
Verifying Temporal Properties
Using Explicit Approximants:

Completeness for Context-free Processes

Ulrich Schöpp and Alex Simpson

LFCS, Division of Informatics, University of Edinburgh
JCMB, King’s Buildings, Edinburgh, EH9 3JZ

Abstract. We present a sequent calculus for formally verifying modal
µ-calculus properties of concurrent processes. Building on work by Dam
and Gurov, the proof system contains rules for the explicit manipulation
of fixed-point approximants. We develop a new syntax for approximants,
incorporating, in particular, modalities for approximant modification.
We make essential use of this feature to prove our main result: the sequent
calculus is complete for establishing arbitrary µ-calculus properties of
context-free processes.

1 Introduction

In this paper, we present a proof system for establishing temporal properties,
expressed in the modal µ-calculus [14], of concurrent processes. The proof system
is a sequent calculus in which sequents have the form Γ � ∆, where Γ and
∆ are sets of assertions. As usual, a derivation of Γ � ∆ will establish that
if all the assertions in Γ hold then so does at least one assertion in ∆. The
principal assertion form is p :ϕ, which is the syntactic expression of the relation
p |= ϕ, stating that process p satisfies µ-calculus property ϕ. The sequent-based
formalism has several virtues:

1. Ordinary verification goals are expressed by sequents of the form � p :ϕ.
2. More generally, by allowing process variables, parameterized verification goals

can be expressed by sequents of the form

x1 :ψ1, . . . , xn :ψn � p(x1, . . . , xn) :ϕ. (1)

Such a sequent states that the process p satisfies ϕ whenever its parameters
x1, . . . , xn are instantiated with processes satisfying ψ1, . . . , ψn respectively.

3. Such parameterized goals can be used to support compositional reasoning.
Using cut and substitution, one obtains a derived rule:1

� p(q1, . . . , qn) :ϕ

� q1 :ψ1 . . . � qn :ψn x1 :ψ1, . . . , xn :ψn � p(x1, . . . , xn) :ϕ

1 In this paper, we write all inference rules and derivations in tableau form, i.e. with
the goal (conclusion) on top and the subgoals (premises) underneath.

M. Nielsen and U. Engberg (Eds.): Fossacs 2002, LNCS 2303, pp. 372–386, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

Verifying Temporal Properties Using Explicit Approximants 373

This rule reduces the goal of establishing a property ϕ of a compound process
p(q1, . . . , qn) to the subgoals of establishing properties of its components
q1, . . . , qn together with a further subgoal justifying the decomposition.

4. The proof system also supports a direct structural form of reasoning. The
inference rules decompose logical connectives on the left and right of sequents
in the familiar Gentzen style, allowing the construction of a derivation to be
guided by the form of the goal sequent.

Such a sequent-based approach to process verification was proposed indepen-
dently by Dam [4] and the second author [17], as a way of uniformly accounting
for many specialist techniques for compositional reasoning that had appeared in
the earlier literature, especially [18].

The paper [17] presents a sequent calculus, for establishing properties ex-
pressed in Hennessy-Milner logic [12], in which sequents contain a second form
of assertion, transition assertions p

a→ q, expressing that process p evolves to
process q under action a. This device allows the proof system to be adapted
to any process calculus with an operational semantics in GSOS format [1]. The
main results of [17] are strong completeness and cut-elimination for the system.

In [4,5,6,7,8,9,11], Dam and his co-workers address the interesting question
of how best to incorporate fixed-point reasoning into such sequent-based proof
systems. In their more recent research, see, in particular, [9], Dam and Gurov
propose dealing with this issue by extending the µ-calculus with ordinal vari-
ables, κ, which are semantically interpreted as ordinals, and by introducing new
formulae µκX.ϕ and νκX.ϕ standing for the κ-th iterations in the chain of ap-
proximations to the fixed-points µX.ϕ and νX.ϕ respectively. This machinery
allows a sound notion of proof to be defined, by identifying certain repeats of
sequents in a derivation tree and by imposing a global discharge condition on a
derivation tree, formulated in terms of ordinal variables.

