, c1 is in conflict with c2 iff there exist morphisms fX : X1 → X2 and
fY : Y1 → Y2 such that fY ◦ c1 = c2 ◦fX and fX does not satisfy c1. The conflict
is strict if the diagram is a pushout.

X1
c1 ��

fX

��

Y1

fY

��
X2 c2

��Y2

When two constraints contain redundant restrictions, the conflict is harmless.

Proposition 1 (Harmless Conflicts). Let c1 be in conflict with c2 and G
satisfy c1. Then G satisfies c2 whenever either c1, c2 ∈ Neg or c1, c2 ∈ Pos and
c1 is in strict conflict with c2.

When the two constraints in conflict are one positive and one negative, then
any graph satisfying one cannot properly satisfy the other one.

Proposition 2 (Critical Conflicts). Let c1 be in conflict with c2 and G prop-
erly satisfy c2. If either c1 ∈ Pos, c2 ∈ Neg and the conflict is strict, or
c1 ∈ Neg, then G does not properly satisfy c1.

Critical conflicts between constraints can be resolved by removing or weak-
ening one of the constraints by adding a condition.

Definition 5 (Conditional Constraint). A positive (negative) conditional
constraint (x, c) consists of a negative constraint x : X → N , called constraint
condition, and a positive (negative) constraint c : X → Y . A total morphism
p : X → G satisfies (x, c) iff whenever p satisfies x, p satisfies c. A graph G
satisfies (x, c) iff each total morphism p :X→G satisfies (x, c).

A conditional constraint solves the conflict of c1 with c2 (via fX and fY ) by
introducing a constraint condition for c1 that requires the satisfaction of c1 if
and only if c2 is vacuously satisfied.

Proposition 3. Let c1 : X1 → Y1 be in conflict with c2 : X2 → Y2 via fX and
fY , then G satisfies fX if and only if G vacuously satisfies c2.

Definition 6 (Weak Constraint). If c1 is in conflict with c2 via fX and fY ,
then the weak constraint c1(c2) for c1 with respect to c2 is the conditional con-
straint c1(c2) = (fX , c1).
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Proposition 4. If c1 is in conflict with c2, then the weak constraint c1(c2) is
not in conflict with c2.

Weakening a constraint is one strategy to solve conflicts. A general discussion
of strategies is outlined in [KMPP01b]. It is worth stressing that determining a
conflict between constraints can be performed statically and automatically.

4 Rule-Rule Conflicts

Two rules are in a potential-conflict (p-conflict) if they do (partly) the same
things but under different conditions. A conflict occurs if p-conflicting rules can
be applied to a common graph. If the choice for one rule in a conflict may prevent
the applicability of the other rule, the conflict is called critical, otherwise it is
a choice conflict. The LBAC rule new object and the access control list (ACL)
rule create object in Figure 5 are in p-conflict, since both rules create a new
object node Ox. An ACL (such as the one in UNIX) is a structure that stores
the access rights to an object with the object itself. The rule create object
specifies the creation of an object by a process that runs on behalf of a user.
Initially, there are no access rights to the new object and the user becomes the
owner of the new object1.

PxUx Ux Px

Ox

SLx

LBAC 

new object

Vx

Ox

ACL

PxPx SLx
create object

Fig. 5. The LBAC rule new object and the ACL rule create object.

The rule new object creates an object with a security level, the rule create
object an object without one. Which rule shall be applied to introduce a new
object in the system? A static analysis of the rules can detect the critical and the
choice conflicts before run-time so that rules can be changed to avoid conflicts.

Definition 7 (p-Conflict, Conflict Pair, Conflict). Rules pi :Li
ri⇀Ri, i=

1,2, with NAC A(pi) are in p-conflict if there is a common non-empty subrule2

for p1 and p2. Each pair of matches (m1 : L1→G,m2 : L2→G) is a conflict pair
for p1 and p2. The rules p1 and p2 are in conflict, if they are in p-conflict and
there is a conflict pair for p1 and p2. Otherwise, they are called conflict-free.

