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Abstract. Development graphs are a tool for dealing with structured
specifications in a formal program development in order to ease the man-
agement of change and reusing proofs. Often, different aspects of a soft-
ware system have to be specified in different logics, since the construction
of a huge logic covering all needed features would be too complex to be
feasible. Therefore, we introduce heterogeneous development graphs as a
means to cope with heterogeneous specifications.
We cover both the semantics and the proof theory of heterogeneous de-
velopment graphs. A proof calculus can be obtained either by combining
proof calculi for the individual logics, or by representing these in some
“universal” logic like higher-order logic in a coherent way and then “bor-
rowing” its calculus for the heterogeneous language.

1 Introduction

In an evolutionary software development process using formal specifications,
typically not only implementations evolve over time, but during attempts to
prove correctness (of implementations), also the specifications may turn out to
be incorrect and therefore have to be revised. Development graphs [3] with hiding
[13] have been introduced as a tool for dealing with the necessary management
of change in structured formal specifications, with the goal of re-using proofs
as much as possible. In this work, we extend these to deal with heterogeneous
specifications, consisting of parts written in different logics. This is needed, since
complex problems have different aspects that are best specified in different logics,
while a combination of all these would become too complex in many cases.
Moreover, we also aim at formal interoperability among different tools.

Consider the following sample specification, written in Casl-LTL [18], an
extension of the Common algebraic specification language Casl [17] with a la-
beled transition logic. The behaviour of a buffer and a user writing into and
reading from that buffer is described at a very abstract requirements level using
temporal logic (cf. [2], chapter 13).
%CASL-LTL
spec SYSTEM = BUFFER and USER
then dsort system

free types system ::= || (buffer ; user)
lab system ::= START |OK |ERROR | tau
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∀s,s’:SYSTEM
• ∇(s,✷〈λl .¬l = ERROR〉)
%% there is always a possible correct behaviour

• s START
s ′ ⇒ ∇(s ′, 	(〈OK 〉 ∨ 〈ERROR〉))

%% after starting, always the system will eventually send out either OK
or ERROR

• ( s OK
s ′ ∨ s ERROR

s ′ ⇒ ∇(s ′,✷〈λl .¬l = OK ∨ l = ERROR)〉)
%% OK and ERROR are sent at most once, and it cannot happen

that both are sent
. . .

Typically, within the development process, one will need to refine the abstract
requirements and pass over to a concrete design. This could, for example, be ex-
pressed in SB-Casl [5], a state based extension of Casl following the paradigm
of abstract state machines. Here, it is possible to use assignments and sequential
and parallel composition, such that the passage to an imperative program is no
longer a big step. In order to be able to interface the SB-Casl specification with
the Casl-LTL specification above, we here use labeled transition system signa-
ture as above, which is projected from Casl-LTL to Casl with hide LTL-keep,
which means that the labeled transition system is kept (while the temporal logic
formulae are dropped). Thus, we get a heterogeneous specification, consisting
of parts written in different logics, and of inter-logic translations and inter-logic
projections (we here denote logic translations by with and logic projections by
hide, in analogy to Casl’s translations and hidings within one logic).
%SB-CASL
System BIT
use VALUE then

{ %CASL-LTL
dsort system
free types system ::= || (buffer ; user)

lab system ::= START |OK |ERROR | tau }
hide LTL-keep

dynamic func Buf Cont : buffer ; User State : user state;
proc proc START ; proc OK ; proc ERROR; proc tau;

• proc START = seqUser State := Putting 0 ; Buf Cont := Empty end
• proc tau = if User State = Putting 0 then

seq User State := Putting 1 ;
Buf Cont := Put(0 ,Buf Cont ′) end

elseif . . .

post proc tau : (Buf Cont ||User State) tau (Buf Cont ′||User State ′)

%% Specify the generated LTL relation

We then have that BIT actually is a refinement of SYSTEM, which can be
expressed in the following form in SB-Casl:
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view v : { SYSTEM hide LTL-keep with SB-CASL} to BIT end
%% BIT is a possible run of SYSTEM

The first specification within this refinement is again heterogeneous: SYS-
TEM is projected from LTL-Casl to Casl (using hide LTL-keep) and then
translated from Casl to SB-Casl (using with SB-Casl).