As the first contribution of the present paper, we provide a new proof system
for incorporating fixed-point reasoning into the sequent-calculus approach. Our
system is strongly based on Dam and Gurov’s idea of using explicit fixed-point
approximants. However, we provide an alternative formulation of these, not re-
quiring ordinal variables. Instead, we use ordinary propositional variables X to
range over approximants. To properly deal with such variables, we include an
extra component on the left of sequents, a context D of approximant declara-
tions. Such declarations have one of two forms: X � ϕ, which declares X to
be an approximant of µX.ϕ; and X � ϕ, which declares X to be an approxi-
mant of νX.ϕ, see Sect. 2. Thus far, our approach can be seen as merely a less
expressive reformulation of Dam and Gurov’s syntax. However, we also extend
the syntax of the µ-calculus in two significant ways. First, we allow explicit ap-
proximant declarations in formulae, introducing two new formula constructions:
〈X � ϕ〉ψ, which says that there exists an approximant X of µX.ϕ such that
ψ; and [X � ϕ]ψ, which says that ψ holds for all approximants X of νX.ϕ.
Second, we incorporate modalities for approximant “modification” in formulae.
If X is an approximant for µX.ϕ then the formula 〈−X〉ψ expresses that there
exists another approximant X ′ of µX.ϕ with X ′ ⊂ X (proper inclusion) such
that ψ[X ′ /X]. Dually, if X is an approximant for νX.ϕ then [+X]ψ expresses

374 Ulrich Schöpp and Alex Simpson

that, for all approximants X ′ of µX.ϕ with X ′ ⊃ X (proper containment), it
holds that ψ[X ′ /X].

The full proof system is presented in Sect. 3. The use of approximant vari-
ables and modifiers allows a straightforward definition of a global combinatorial
condition for a derivation tree to be a proof. The soundness of the proof system
is then established as Theorem 1.

It is our belief that the proof system we present provides a powerful and
flexible tool for verifying a wide class of processes using a compositional style
of reasoning. As the verification problem is, in general, undecidable, the proof
system is necessarily incomplete, and so it is impossible to back up such a claim
with an all-encompassing completeness theorem. Instead, there are two other
avenues open for partially substantiating this belief. One is to demonstrate the
effectivity of the system on a range of worked examples. Using proof systems
closely related to ours, such an enterprise has already been undertaken by Dam,
Gurov et al., who have presented applications to CCS [5,8], the π-calculus [6]
and Erlang [7,11]. The second avenue is to obtain restricted completeness the-
orems. Once again, Dam, Gurov et al. have obtained such results, establishing
completeness for sequents of the form � x :ϕ, i.e. completeness with respect to
µ-calculus validity [9], and proving completeness for finite-state processes [5].

As the main contribution of the paper, Theorem 2, we present a significant
extension of the latter result. We show that our proof system is complete for
establishing µ-calculus properties of arbitrary context-free processes, see e.g. [2].

Of course, many techniques for verifying context-free processes are already
known. The decidability of the problem is a direct consequence of the work
of Muller and Schupp, who established that full monadic second-order logic
(MSOL) is decidable over the wider class of pushdown transition graphs [15]. The
decision problem for MSOL is known to be of non-elementary complexity. How-
ever, for the special case of µ-calculus properties, elementary decision algorithms
have been given in [20,3]. Also, Hungar and Steffen showed how alternation-free
µ-calculus properties of context-free processes can be established by a tableau-
style proof system embodying a form of compositional reasoning [13].

We stress, however, that the motivation behind the present paper is not
merely to contribute one more method of verifying context-free processes to the
literature. Indeed, in spite of their applications to dataflow analysis in languages
with stack-based procedure calls [10], context-free processes are of limited rele-
vance to the general problem of verifying concurrent systems. Rather, our mo-
tivation is to extend the scope of completeness results for proof systems whose
full range of application is potentially much wider. Indeed, as far as we know,
ours is the first completeness result for a general purpose proof system (i.e. one
not tailored in advance to a restricted class of processes) with respect to any
significant class of infinite state processes.

