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Abstract. A logic for coalgebras is said to admit final semantics iff—
up to some technical requirements—all definable classes contain a fully
abstract final coalgebra. It is shown that a logic admits final semantics iff
the formulas of the logic are preserved under coproducts (disjoint unions)
and quotients (homomorphic images).

Introduction

In the last few years it became clear that a great variety of state-based dynamical
systems, like transition systems, automata, process calculi can be captured uni-
formly as coalgebras, see [24,7] for an introduction to coalgebras and [6,8,20,3] for
recent developments. One of the important features of coalgebras is that under
rather weak conditions, categories of coalgebras have final (or cofree) coalgebras.
This allows to give final semantics to systems and to use coinduction as a proof
and definition principle.

In the view of coalgebras as systems, logics for coalgebras are specification
languages for systems. Examples of different approaches to logics for coalgebras
include [17,14,22,10,4,18]. These examples show that—due to the generality pro-
vided by functors as signatures—there is no uniform syntax for specification
languages for coalgebras.

The purpose of this paper is not to develop a new logical syntax for coalge-
bras (although we make the proposal to use modal logics with a global diamond).
Rather, we want to take an abstract approach. To this end, we consider as a logic
for coalgebras any pair (L, |=) consisting of a class of formulas L and a satis-
faction relation |= between coalgebras and formulas, subject to the condition
that definable classes are closed under isomorphism. We then ask the question
whether we can characterise those logics for coalgebras which admit final seman-
tics.

The definition of a logic admitting final semantics as well as the proof of
our characterisation theorem follow the work of Mahr and Makowsky [15] and
Tarlecki [26] who characterised logics for algebras admitting initial semantics.

The first section covers preliminaries, the second gives a characterisation of
logics admitting final semantics. The third section points out that logics admit-
ting final semantics may be quite stronger than those cited as examples above
and makes two suggestions that can be used to strengthen (these and others)
logics in a way that they still admit final semantics.
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1 Preliminaries

We first review coalgebras and final semantics and then briefly discuss logics for
coalgebras. For more details on coalgebras and modal logic we refer to [24] and
[2], respectively.

1.1 Coalgebras and Final Semantics

A coalgebra is given wrt. a base category X and an endofunctor (also called
signature) Σ : X → X . A Σ-coalgebra (X, ξ) consists of a carrier X ∈ X
and an arrow ξ : X → ΣX. Σ-coalgebras form a category Coalg(Σ) where a
coalgebra morphism f : (X, ξ)→ (X ′, ξ′) is an arrow f : X → X ′ in X such that
Σf ◦ ξ = ξ′ ◦ f . In the following we assume X = Set, the category of sets and
functions. Given a coalgebra (X, ξ), we call the elements of X states and ξ the
(transition) structure. We sometimes denote a coalgebra (X, ξ) by its structure ξ.

We mention only the following paradigmatic example in which coalgebras
appear as transition systems (or as Kripke frames, in the terminology of modal
logic).

Example 1 (Kripke frames). Consider the functor ΣX = PωX where Pω denotes
the finite powerset.1 Then Pω-coalgebras ξ : X → PX are image-finite (ie.,
finitely branching) Kripke frames: For x ∈ X, ξ(x) is the set of successors of x.
Morphisms are functional bisimulations, also known as p-morphisms or bounded
morphisms.

A Σ-coalgebra Z is final iff for all X ∈ Coalg(Σ) there is a unique morphism
!X : X→ Z. The interest in the final coalgebra comes from the following definition
of behavioural equivalence. Given two coalgebras X = (X, ξ), Y = (Y, ν) one says
that x ∈ X and y ∈ Y are behaviourally equivalent, written (X, x) ∼ (Y, y), iff
!X(x) = !Y(y).

We call a pair (X, x) a process and x its initial state. Every element of
the final coalgebra represents a class of behaviourally equivalent processes. We
call the elements of the final coalgebra behaviours and !X(x) the behaviour of
(X, x). The final semantics of a coalgebra X is given by the unique morphism
!X : X→ Z (assigning to each process in X its behaviour).

Example 2 (Kripke frames, cont’d). Given two image-finite Kripke frames X =
(X, ξ), Y = (Y, ν), and x ∈ X, y ∈ Y then (X, x) ∼ (Y, y) iff (X, x) and (Y, y)
are bisimilar, that is, iff there is a relation R ⊆ X × Y with x R y and

x R y & x′ ∈ ξ(x) ⇒ ∃y′ ∈ ν(y) & x′ R y′,
x R y & y′ ∈ ν(y) ⇒ ∃x′ ∈ ξ(x) & x′ R y′.