BUFFER USER VALUE

O O O

SYSTEM BIT

O O

h

h

id

Fig. 1. Development graph for the refinement of SYSTEM into BIT

In Fig. 1 we present the development graph expressing the above refinement.
Development graphs concentrate on the (homogeneous and heterogeneous) struc-
turing of specifications and proofs, independently of the particular structuring
or module-building constructs of the input language. In order to be able to use
heterogeneous development graphs for performing proofs, we introduce the no-
tion of heterogeneous borrowing, which is a generalization to the heterogeneous
case of the notion of borrowing [8], which allows to re-use theorem provers. As an
application, we will sketch how to represent various extensions of Casl within
higher-order logic in a coherent way, such that heterogeneous borrowing becomes
applicable. This means that we can re-use any theorem prover for higher-order
logic to do theorem proving in the heterogeneous logic consisting of Casl and
some of its extensions.

2 Preliminaries

When studying heterogeneous development graphs, we want to focus on the
structuring and abstract from the details of the underlying logical systems.
Therefore, we recall the abstract notion of institution [10].

Definition 1. An institution I = (Sign,Sen,Mod, |=) consists of

– a category Sign of signatures,
– a functor Sen:Sign−→Set giving the set of sentences Sen(Σ) over each sig-

nature Σ, and for each signature morphism σ:Σ−→Σ′, the sentence trans-
lation map Sen(σ):Sen(Σ)−→Sen(Σ′), where often Sen(σ)(ϕ) is written
as σ(ϕ),
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– a functor Mod:Signop−→CAT giving the category of models over a given
signature, and for each signature morphism σ:Σ−→Σ′, the reduct functor
Mod(σ):Mod(Σ′) −→ Mod(Σ), where often Mod(σ)(M ′) is written as
M ′|σ,

– a satisfaction relation |=Σ ⊆ |Mod(Σ)| × Sen(Σ) for each Σ ∈ Sign,

such that for each σ:Σ−→Σ′ in Sign,

M ′ |=Σ′ σ(ϕ) ⇔M ′|σ |=Σ ϕ

holds for each M ′ ∈Mod(Σ′) and each ϕ ∈ Sen(Σ) (satisfaction condition).

A logic is an institution equipped with an entailment system consisting of an
entailment relation �Σ⊆ |Sen(Σ)|×Sen(Σ), for each Σ ∈ |Sign|, such that the
following conditions are satisfied:

1. reflexivity: for any ϕ ∈ Sen(Σ), {ϕ} �Σ ϕ,
2. monotonicity: if Γ �Σ ϕ and Γ ′ ⊇ Γ then Γ ′ �Σ ϕ,
3. transitivity: if Γ �Σ ϕi, for i ∈ I, and Γ ∪ {ϕi| | i ∈ I} �Σ ψ, then Γ �Σ ψ,
4. �-translation: if Γ �Σ ϕ, then for any σ:Σ−→Σ′ in Sign, σ[Γ ] �Σ′ σ(ϕ),
5. soundness: for any Σ ∈ |Sign|, Γ ⊆ Sen(Sign) and ϕ ∈ Sen(Σ),

Γ �Σ ϕ implies Γ |=Σ ϕ.

A logic will be called complete if, in addition, the converse of the soundness
implication holds.

We will at times need the assumption that a given institution I = (Sign,Sen,
Mod, |=) has composable signatures, i.e. Sign has finite colimits, and moreover,
I admits weak amalgamation, i.e. Mod maps finite colimits to weak limits.
Informally, this means that if a diagram of signatures is glued together, then
it is also possible to glue together families of models that are compatible w.r.t.
the morphisms in the diagram.

Examples of logics that can be formalized in this sense are many-sorted
equational logic, many-sorted first-order logic, higher-order logic, various lambda
calculi, various modal, temporal, and object-oriented logics etc.

3 Development Graphs with Hiding

Development graphs, as introduced in [3], represent the actual state of a formal
program development. They are used to encode the structured specifications in
various phases of the development and make them amenable to theorem proving.
Roughly speaking, each node of such a graph represents a theory such as BIT
in the above example. The links of the graph define how theories can make
use of other theories. Leaves in the graph correspond to basic specifications,
which do not make use of other theories (e.g. VALUE). Inner nodes correspond
to structured specifications which define theories importing other theories (e.g.
BIT using VALUE). The corresponding links in the graph are called definition
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links. If only part of a theory shall be imported, one can use a hiding link. With
these kinds of links, one can express a wide variety of formalisms for structured
specification. E.g., there is a translation from Casl structured specifications (as
used in the examples) to development graphs [3].