We would like to thank Dilian Gurov and the anonymous referees for their
comments. For lack of space, in this conference version of the paper, proofs are
either sketched or omitted.

Verifying Temporal Properties Using Explicit Approximants 375

2 Modal µ-Calculus and Explicit Approximants

Our treatment of the µ-calculus will be brief. The reader is referred to [19] for
further details. We consider the µ-calculus in positive normal form, with formulae
defined by the grammar:

ϕ ::= X | ff | tt | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | 〈a〉ϕ | [a]ϕ | µX.ϕ | νX.ϕ.
Here a ranges over a given set A of action symbols. Free and bound variables are
defined as usual, and we identify formulae up to renaming of bound variables.
We write FV (ϕ) for the set of free variables of ϕ, and we say that ϕ is closed if
FV (ϕ) = ∅. The negation of a closed formula can be defined by induction on its
structure using De Morgan duals.

Formulae are interpreted over a transition system (T, { a→}a∈A) (here T is
a set of states and each a→ is a binary relation on T). A formula ϕ is inter-
preted relative to an environment V mapping FV (ϕ) to subsets of T , with its
interpretation ||ϕ ||V ⊆ T defined as in [19].

Next we introduce approximants. Rather than invoking the set-theoretic ma-
chinery of ordinal indices, we give a definition that is directly interpretable in
monadic third-order logic.

Definition 1 (µ- and ν-approximants). For any least-fixed-point formula
µX.ϕ, its family of µ-approximants AµX.ϕV , relative to an environment V defined
on FV (µX.ϕ), is the smallest family of subsets of T satisfying:

1. if A′ ⊆ AµX.ϕV then
⋃A′ ∈ AµX.ϕV , and

2. if S ∈ AµX.ϕV then ||ϕ ||V [S /X] ∈ AµX.ϕV .

For any greatest-fixed-point formula νX.ϕ, its family of ν-approximants AνX. ϕV

relative to V is the smallest family of subsets of T satisfying:

1. if A′ ⊆ AνX. ϕV then
⋂A′ ∈ AνX. ϕV , and

2. if S ∈ AνX. ϕV then ||ϕ ||V [S /X] ∈ AνX. ϕV .

Note that, by taking A′ = ∅ we have that ∅ ∈ AµX.ϕV , and T ∈ AνX. ϕV (because
T =

⋂ ∅ when ∅ is considered as the empty family of subsets of T).
As discussed in the introduction, the proof system will use a class of extended

formulae containing declarations and modifiers for approximant variables:

Φ ::= ϕ | 〈X�ϕ〉Φ | [X�ϕ]Φ | 〈−X〉Φ | [+X]Φ

In this definition, and henceforth, we use lower case Greek letters ϕ,ψ, . . . to
range over ordinary µ-calculus formulae, and upper case letters Φ, Ψ, . . . to range
over extended formulae.

The sets of free variables of extended formulae are defined by:

FV (〈X�ϕ〉Φ) = FV ([X�ϕ]Φ) = (FV (ϕ) ∪ FV (Φ))\{X}
FV (〈−X〉Φ) = FV ([+X]Φ) = FV (Φ) ∪ {X}

Extended formulae are again identified up to renaming of bound variables.

376 Ulrich Schöpp and Alex Simpson

The semantic interpretation of extended formulae is given relative to a finite
set, D, of approximant declarations, each of the form X�ϕ or X�ϕ. The former
is a µ-approximant declaration, the latter a ν-approximant declaration, and in
each case the declared variable is X. We write DV (D) for the set of all variables
declared in D.