Generally, there exist an infinite number of matches for one rule, so the set
of matches must be reduced for a static analysis. To detect a rule conflict, it is
sufficient to consider the left-hand sides of the rules.
1 The complete specification of the framework for the ACL is given in [KMPP01a].
2 A rule p0 : L0

r0⇀ R0 is a subrule of rule p : L
r
⇀ R if there are total morphisms

fL : L0 → L and fR : R0 → R with r ◦ fL = fR ◦ r0.
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Definition 8 (Set of Conflict Pairs). The set CP (p1, p2) of conflict pairs for
rules (pi :Li

ri⇀Ri, A(pi)), i = 1, 2, consists of all pairs of matches (m1 : L1 →
G,m2 : L2 → G), where m1 and m2 are jointly surjective.

The set of conflict pairs for two rules in a p-conflict consists of a finite number
of pairs since the left-hand side of a rule is a finite graph.

Proposition 5 (Conflict Freeness). Let CP (p1, p2) be the set of conflict pairs
for the p-conflicting rules (p1 : L1

r1⇀ R1, A(p1)) and (p2 : L2
r2⇀ R2, A(p2)).

Then, the rules p1 and p2 are conflict-free if and only if CP (p1, p2) is empty.

The set of conflict pairs for rules may be split into choice and conflict critical
pairs: in the latter, after applying p1 at match m1, the rule p2 is no longer
applicable at m2 or vice versa, while in the former, the order does not matter and
after applying p1 at m1, p2 is still applicable and vice versa. Critical and choice
conflict pairs are detected by the concept of parallel independence [EHK+97].

Definition 9 (Parallel Independence). Given rules (pi : Li
ri⇀ Ri, A(pi)) ,

i = 1, 2, the derivations G
p1⇒ H1 and G

p2⇒ H2 are parallel independent if r∗2 ◦m1
is total and satisfies A(p1) and r∗1 ◦m2 is total and satisfies A(p2). Otherwise,
the derivations are called parallel dependent.

R1

��

L1
r1��

m1

���
��

��
��

� L2
r2 ��

m2

����
��

��
��

R2

��
H1 G

r∗1
��

r∗2
��H2

In the case of parallel independence, the application of p1 at m1 and the
delayed application of p2 at r∗1◦m2 results in the same graph (up to isomorphism)
as the application of p2 at m2 and the delayed application of p1 at r∗2 ◦m1.

Definition 10 (Choice and Critical Conflict Pair). A conflict pair
(m1,m2) for rules p1 and p2 is a choice conflict if the derivations G

p1,m1⇒ H1

and G
p2,m2⇒ H2 are parallel independent. It is a critical conflict otherwise.

We propose two strategies to solve rule conflicts. In the first strategy, we take
one rule p1 as major rule, and one p2 as minor rule. For a conflict pair (m1,m2),
p2 is changed by adding a NAC that forbids its application at match m2 if p1
can be applied at m1. The second strategy integrates the rules into one rule.

Definition 11 (Weak Condition, Weak Rule). Given a conflict pair
(m1,m2) for rules (pi : Li

ri⇀ Ri, A(pi)), i = 1, 2, the weak condition for p2
w.r.t. (m1,m2), denoted by WC(p1, p2, (m1,m2)), is given by the NAC (L2, N),
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where the outer diagram is a pullback and the diagram (1) is a pushout diagram.

S

���
��

��
��

�

����
��

��
��
(1)

L1

m1
���

��
��

��
�

��N L2

m2
����

��
��

��
n

��

G

The rule p2 with this added NAC is called weak rule.

The weak condition for the minor rule ensures that the major and the minor
rule cannot be both applied to a common system graph at match m1 and m2.

Example 4 (weak rule). The top of Figure 6 shows the p-conflicting ACL rule
create object and the LBAC rule new object. Conflict pairs for these rules
are the inclusions (in1 : L1 → L1⊕L2, in2 : L2 → L1⊕L2) of the left-hand sides
into their disjoint union, and the inclusions (in′1 : L1 → G, in′2 : L2 → G) of the
left-hand sides into the graph G (the gluing of the left-hand sides over the node
Px). Figure 6 shows the weak rules with respect to the second conflict pair.
The weak rule for create object w.r.t. new object has a NAC that forbids
the application when there is a security level for the process. Therefore, the
weak rule for create object is only applicable to processes created with the
ACL rule and without a counterpart in the LBAC model. The weak rule for new
object w.r.t. create object has a NAC that forbids the presence of a user
connected to the process. Since each user is connected to a process, the rule is
not applicable to processes created by ACL rules.