Fix an arbitrary institution I = (Sign,Sen,Mod, |=).

Definition 2. A development graph is an acyclic directed graph S = 〈N ,L〉.
N is a set of nodes. Each node N ∈ N is a tuple (ΣN , ΓN ) such that ΣN is

a signature and ΓN ⊆ Sen(ΣN ) is the set of local axioms of N .
L is a set of directed links, so-called definition links, between elements of

N . Each definition link from a node M to a node N is either

– global1 (denoted M σ
N), annotated with a signature morphism σ : ΣM →

ΣN , or
– hiding (denoted M σ

h
N), annotated with a signature morphism σ : ΣN →

ΣM going against the direction of the link. Typically, σ will be an inclusion,
and the symbols of ΣM not in ΣN will be hidden.

Definition 3. Given a node N ∈ N , its associated class ModS(N) of models
(or N -models for short) consists of those ΣN -models n for which

– n satisfies the local axioms ΓN ,
– for each K σ

N ∈ S, n|σ is a K-model,
– for each K

σ

h
N ∈ S, n has a σ-expansion k (i.e. k|σ = n) which is a

K-model.

Complementary to definition and hiding links, which define the theories of
related nodes, we introduce the notion of a theorem link with the help of which
we are able to postulate relations between different theories. (Global) theorem
links (denoted by N

σ
M) are the central data structure to represent proof

obligations arising in formal developments. The semantics of theorem links is
given by the next definition.

Definition 4. Let S be a development graph and N , M be nodes in S. S
implies a global theorem link N

σ
M (denoted S |= N

σ
M) iff for all

m ∈ModS(M), m|σ ∈ModS(N).

A sound and complete (relative to an oracle for proving conservative exten-
sion) set of proof rules for deriving entailments of form

S � N σ M

has been introduced in [13] (based on the assumption that the underlying logic is
complete and two further technical assumptions, namely composable signatures
and weak amalgamation).

Based on this, there is a development graph tool Maya [4], keeping track
of specifications, proof goals and proofs, and also supporting a management of
1 There are also local links, which are omitted since they are not so essential here.
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change. The tool is parameterized over a tool for the entailment system of the
underlying logic, and only assumes the abstract properties of entailment systems
given in their definition above.

E.g. consider the development graph of the running example (cf. Fig. 1): The
theorem link from SYSTEM to BIT expresses the postulation that the latter is
a refinement of the former. Note that this development graph is heterogeneous
because it involves different logics – hence it goes beyond the above formalization
of development graphs over one arbitrary but fixed logic. The main goal of this
paper is hence to provide a formal basis for heterogeneous development graphs.
But before coming to this, let us first examine how to use translations between
logics to prove theorem links.

4 Borrowing

Often, for a given logic, there is no direct proof support available. Then, a way
to obtain proof support is to encode the logic into another logic that has good
tool support. For encoding logics, we use the notion of institution representation.

Definition 5. Given institutions I and J , a simple institution representation
[20] (also called simple map of institutions [11]) µ = (Φ,α, β): I −→ J consists
of

– a functor Φ:SignI−→PresJ2,
– a natural transformation α:SenI−→SenJ ◦ Φ,
– a natural transformation β:ModJ ◦ Φop−→ModI

such that the following representation condition is satisfied for all Σ ∈ SignI ,
M ′ ∈ModJ(Φ(Σ)) and ϕ ∈ SenI(Σ):

M ′ |=J
Sig[Φ(Σ)] αΣ(ϕ) ⇔ βΣ(M ′) |=I

Σ ϕ.