The notion of a final coalgebra can be extended to incorporate additional
observations of the states as follows. Let C be a set, called a set of colours, and
1 That is, Pω(X) = {A ⊆ X : A finite}. On functions P is defined as follows: given
f : X → Y , Pω f = λA ∈ PX.{f(a) : a ∈ A}.
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X = (X, ξ) be a coalgebra. A mapping v : X → C is called a colouring of the
states. X together with v gives rise to a (Σ×C)-coalgebra 〈ξ, v〉 : X → ΣX×C.
We write (X, v), or 〈ξ, v〉, for a (Σ × C)-coalgebra consisting of a Σ-coalgebra
X = (X, ξ) and a colouring v. Triples ((X, v), x) for x ∈ X are called coloured
processes and abbreviated as (X, v, x).

Example 3 (Kripke models). Let Σ = Pω and C = PP where P is a set of
propositional variables. Then (Σ × C)-coalgebras 〈ξ, v〉 : X → PωX × PP are
Kripke models: For x ∈ X, ξ(x) is the set of successors of x and v(x) is the
set of propositions holding in x. As for Kripke frames, (Σ × C)-morphism are
functional bisimulations (respecting, this time, the valuations of propositional
variables).

We can think of the colouring v as allowing additional observations. Accord-
ingly, a notion of behavioural equivalence is of interest that takes into account
these additional observations. This is provided by the final (Σ × C)-coalgebra
〈ζC , εC〉 : ZC → ΣZC × C. We call ζC the cofree Σ-coalgebra over C.

Definition 1 (having cofree coalgebras). We say that Coalg(Σ) has cofree
coalgebras iff for all C ∈ Set a final coalgebra exists in Coalg(Σ × C).

Remark 1. The standard way to establish that for a given functor Σ the category
Coalg(Σ) has a final coalgebra is to show that Σ is bounded (see [24]). In that
case Σ×C is also bounded and Coalg(Σ) has cofree coalgebras as well. Since the
class of bounded functors seems to include the signatures which are important
in specifying systems,2 requiring cofree coalgebras is not much stronger than
requiring only a final coalgebra.
Nevertheless, there are examples of categories Coalg(Σ) which don’t have all
cofree coalgebras but still a final one. The use of the functor Pne in the following
example was suggested to the author by Falk Bartels.
Example. Let Pne be the functor mapping a set to the set of its non-empty
subsets. Coalg(Pne) has ({∗}, id) as a final coalgebra. But Coalg(Pne) does not
have a coalgebra cofree over a two element set 2. This follows from the fact
that a final (Pne ×2)-coalgebra can not exist due to cardinality reasons (same
argument as the one showing that Coalg(P) has no final coalgebra).

We conclude this subsection with two more definitions needed later. First,
we note that coalgebras for signatures Σ ×C and Σ ×D are related as follows.

Definition 2 (the functor λ̄). Given a mapping λ : C → D we write λ̄ for
the functor

λ̄ : Coalg(Σ × C)→ Coalg(Σ ×D)
〈ξ, v〉 �→ 〈ξ, λ ◦ v〉

where ξ : X → ΣX and v : X → C. On morphisms, λ̄ is given by λ̄(f) = f .

2 Coalg(P), the category of coalgebras for the powerset functor, does not have a final
coalgebra. But Coalg(Pκ), where the cardinality of the subsets is restricted to be
smaller than some cardinal κ, has cofree coalgebras.
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Finally, a coalgebra is said to be fully abstract iff it has no proper quotient.
In case that a final coalgebra exists, this is equivalent to being a subcoalgebra
of the final coalgebra.

Definition 3 (fully abstract final coalgebras). X is a final coalgebra in
B ⊆ Coalg(Σ) iff X ∈ B and for all Y ∈ B there is a unique morphism Y → X.
Assuming that Coalg(Σ) has a final coalgebra, we call X fully abstract iff X is a
subcoalgebra of the final Σ-coalgebra.