PxUx Ux Px

Ox

Ux Px

Ox

SLxPxUxPx SLx

Vx

Ox

ACLLBAC 

Ux

SLx

Vx

Ox

SLx

weak "new object" w.r.t. "create object"

Px

Px

weak "create object" w.r.t. "new object"

new object
SLxPx

create object

Fig. 6. The weak rules for new object and create object.

Theorem 1 (Weak Rule is Conflict-free). Given the set of conflict
pairs CP (p1, p2) for p1 and p2, the rule p1 and the rule p2, extended by
WC(p1, p2, (m1,m2)) for each (m1,m2) ∈ CP (p1, p2), are conflict-free.
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The second solution for solving conflicts between rules is the amalgamation
of the p-conflicting rules over their common subrule.

Definition 12 (Integrated Rule). Let (pi : Li
ri⇀ Ri, A(pi)) for i = 1, 2 be

p-conflicting rules and p0 : L0
r0⇀ R0 with fLi : L0 → Li and fRi : R0 → Ri

their common subrule (cf. Figure 7).
The integrated rule is given by (p : L r

⇀ R,A(p)), where diagram (1) is the
pushout of fL1 and fL2 , diagram (2) is the pushout of fR1 and fR2 and r is the
universal pushout morphism.

The set A(p) contains a NAC n : L → N for each pair of NACs n1 : L1 →
N1 ∈ A(p1) and n2 : L2 → N2 ∈ A(p2), where N is the pushout of n1 ◦ fL1 and
n2 ◦ fL2 and n is the universal pushout morphism.

L2N2

L0

L1N1

LN

R 1

R 0

R 2

R

(2)(1)

rn

0r

Fig. 7. Amalgamation of p-conflicting rules.

Example 5. Figure 8 shows the integrated rule for the rules create object and
new object. Their common subrule is marked in the rules and contains the
process node Px in the left-hand side and the nodes Px and Ox in the right-
hand side. The integrated rule creates an object that belongs to a user, as well
as a process, and that carries a security level.

Ux Ux

Ux Ux Px

Ox

Vx

SLxPx

Px

Ox

Ox

Vx

SLx

SLx

ACL

Px

LBAC 

new object
SLxPx

Px

integrated rule

create object

Fig. 8. Amalgamation of p-conflicting rules create object and new object.
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5 Rule-Constraint Conflict

Rules can be classified into deleting rules that only delete graph elements, with-
out adding anything (i.e., dom(r) = R ⊂ L) and expanding rules that only add
graph elements, but do not delete anything (i.e., dom(r) = L ⊆ R).

A conflict between a rule and a constraint occurs when the application of
the rule produces a graph which does not satisfy the constraint. The potential
for conflict can be checked statically directly with the rule and the constraint
without knowledge of specific graphs and derivations. A deleting rule p and a
positive constraint c are in conflict if the added part required by c (i.e., Y \c(X))
overlaps with what p removes (i.e., L \ dom(r)). Similarly, an expanding rule p
conflicts with a negative constraint c if what is added by p (i.e., R\r(L)) overlaps
with something forbidden by c (i.e., Y \ c(X)).

Definition 13 (Rule-Constraint Conflicts). Let p : L r
⇀ R be an expanding

rule and c : X → Y a constraint, then p and c are in conflict if there exists a
nonempty graph S and injective total morphisms s1 : S → R and s2 : S → X so
that s1(S) ∩ (R \ r(L)) 
= ∅.

Let p : L r
⇀ R be a deleting rule and c : X → Y a positive constraint, then

p and c are in conflict if there exists a nonempty graph S and injective total
morphisms s1 : S → L and s2 : S → Y so that s1(S) ∩ (L \ dom(r)) 
= ∅ and
s2(S) ∩ (Y \ c(X)) 
= ∅.