In more detail, this means that each signature Σ ∈ SignI is translated to
a presentation Φ(Σ) ∈ PresJ , and each signature morphism σ:Σ −→ Σ′ ∈
SignI is translated to a presentation morphism Φ(σ):Φ(Σ)−→Φ(Σ′) ∈ PresJ .
Moreover, for each signature Σ ∈ SignI , we have a sentence translation map
αΣ :SenI(Σ)−→SenJ(Φ(Σ)) and a model translation functor βΣ : ModJ(Φ(Σ))
−→ ModI(Σ). Naturality of α and β means that for any signature morphism

2 A presentation P = 〈Σ,Γ 〉 ∈ Pres consists of a signature Σ and a finite set of
sentences Γ ⊆ Sen(Σ) (we set Sig [P ] = Σ and Ax [P ] = Γ ). Presentation morphisms
are those signature morphisms that map axioms to logical consequences.
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σ:Σ−→Σ′ ∈ SignI ,

SenI(Σ)
αΣ

SenI(σ)

SenJ(Φ(Σ))

SenJ (Φ(σ))

SenI(Σ′)
αΣ′

SenJ(Φ(Σ′))

and

ModI(Σ) ModJ(Φ(Σ))
βΣ

ModI(Σ′)

ModI(σ)

ModJ(Φ(Σ′))

ModJ (Φ(σ))

βΣ′

commute.

Example 1. The logic of Casl (subsorted partial first-order logic with sort gen-
eration constraints) can be encoded with a simple institution representation into
second-order logic [12]. This representation can be described as a composite of
three representations: The first one encodes partiality via error elements living
in a supersort, the second one encodes subsorting via injections, and the third
one encodes sort generation constraints via second-order induction axioms. The
details can be found in [12].

Definition 6. Given a simple institution representation µ = (Φ,α, β): I −→ J ,
we can extend it to a translation µ̂ of development graphs with hiding as follows:
Given a development graph S, µ̂(S) has the same structure as S, but the signature
of a node N is changed from ΣN to Sig [Φ(ΣN )], the set of local axioms is changed
from ΓN to αΣN (ΓN )∪Ax [Φ(ΣN )]. Moreover, a signature morphism σ occurring
in a link (of any type) is replaced by Φ(σ). Note that Φ(σ) as used above is a
morphism between presentations, but as such it also is a signature morphism.

An important use of (simple) institution representations is the re-use (also
called borrowing) of entailment systems along the lines of [8,6]. Therefore, we
need two preparatory notions.

A simple institution representation (Φ,α, β): I−→J admits model expansion
if β is pointwise surjective on objects (i.e., each βΣ is surjective on objects).
Informally, this means that each model of the source institution has a model
representing it in the target institution.

Let a class D of signature morphisms in I be given. An institution repre-
sentation µ: I −→ J admits weak D-amalgamation, if for signature morphisms
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in D, the β-naturality diagrams shown above are weak pullbacks. Informally,
this means that each representation of a reduct of a model can be extended to
a representation of the whole model (for reducts along signature morphisms in
D).

Theorem 1 (Local borrowing [8]). Let µ = (Φ,α, β): I −→ J be a simple
institution representation admitting model expansion into a (complete) logic J .
Then we can turn I into a (complete) logic by putting

Γ �Σ ϕ iff Ax[Φ(Σ)] ∪ αΣ [Γ ] �Sign(Φ(Σ)) αΣ(ϕ).

Theorem 2 (Global borrowing). Let µ = (Φ,α, β): I−→J be an institution
representation admitting model expansion and weak D-amalgamation, and let J
be a complete logic. Then µ admits global borrowing, i.e. if we put

S �M σ
N iff µ̂(S) �M Φ(σ)

N.

we get an entailment relation which is sound and complete (relative to an ora-
cle for proving conservative extension) for a subset of development graphs over
I (namely the set of all those development graphs with all hiding links along
signature morphisms in D).

Example 2. The institution representation from Example 1 admits model ex-
pansion and weak (injective)-amalgamation. Hence, it admits global borrowing
for development graphs over the Casl logic that contain hiding links only along
injective signature morphisms. That is, to prove a theorem link of such a devel-
opment graph, it suffices to prove the translation of the link in the translated
development graph over second-order logic.

5 Logic Morphisms and a CoFI Logic Graph

How can we give a precise semantics to the development graph in Fig. 1? As a
prerequisite, we need to relate the underlying institutions somehow. In the pre-
vious section, we have introduced institution representations serving the purpose
of encoding an institution within another one. But they are not so appropriate
for dealing with heterogeneity (a motivation for this is given in [21]). Rather, we
need institution morphisms [10], expressing the fact that a “larger” institution
is built upon a “smaller” institution by projecting the “larger” institution onto
the “smaller” one.