1.2 Logics for Coalgebras

Recalling Definition 2, we begin with

Definition 4 (logic for coalgebras). Let Σ : Set → Set be a functor. A
logic for Σ-coalgebras L = (LC , |=C)C∈Set consists of classes LC and satisfaction
relations |=C ⊆ Coalg(Σ × C)× LC for all C ∈ Set and translations of formulas
λ∗ : LD → LC for all mappings λ : C → D. This data has to satisfy for all
X ∈ Coalg(Σ × C) and ϕ ∈ LD

X |= λ∗(ϕ) ⇐⇒ λ̄(X) |= ϕ. (1)

Moreover, we require (λ2 ◦ λ1)∗ = λ∗1 ◦ λ∗2, (idC)∗ = idLC , and ∀ϕ ∈ LC : X |=
ϕ ⇔ X′ |= ϕ for isomorphic (Σ × C)-coalgebras X ∼= X′.
A class B ⊆ Coalg(Σ × C) is called L-definable, or also LC-definable, iff there
is Φ ⊆ LC such that B = {X ∈ Coalg(Σ × C) : X |=C ϕ for all ϕ ∈ Φ}.

Remark 2. 1. The simpler notion of a logic for Σ-coalgebras as a pair (L, |=)
where L is a class and |= is a relation |= ⊆ Coalg(Σ)× L is a special case.
Indeed, (L, |=) can be considered as a logic (LC , |=C)C∈Set as follows. Let
LC = L, 〈ξ, v〉 |=C ϕ ⇔ ξ |= ϕ, and λ∗(ϕ) = ϕ for all C,D ∈ Set,
ξ : X → ΣX, v : X → C, λ : C → D, ϕ ∈ L. Conversely, any logic for
Σ-coalgebras (LC , |=C)C∈Set gives rise to the pair (L, |=) defined as L = L1,
|= = |=1 where 1 is some one-element set.

2. Condition (1) ensures that if a class B ⊆ Coalg(Σ × C) is L-definable then
λ̄−1(B) is L-definable as well.

3. The condition that (−)∗ be functorial ensures that C ∼= D implies that
LC ∼= LD and that (LC , |=C) and (LD, |=D) are equivalent logics. It plays
no role in the sequel.

Example 4 (Hennessy-Milner logic). Hennessy-Milner logic is a typical example
of a logic for Pω-coalgebras (L, |=) (in the sense of Remark 2.1). Formulas in L
are built from the propositional constant ⊥ (falsum), boolean operators, and a
modal operator ✷. Given a formula ϕ and a process (X, ξ, x), one has (X, ξ, x) |=
✷ϕ ⇔ (X, ξ, x′) |= ϕ for all x′ ∈ ξ(x). And (X, ξ) |= ϕ iff (X, ξ, x) |= ϕ for all
x ∈ X.
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Example 5. We extend Hennessy-Milner logic to a logic (LC , |=C)C∈Set whose
formulas involve colours. For each C ∈ Set, let LC be the logic with formulas
built from propositional constants c ∈ C, infinitary disjunctions, boolean oper-
ators, and a modal operator ✷. Define the semantics as in Example 4 with the
additional clause (X, ξ, x) |= c ⇔ π2(ξ(x)) = c where (X, ξ) is a (Pω ×C)-
coalgebra and π2 is the projection PωX × C → C. For all λ : C → D, let
λ∗ : LD → LC be the map replacing each occurrence of d ∈ D by

∨{λ−1(d)}.
Note that the disjunction may be infinitary.

The notions of a formula being preserved under subcoalgebras, quotients,
coproducts, respectively, are defined as usual.3 Similarly, we say that a class
B ⊆ Coalg(Σ) is closed under domains of quotients iff for B ∈ B and A → B a
surjective coalgebra morphism we have A ∈ B. Note that the formulas of a logic
are preserved under . . . iff every definable class of coalgebras is closed under . . . .

Formulas of Hennessy-Milner logic are preserved under subcoalgebras, quotients,
coproducts, and domains of quotients. The same holds for the logics of the above
cited papers [17,14,22,10,4,18].

Of interest for us are also the notions of covariety and quasi-covariety which
dualise the corresponding notions from algebra. Behavioural covarieties4 dualise
ground varieties.

Definition 5 ((quasi-)covariety, behavioural covariety). A quasi-covariety
is a class of coalgebras closed under coproducts and quotients. A covariety is a
quasi-covariety closed under subcoalgebras. A behavioural covariety is a covariety
closed under domains of quotients.

We will use the following fact about quasi-covarieties.

Proposition 1. Let Coalg(Σ) have cofree coalgebras. Then each quasi-covariety
in Coalg(Σ × C) has a fully abstract final coalgebra.