Conflicts between rules p and constraints c : X → Y can be resolved (in
favor of the constraint) by adding NACs to the rules p. For the conflict between
expanding rules and negative constraints, the NACs prevent the rule from com-
pleting the conclusion of the constraint. For the conflict between expanding rules
and positive constraints, the NACs prevent the rule from completing the condi-
tion X, and for the conflict between deleting rules and positive constraints, the
NACs prevent the rule from destroying the conclusion Y .

Definition 14 (Reduction). Given a rule p : L r
⇀ R and a nonempty overlap

S of R and the condition X of the constraint c : X → Y .

L
r ��

��

R

h

��

S
s1�� s2 ��X

c

��
N

r∗
��C Y��

Let C be the pushout object of s1 : S → R and c ◦ s2 : S → Y in Graph, and

let C
r−1,h⇒ N be the derivation with the inverse rule p−1 : R r−1

→ L at match h.
The reduction p(c) of p by c consists of the partial morphism L

r
⇀ R and the set

A(p, c) = {(L,N)|C (r−1,h)⇒ N , C = R +S Y for some overlap S } of NACs.

The construction considers arbitrary rules and constraints, i.e., it is not re-
stricted to deleting or expanding rules, respectively. This construction reduces
to the one in [HW95] if the constraint c : X → Y is the identity morphism.
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Theorem 2 (Reduction preserves Satisfaction). Let p : L
r
⇀ R be a rule

and G a graph that satisfies the constraint c : X → Y .

1. If c is negative, p is expanding, p(c) the reduction of p by c and G
p(c)⇒ H is

a derivation with p(c), then H satisfies c.
2. If c is positive, p is expanding, p(idX) the reduction of p by idX : X → X,

and G
p(idX)⇒ H a derivation with p(idX), then H satisfies c.

3. If c is positive, p is deleting, p(c) = (r,A(idL, c)), and G
p(c)⇒ H, then H

satisfies c.

Consider the negative constraint c(succ) in Figure 9 forbidding two (or more)
successor levels, and the (expanding) rule new level 2 in Figure 3 that may
produce an inconsistent state by adding a successor level. We describe now, in
algorithmic form, the construction of the reduction of new level 2 by c(succ):

SL SLSL

Fig. 9. Negative constraint c(succ) forbidding more than two successor security levels.

Step 1: Construction of all possible nonempty overlaps of R of the rule new
level 2 and the graph of c(succ). Figure 10 shows the nonempty overlaps S1,
S2 and S3 with morphisms s1 and s2. The remaining overlaps of R and X use
the same subgraphs S1, S2, S3, but different morphisms s1 and s2.

S1

R X R

S

R

2S

X X

3

SL SL SLSL

SLx

SL SL

SL
SLx

SL SL

SLy
SL

SLSL

SL
SLy SLySLx

SL

Fig. 10. Nonempty overlaps between new level 2 and c(succ).

Step 2: For each overlap S in step 1, the pushout C of the morphisms S → R
and S → X is constructed. The application condition (L,N) is constructed by
applying the inverse rule of new level 2 at match R → C resulting in graph
N . The inverse rule of new level 2 deletes a security level. Figure 11 shows the
pairs (L,N) for the three overlaps in Figure 10.

The construction in Definition 14 may generate redundant application con-
ditions. In fact, if we assume that G already satisfies the constraint c, some
application conditions are automatically satisfied. This corresponds to the case
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NAC 3NAC 2

SL SL

NAC 1

SL SL

SLSLSL

Fig. 11. NACs constructed from the overlaps.

where the overlap S → R can be decomposed into S → L → R. The graph N
generated from such overlap can be eliminated directly from Definition 14 by
requiring only overlaps S for which s1(S) ∩ (R \ r(L)) 
= ∅. In this manner, the
application condition NAC1 of Figure 11 can be removed.