Given institutions I and J , an institution morphism [10] µ = (Φ,α, β): I−→J
consists of

– a functor Φ:SignI−→SignJ ,
– a natural transformation α:SenJ ◦ Φ−→SenI and
– a natural transformation β:ModI−→ModJ ◦ Φop,
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such that the following satisfaction condition is satisfied for all Σ ∈ SignI ,
M ∈ModI(Σ) and ϕ′ ∈ SenJ(Φ(Σ)):

M |=I
Σ αΣ(ϕ′) ⇔ βΣ(M) |=J

Φ(Σ) ϕ
′.

If I and J are also logics, an institution morphism µ: I −→ J is called a logic
morphism, if for any Σ ∈ SignI , and {ϕ}, Γ ⊆ SenJ(Φ(Σ)),

Γ �JΦ(Σ) ϕ implies αΣ [Γ ] �IΣ αΣ(ϕ).

Note that this condition always holds if I is complete.
This leads to a category Log of logics and logic morphisms.
As an example, consider the graph of logics and logic morphisms shown in

Fig. 2. Casl extends first-order logic with partiality, subsorting and generation
constraints (some form of induction). Casl-LTL [18] is an extension of Casl
with a CTL-like labeled transition logic. LB-Casl [1] extends Casl with late
binding, and SB-Casl [5] is an extension of Casl following the abstract state
machine paradigm, where states correspond to algebras. HO-Casl [14] extends
Casl with higher-order functions, and HasCasl [19] further adds shallow poly-
morphism and type constructors. (We here use the extensional variants ExtHO-
Casl and ExtHasCasl of these logics, in order to be able to embed them into
classical higher-order logic later on.) FOL= is the restriction of Casl to first-
order logic, SubPHorn= [12] the restriction to Horn logic, and Horn= is the
intersection of both restrictions. The definition of the logic morphisms is quite
straightforward, except that for projecting Casl-LTL and LB-Casl onto Casl,
we have two choices: since the dynamic structure can be represented in Casl
itself, we either can choose to keep it or to drop it. Note that in Example 1 we
have chosen the keep-morphism for going from Casl-LTL to Casl in order to
be able to keep the labeled transition system also in SB-Casl and thus provide
a true interaction between the two worlds.

6 Heterogeneity through Grothendieck Logics

With a given (arbitrary but fixed) graph of logics and morphisms as exhibited
in the last section, we are now able to define heterogeneous development graphs.
We could introduce new types of definition link to capture the heterogeneity,
similarly to [21]. However, a more elegant way is to flatten the graph of logics,
and then use the usual constructions for the thus obtained logic. This leads to the
notion of Grothendieck logic, extending Diaconescu’s Grothendieck institutions
[9].

Definition 7. An indexed logic is a functor L: Indop−→Log into the category
of logics and logic morphisms.

For example, the graph of logics from Fig. 2 can be easily considered to be an
indexed logic. (Any graph of logics can be extended to an indexed logic by taking
Indop to be the free category over the graph, basically consisting of paths.)
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ExtHasCasl Casl-LTL

keepdrop

LB-Casl

keep

drop

SB-Casl

ExtHO-Casl

Casl

FOL= SubPHorn=

Horn=

Fig. 2. A first CoFI logic graph

An indexed logic can now be flattened, using the so-called Grothendieck con-
struction. The basic idea here is that all signatures of all logics are put side
by side, and a signature morphism in this large realm of signatures consists of
an intra-logic signature morphism plus an inter-logic translation (along some
logic morphism from the graph). The other components are then defined in a
straightforward way.

Definition 8. Given an indexed logic L: Indop−→Log, define the Grothendieck
logic L# as follows:

– signatures in L# are pairs (Σ, i), where i ∈ |Ind| and Σ a signature in the
logic L(i),

– signature morphisms (σ, d): (Σ1, i)−→(Σ2, j) consist of a morphism d: i−→
j ∈ Ind and a signature morphism σ:Σ1−→ΦL(d)(Σ2) (here, L(d):L(j)−→
L(i) is the logic morphism corresponding to the arrow d: i−→ j in the logic
graph, and ΦL(d) is its signature translation component),

– the (Σ, i)-sentences are the Σ-sentences in L(i), and sentence translation
along (σ, d) is the composition of sentence translation along σ with sentence
translation along L(d),

– the (Σ, i)-models are the Σ-models in L(i), and model reduction along (σ, d)
is the composition of model translation along L(d) with model reduction along
σ, and

– satisfaction (resp. entailment) w.r.t. (Σ, i) is satisfaction (resp. entailment)
w.r.t. Σ in L(i).