Proof. This follows from the fact (see eg. [13], Proposition 2.3) that each quasi-
covariety B is an injective-coreflective subcategory, that is, for all X ∈ Coalg(Σ×
C) there is X′ ∈ B and an injective morphism r : X′ ↪→ X such that for all Y ∈ B
and all f : Y → X there is a unique g : Y → X′ such that r ◦ g = f . Since,
by assumption, Coalg(Σ × C) has a final coalgebra Z, the fully abstract final
coalgebra in B is given by the coreflection r : Z′ ↪→ Z.

In contrast to algebra where already a weak logic as equational logic allows to
define any variety, finitary logics for coalgebras are in general not even expressive
3 In modal logic terminology one would rather speak of preservation under generated
subframes, bounded images, and disjoint unions, respectively.

4 The name ‘behavioural’ covariety is due to the fact that a behavioural covariety
B ⊆ Coalg(Σ) is closed under behavioural equivalence in the sense that, given X ∈ B
and Y ∈ Coalg(Σ) such that !X(X) = !Y(Y ), then Y ∈ B (where X,Y are the carriers
of X,Y respectively). Behavioural covarieties are studied eg. in [5,21,1].
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enough to define all behavioural covarieties. Nevertheless, and this will be used
in the proof of our main theorem, any logic for coalgebras is the fragment of an
expressive logic, as explained below.

Definition 6 (fragment/extension of a logic). We say that L′ extends the
logic for Σ-coalgebras L and that L is a fragment of L′ iff L′ is a logic for Σ-
coalgebras with LC ⊆ L′C and ϕ ∈ LC ⇒ (∀X ∈ Coalg(Σ × C) : X |=C ϕ ⇔
X |=′C ϕ) for all C ∈ Set.

Definition 7 (expressive logic). A logic for Σ-coalgebras L is expressive iff,
for all C ∈ Set, every behavioural covariety in Coalg(Σ × C) is L-definable.

Remark 3. If Coalg(Σ) has cofree coalgebras then any logic L for Σ-coalgebras
has a smallest expressive extension L′. The idea of the construction is simply to
add, for each behavioural covariety B, a formula defining B. That this results
indeed in a logic in the sense of Definition 4 follows from [11], Theorem 4.12. The
extension L′ is the smallest expressive extension in the sense that L′-definable
classes are also definable in any other expressive extension of L.

2 Logics Admitting Final Semantics

The notion of a logic admitting final semantics is adapted from Mahr and
Makowsky [15] and Tarlecki [26] who characterised logics for algebras admit-
ting initial semantics. For the notion of a class having a fully abstract final
coalgebra see Definition 3.

Definition 8 (logic admitting final semantics). A logic for Σ-coalgebras L
admits final semantics iff L is a fragment of an expressive logic L′ such that
every L′-definable class has a fully abstract final coalgebra.

Remark 4. 1. Comparing with [15,26] the analogous requirement would be to
demand that L itself is expressive. This is too strong in our setting since
many logics for coalgebras are not expressive. On the other hand all the
logics for coalgebras considered in the papers mentioned in the introduction
satisfy our weakened requirement.

2. The requirement of full abstractness means that any definable class B ⊆
Coalg(Σ) not only has a final semantics but that the final semantics of B is
‘inherited’ from the final semantics of Coalg(Σ), that is, if two processes of B
are identified in the final semantics of Coalg(Σ), then they are also identified
in the final semantics of B.
The following gives an example—based on a similar one due to Tobias
Schröder [25]—of a category B which has a final coalgebra which is not
fully abstract.
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Example. Consider Coalg(Pω) consisting of the finitely branching transition
systems. Coalg(Pω) has cofree coalgebras. Consider the class B ⊆ Coalg(Pω)
consisting only of the following transition system X

x0

✠��
� ❅❅❅❘

x1 x2

❅❅❅❘
x3

It is not difficult to see that X has only one endomorphism, the identity (recall
that morphisms are bisimulations). It follows that X is the final coalgebra
of B = {X}. But X is not fully abstract: It distinguishes the states x1 and
x3 which are identified in the final semantics of Coalg(Pω) (corresponding to
the fact that both states are terminating).

We now formulate our main result.

Theorem 1. Let Coalg(Σ) have cofree coalgebras and let L be a logic for Σ-
coalgebras. Then L admits final semantics iff the formulas of L are preserved
under coproducts and quotients.

As in the results on logics admitting initial semantics [15,26], the proof is based
on a theorem by Mal’cev [16] which we state and prove in the following dualised
form (cf. [26] Theorem 4.2).

Theorem 2. Let Coalg(Σ) have cofree coalgebras. Then for a class of coalgebras
B ⊆ Coalg(Σ × C) the following are equivalent.