Another form of redundancy stems from the fact that, if S1 with morphisms
s11 and s12 and S2 with morphisms s21 and s22 are overlaps and, say, S1 ⊆ S2,
s11|S1 = s21, s12|S1 = s22 then C2 = R +S2 Y ⊆ C1 = R +S1 Y and thus N2 ⊆ N1.
Hence, if a match L → G satisfies (L,N2), then it also satisfies (L,N1) and
the application condition (L,N1) can be removed from A(p, c). For example, the
overlap S1 is included into the overlap S3 (cf. Figure 10). Therefore, NAC3 ⊆
NAC1 (cf. Figure 11) and we can remove NAC1.

The solution of conflicts between expanding rules and negative constraints
and of conflicts between deleting rules and positive constraints is a reasonable
reduction of the number of system graphs which the rules can produce. The
solution for conflicts between expanding rules and positive constraints, however,
is not very satisfactory, since it reduces more than necessary the number of
system graphs that can be generated. Another solution is a construction which
extends the right-hand side of a rule so that the rule creates the entire conclusion
Y of a constraint c : X → Y and not only parts of it.

Definition 15 (Completing Rule). The completing rule for an expanding
rule p : L r→ R and a positive constraint c is defined by pc(c) = vi ◦ hi ◦ r, where

L

pc(c)
��

r ��R

hi

��

Si
si1�� si2 ��X

c

��
R′ Ci

vi�� Y
yi��

– Ω = {R si1← Si
si2→ X} is the set of all nonempty overlaps of R and X so that

si1(Si) ∩ (R \ r(L)) 
= ∅,
– for each Si ∈ Ω, (Ci, hi, yi) is the pushout of si1 and c ◦ si2 in Graph,
– (R′, vi : Ci → R′) is the pushout of the morphisms hi : R→ Ci in Graph.

The completing rule for the ACL rule create object and the positive con-
straint requiring a value for each object is shown in Figure 12.

Lemma 1. If pc(c) : L→ R′ is the completing rule for p, c, then R′ satisfies c.
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Fig. 12. Construction of the completing rule.

The completing rule, however, does not preserve consistency for each positive
constraint. If we restrict positive constraints to single (X contains at most one
node) or edge-retricted (for each edge s

e→ t ∈ (Y \ c(X)), s, t ∈ (Y \ c(X))), the
construction results always in a consistence preserving rule.

Proposition 6. If c is a single or edge-retricted positive constraint, the com-
pleting rule pc(c) for a rule p is consistent with respect to c.

The construction of the completing rule could be generalized to arbitrary con-
straints by using set nodes: a set node in the left-hand side of a rule matches all
occurrences of this node in a graph and the rule is applied to all the occurrences.

Another possibility to solve conflicts between positive constraints and ex-
panding rules p is to transform the constraint X → Y into a rule and require
that this rule is applied (after the application of p) as long as there are occur-
rences of X not “visited” in H. The new rule is just the constraint X → Y with
negative application condition (X,Y ) to avoid its application repeatedly on the
same part of H. It is neccessary to add “control” on the framework to ensure
that this new rule is applied ‘as long as possible’. Control can be introduced
either by using rule expressions [GRPPS00] or transformation units [EKMR99]
as an encapsulation mechanism used in a way similar to procedure calls.

6 Concluding Remarks

In a graph-based approach to the specification of AC policies, states are rep-
resented by graphs and their evolution by graph transformations. A policy is
formalized by four components: a type graph, positive and negative constraints
(a declarative way of describing what is wanted and what is forbidden) and a
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set of rules (an operational way of describing what can be constructed). An im-
portant problem addressed here is how to deal with inconsistencies caused by
conflicts between two of the constraints, two of the rules or between a rule and a
constraint. Often such problems arise when trying to predict the behavior of an
AC policy obtained by integrating two separate coherent policies [KMPP01a].
The conflict between a rule of one policy and a simple constraint of the other
policy has been addressed in part elsewhere [KMPP00], where it is also shown
the adequacy of this framework to represent a Role-based Access Control policy.
Here we have tackled the problem of conflicts by making effective use of the
graph based formalism. Conflicts are detected and resolved statically by using
standard formal tools typical of this graph based formalism. In the process, we
have introduced the notions of conditional constraint and of weakening of a rule.

A tool, based on a generic graph transformation engine, is under development
to assist in the systematic detection and resolution of conflicts and in the stepwise
modification of an evolving policy while maintaining its coherence.
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