Now we can just define heterogeneous development graphs over L to be usual
development graphs over the logic L#. Hence, the graph shown in Fig 1 now
becomes a development graph in the formal sense. Proving in such heterogeneous
development graphs is then heterogeneous proving: the goal of deriving a global
theorem link is decomposed (using the proof rules from [13]) into local goals
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that refer to the entailment relation of the Grothendieck logic, which in turn is
defined in terms of the entailment relations of the individual logics.

However, there is one obstacle with this approach: in order to be able to use
the calculus for the development graphs with hiding in a sound and relatively
complete way, one needs weak amalgamation for the Grothendieck logic L# (note
that with the calculus for structured specifications given in [6], one even needs
Craig interpolation). Diaconescu [9] gives necessary and sufficient conditions for
this. However, he points out that in many cases not all of these conditions will
be satisfied (and this also is the case for our graph of logics). Therefore, we also
will pursue a different way of obtaining proof support for heterogeneous logics.

7 Grothendieck Representations
and Heterogeneous Borrowing

Often, heterogeneous proving in the Grothendieck logic is not feasible. One prob-
lem is a possible lack of weak amalgamation as indicated in the previous section.
Another problem with a logic graph covering a variety of logics is that one needs
to implement a proof tool for each individual logic. Therefore, we now show
how to translate heterogeneous proof goals into homogeneous ones (i.e. over one
logic), using heterogeneous borrowing.

To this end, we need the notion of institution representation map [20,16].
Fix a logic U = (USign,USen,UMod, |=,�) which we will very informally
view as a “universal” logic (with sufficient expressiveness to represent many
logics, and with suitable tool support). We will also denote the institution
(USign,USen,UMod, |=) by U .

Definition 9. Let I = (Sign,Sen,Mod, |=) and I ′ = (Sign′,Sen′, Mod′, |=′)
be institutions and ρ = (Φ,α, β): I → U and ρ′ = (Φ′, α′, β′): I ′ → U be their
representations in U . A representation map from ρ to ρ′ consists of:

– an institution morphism µ = (Φ̄, ᾱ, β̄): I → I ′, and
– a natural transformation θ:Φ′ ◦ Φ̄→ Φ,

such that

– α ◦ ᾱ = (USen · θ) ◦ (α′ · Φ̄),
– β̄ · β = (β′ · Φ̄op) ◦ (UMod · θop) , i.e., that for each signature Σ ∈ |Sign|

the following diagram commutes:

Mod(Σ)

β̄Σ

UMod(Φ(Σ))
βΣ

UMod(θΣ)

Mod′(Φ̄(Σ)) UMod(Φ′(Φ̄(Σ)))
β ′̄
Φ(Σ)

Moreover, we say that (µ, θ) admits weak amalgamation, if for each signature
Σ ∈ |Sign|, the above diagram is a weak pullback in CAT .
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With an obvious composition, this gives us a category Repr(U) of institution
representations into U and representation maps. An indexed representation then
is just a functor R: Indop−→Repr(U). We now have:

Theorem 3. Given an indexed institution representation R: Indop−→Repr(U),
we can form its Grothendieck representation R#: (Π1 ◦ R)# −→U , which is a
representation of the Grothendieck institution of the indexed institution Π1 ◦ R
formed from the source institutions and morphisms involved in R.

Proposition 1. Given an indexed representation R: Indop −→Repr(U), if all
the individual representations R(i) admit model expansion, then also R# admits
model expansion.

Definition 10. Given an indexed representation R: Indop −→ Repr(U) and a
class of signature morphisms D in (Π1 ◦ R)#, R is said to admit weak D-
amalgamation if

– for each i ∈ Ind, R(i) admits weak C-amalgamation, where C = {σ | (σ, d) ∈
D for some d: i−→j ∈ Ind}, and

– for each d ∈ Ind such that (σ, d) ∈ D for some σ, R(d) admits weak amal-
gamation.

Proposition 2. Given an indexed representation R: Indop −→Repr(U) and a
class of signature morphisms D in (Π1◦R)#, if R admits weak D-amalgamation,
then also R# admits weak D-amalgamation.

Corollary 1. Given an indexed representation R: Indop−→Repr(U), if all the
individual representations R(i) admit model expansion, and moreover R admits
weak D-amalgamation, then R# admits global borrowing for development graphs
containing hiding links only along signature morphisms in D.