1. For all mappings λ : D → C and all behavioural covarieties V ⊆ Coalg(Σ ×
D) it holds that λ̄−1(B) ∩ V has a fully abstract final (Σ ×D)-coalgebra.

2. B is closed under coproducts and quotients.

Proof (of Theorem 2). ‘ ⇐ ’: If B is a quasi-covariety then λ̄−1(B) is a quasi-
covariety. The intersection of a quasi-covariety with a behavioural covariety is
a quasi-covariety. And quasi-covarieties have fully abstract final coalgebras, see
Proposition 1.
‘⇒ ’: We use that B is a quasi-covariety if it is an injective-coreflective subcat-
egory (see eg. [13] Proposition 2.3), that is, if for any (X, ξ) ∈ Coalg(Σ × C)
there is (X ′, ξ′) ∈ B and an injective morphism r : (X ′, ξ′) ↪→ (X, ξ) such that
for all (Y, ν) ∈ B and all f : (Y, ν) → (X, ξ) there is g : (Y, ν) → (X ′, ξ′) such
that r ◦ g = f .
Given (X, ξ) we let D = C × X and λ : C × X → C the projection. In the
following we denote (Σ × C)-coalgebras by their structure and (Σ × C × X)-
coalgebras by pairs 〈ν, v〉 where ν is a (Σ×C)-coalgebra and v is a colouring. Let
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V ⊆ Coalg(Σ ×D) be the behavioural covariety {〈ν, v〉 | ∃f : 〈ν, v〉 → 〈ξ, idX〉}
and note that (ξ, idX) is a fully abstract final coalgebra in V. It follows from
our assumption on B that λ̄−1(B) ∩ V has a final coalgebra 〈ξ′, v′〉 and (by full
abstractness) that there is an injective morphism r : 〈ξ′, v′〉 → 〈ξ, idX〉. To show
that r : ξ′ → ξ is the required ‘coreflection’-morphism, let ν ∈ B and consider a
(Σ×C)-coalgebra morphism f : ν → ξ. Then f : 〈ν, f〉 → 〈ξ, idX〉 is a (Σ×D)-
coalgebra morphism. Since 〈ν, f〉 ∈ λ̄−1(B) ∩ V, there is g : 〈ν, f〉 → 〈ξ′, v′〉 by
the finality of 〈ξ′, v′〉. Hence f = r ◦ g as required.

Proof (of Theorem 1). ‘⇒ ’: Let B ⊆ Coalg(Σ×C) be L-definable and L′ be an
expressive extension of L. It follows that for all λ : D → C and all behavioural
covarieties V ⊆ Coalg(Σ×D) the class λ̄−1(B)∩V is L′-definable and, therefore,
has a fully abstract final coalgebra. Now apply Theorem 2.
‘⇐ ’: Let L′′ be a logic having precisely the behavioural covarieties as definable
classes. That L′′ is a logic in the sense of Definition 4 follows from Theorem 4.12
in [11]. Define, for all C ∈ Set, L′C as the disjoint union LC +L′′C and |=′C= (|=C
∪ |=′′C). Then L is a fragment of the expressive logic L′. Since L-definable classes
are quasi-covarieties and L′′-definable classes are behavioural covarieties, L′-
definable classes are quasi-covarieties. And quasi-covarieties have fully abstract
final coalgebras, see Proposition 1.

Remark 5. 1. In ‘⇒ ’ of the proof of Theorem 1 we see why we need to require
that definable classes of an expressive extension of L have fully abstract final
coalgebras. For an example showing that it does not suffice to require that
L-definable classes have fully abstract final coalgebras, recall Remark 2.1 and
consider a logic (L, |=) that has as the only definable class B ⊂ Coalg(Σ) the
class consisting of precisely the cofree coalgebras (for, say, Σ = Pω). Then
every LC-definable class ⊆ Coalg(Σ×C) has a fully abstract final coalgebra
but B is not closed under quotients.

2. The corresponding result in Tarlecki [26], Theorem 4.4, is proved more gener-
ally not only for algebras but for ‘abstract algebraic institutions’. Our result
can be generalised along the same lines. In fact, a logic for coalgebras as in
Definition 4 is a co-institution (see [11]). It suffices therefore to extract the
additional requirements needed to prove the theorems above in order to reach
a corresponding notion of ‘abstract coalgebraic co-institution’. But in con-
trast to abstract algebraic institutions which subsume not only (standard)
algebras but also other structures as eg. partial algebras and continuous al-
gebras, we are not aware of analogous examples in the coalgebraic world
that would justify the generalisation of our result to ‘abstract coalgebraic
co-institutions’.