This means that global theorem links in heterogeneous development graphs
can be derived using only the entailment relation of U (and the proof rules for
development graphs from [13]).

Theorem 4. The underlying indexed institution from Fig. 2 can be extended
to an indexed representation COFI: Indop −→ Repr(HOL), as indicated in
Fig. 3. Moreover, if INJ is the set of all signature morphisms that are injec-
tive in the first (intra-institution) component, then COFI admits weak INJ -
amalgamation.

Proof. (Sketch) Casl is represented in HOL by Example 1. Casl-LTL and LB-
Casl are represented in Casl by construction, hence we can compose this with
the representation of Casl in HOL. ExtHO-Casl can be represented in HOL
by an easy extension of the representation of Casl in HOL (for representing
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ExtHasCasl Casl-LTL

keepdrop

LB-Casl

keep

drop

SB-Casl

ExtHO-Casl

Casl HOL

FOL= SubPHorn=

Horn=

Fig. 3. The embedding to the CoFI logic graph into HOL

ExtHasCasl, we need a variant of HOL supporting type constructors and shal-
low polymorphism). The most complicated representation is that of SB-Casl:
we have to represent the static part as with the standard Casl representation
in HOL in order to get a representation map, while we need a set-theoretic rep-
resentation for dynamic part (which involves whole algebras as states). The link
between the static and the dynamic part is done by lifting functions which lift
the static part into set theory. $%

By Corollary 1, COFI# admits global borrowing for development graphs
containing hiding links only along signature morphisms in INJ .

8 Conclusion and Related Work

Multi-logic systems can be studied in the context of an arbitrary but fixed graph
of logics and logic morphisms (formalized as an indexed logic ). In such a set-
ting, we have generalized development graphs with hiding [13] to the hetero-
geneous case, using the Grothendieck construction of Diaconescu [9]. We then
have extended the Grothendieck construction form institutions (and morphisms)
to institution representations (and representation maps). We also have studied
conditions under which Grothendieck representations admit the re-use (“bor-
rowing”) of theorem provers for proving global theorem links in heterogeneous
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development graphs. Our work is related to the introduction of heterogeneous
notions in [21], which here occur more naturally through the Grothendieck con-
struction.

As a first application, we have sketched a graph of institutions consisting of
institutions for the Common Algebraic Specification Language Casl and some of
its extensions and sublanguages. We also have extended this to a graph of repre-
sentations and representation maps in higher-order logic. By the construction of
the associated Grothendieck representation, any theorem prover for higher-order
logic, together with the development graph tool based on the calculus for devel-
opment graphs with hiding introduced in [13], can be used for theorem proving
in the heterogeneous language over the above mentioned institution graph. As a
first practical step, the development graph tool Maya has been connected with
the Isabelle/HOL theorem prover [4]. Other provers will follow, with the pos-
sibility of multi-prover proofs. We also have made the static analysis of Casl
in-the-large institution independent [15], which is a step towards an analysis tool
for the heterogeneous input language.

We have also presented a sample heterogeneous specification involving a re-
finement of an abstract requirement specification in Casl-LTL using temporal
logic to a design specification in SB-Casl following paradigm of abstract state
machines. With this, we have indicated that heterogeneous development graphs
are indeed useful for dealing with interaction of different formalisms. It should
be noted though that this interaction is possible because we use an institution
morphism form Casl-LTL to Casl that keeps the dynamic structure. In order
to have an interaction also in cases where it is not possible to keep some struc-
ture, one has to use parchments [16,7], which allow a true “interleaved” feature
interaction. However, the theory of parchments is not ripe yet to deal with a
combination of all the logics in our sample institution graph.

In the future, one should, of course, further explore the applicability of this
approach. Concerning tool support, we have presented two extremes: either each
logic comes with individual proof support, or all logics are encoded into one
“universal” logic like HOL. Possibly it will be desirable to find some way be-
tween these extremes by allowing a large variety of input logics which is then
mapped into a smaller variety of proof logics (for example, Maya already sup-
ports both HOL and HOL plus TLA). The details of how to construct a logic
representation between the induced Grothendieck logics need to be worked out
yet. Another line of future work concerns the application of the ideas presented
here to programming languages, which can also be considered to be institutions
[20].
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