3 Examples of Logics Admitting Final Semantics

As mentioned already, most logics for coalgebras studied so far, only allow for
definable classes closed under coproducts, quotients, subcoalgebras, and domains
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of quotients. On the other hand, as our theorem shows, stronger specification
languages with formulas not necessarily preserved under subcoalgebras and do-
mains of quotients may be of interest. In this section we show some ways of how
to extend known logics for coalgebras to such stronger ones. Since the ideas from
modal logic used in this section are completely standard, we avoid providing full
details. They can be found, eg., in [2].

Let us first go back to the example of Hennessy-Milner logic. We can extend
the expressive power of Hennessy-Milner logic by adding propositional variables.

Example 6 (adding propositional variables). Let us extend the logic of Example 4
by adding propositional variables from a set P. The satisfaction relation is now
defined by referring to coloured processes (X, v, x) where v : X → PP. For
propositional variables p ∈ P we have (X, v, x) |= p ⇔ p ∈ v(x). Boolean
and modal operators are defined as usual. And X |= ϕ iff (X, v, x) |= ϕ for all
v : X → PP and all x ∈ X.

Note that the definition of X |= ϕ involves a quantification over all valuations
of propositional variables v : X → PP. Since the extension of a propositional
variable can be any subset of the carrier of X, adding propositional variables can
be described as allowing a prefix of universally quantified monadic second-order
variables in the formulas (cf. [2], Definition 2.45 and Proposition 3.12).

Typical examples of how adding propositional variables increases expressiveness
are the following. Referring to Example 6, the formulas ✷p→ p and ✷p→ ✷✷p
with p ∈ P define, respectively, the class of reflexive Kripke frames and the
class of transitive Kripke frames. Both classes are not closed under domains
of quotients, showing that propositional variables add indeed expressiveness.
On the other hand, formulas with propositional variables are still preserved
under subcoalgebras, that is, definable classes are covarieties. Conversely, every
covariety is definable by an (infinitary) modal logic with propositional variables
(see [12]).

We show now how to build logics whose formulas are not necessarily pre-
served under subcoalgebras. A logic for coalgebras, possibly with propositional
variables, can be strengthened by adding rules. Given two formulas ϕ,ψ we call
ϕ/ψ a rule and extend the satisfaction relation via

X |= ϕ/ψ iff (X, v) |= ϕ ⇒ (X, v) |= ψ for all valuations v : X → PP.
This definition dualises the definition of implications for algebras and was studied
in [13] where it was shown that—allowing infinitary conjunctions—any quasi-
covariety is definable by a logic for coalgebras with rules.

Since rules can be rather unintuitive in writing specifications, adding a global
diamond instead (suggested to the author by Alexandru Baltag) may be prefer-
able. A global diamond E (cf. [2], Section 7.1) is a unary modal operator defined
via

(X, v, x) |= Eϕ iff (X, v, y) |= ϕ for some y ∈ X.
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E is called global because the range of quantification is not confined by the
transition structure. Of course, adding a global diamond, we have to restrict
occurrences of E to appear only positively in the formulas (otherwise we would
also add the defining power of a global box5).

Concerning expressiveness, adding the global diamond is equivalent to adding
rules. To sketch the argument: On the one hand, every rule ϕ/ψ is equivalent
to the formula ¬ψ → E¬ϕ; on the other hand, formulas containing a global
diamond are still preserved under coproducts and quotients and therefore can
not be more expressive than rules.

Conclusion

We have shown that a logic for coalgebras admits final semantics iff its formulas
are preserved under coproducts and quotients.

On the one hand, this result allows to design specifications languages admit-
ting final semantics, since it is usually not difficult to check whether formulas
are preserved under coproducts and quotients. This can be of interest for spec-
ification languages for coalgebras like CCSL [23]. CCSL allows the coalgebraic
specification of classes of object-oriented programs. A question in this context
is to determine the largest fragment of CCSL that ensures that specified classes
of objects have a final semantics (final semantics for objects was proposed by
Reichel [19] and Jacobs [9]). The value of our result in such a concrete setting
needs further exploration.

On the other hand we have pointed out possibilities to extend weaker logics
in a way that they still admit final semantics. Possible strengthenings may allow
formulas with (1) prefixes of universally quantified monadic second-variables
(propositional variables) and (2) positive occurrences of a first-order existential
quantifier (global diamond).
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