The declaration contexts are produced as follows: (i) the empty set is a dec-
laration context; (ii) if D is a declaration context, X is a variable not declared
in D, and ϕ is a µ-calculus formula with FV (ϕ) ⊆ DV (D) ∪ {X} then D, X�ϕ
and D, X�ϕ are both declaration contexts (where we write comma for union).
The set of used variables in a declaration context is defined by:

UV (X�ϕ) = UV (X�ϕ) = FV (ϕ)\{X}
UV (D) =

⋃{UV (δ) | δ ∈ D}
We next define the notion of an extended formula Φ being well-formed rel-

ative to a declaration context D. First, any µ-calculus formula ϕ is well-formed
relative to any declaration context D with FV (ϕ) ⊆ DV (D). Second, the ex-
tended formula 〈X �ϕ〉Φ (respectively [X �ϕ]Φ) is well-formed relative to D
if D,X �ϕ (respectively D,X �ϕ) is a declaration context, where X �∈ DV (D)
(which can be always assumed, by the identification of formulae up to renaming
of bound variables), and Φ is well-formed relative to it. Finally, the extended
formula 〈−X〉Φ (respectively [+X]Φ) is well-formed relative to D if D contains
a declaration X�ϕ (respectively X�ϕ), X �∈ UV (D) and also Φ is well-formed
relative to D. By this definition, we have that FV (Φ) ⊆ DV (D) whenever Φ is
well-formed relative to D.

Given a declaration context D, a D-environment is a function V mapping
DV (D) to subsets of T such that: for each declaration X � ϕ (respectively
X�ϕ) in D, it holds that V (X) ∈ AµX.ϕV (respectively V (X) ∈ AνX. ϕV). To give
a semantics to extended formulae, we define subsets ||Φ ||DV ⊆ T whenever D is
a declaration context, Φ is well-formed relative to D, and V is a D-environment.

||ϕ ||DV = ||ϕ ||V
|| 〈X�ϕ〉Φ ||DV =

⋃{||Φ ||D,X�ϕ
V [S /X] | S ∈ AµX.ϕV } where X �∈ DV (D)

|| [X�ϕ]Φ ||DV =
⋂{||Φ ||D,X�ϕ

V [S /X] | S ∈ AνX. ϕV } where X �∈ DV (D)

|| 〈−X〉Φ ||DV =
⋃{||Φ ||DV [S /X] | S ⊂ V (X) and S ∈ AµX.ϕV where X�ϕ ∈ D}

|| [+X]Φ ||DV =
⋂{||Φ ||DV [S /X] | S ⊃ V (X) and S ∈ AνX. ϕV where X�ϕ ∈ D}

3 The Proof System

The proof system we present is general purpose in the sense that, following the
approach of [17], it can be easily adapted to give a sound system for reasoning
about any process algebra whose operational semantics is given in the GSOS
format [1]. However, for brevity of exposition, we present proof rules for the
special case of context-free processes only.

Verifying Temporal Properties Using Explicit Approximants 377

Definition 2 (Context-free system). A context-free system is specified by
a finite set of nonterminals Σ = {P1, . . . ,Pk} together with a finite set P of
productions, each of the form Pi

a→ p, where p ranges over Σ∗ (the set of finite
words over Σ) and a ranges over a finite set of action symbols A. The transition
system (T, { a→T }a∈A) determined by the specification is defined as follows.

T = Σ∗

s a→T t iff s = Pi q and t = p q for some production Pi
a→ p ∈ P.

Here, as usual, a juxtaposition p q means the concatenation of words p and q.

Example 1. As a running example, consider the system with a single nonterminal
P, set of actions A = {a, b}, and with two productions: P a→ PP and P b→ ε,
where ε is the empty word. This has as its transition system:

ε ✛
b

P
a✲✛
b

P2
a✲✛
b

P3
a✲✛
b

. . .

This is an infinite-state process in which no two distinct states are bisimilar.

Henceforth in this section we assume that we have a fixed specification of
a context-free system, as in Definition 2, and we write (T, { a→T }a∈A) for the
transition system it determines.

The proof system uses process terms containing free process variables x, y, . . .

Definition 3 (Process term). A process term is a word of one of two forms:
either px, where p ∈ Σ∗ and x is a process variable; or p where p ∈ Σ∗.
We use p, q, . . . to range over process terms. By a process substitution we shall
mean a mapping θ from process variables to process terms. The substituted term
p [θ] is defined in the obvious way.

Process terms are interpreted relative to process environments ρ mapping
process variables to states in the transition system T . We extend ρ to a function
(also called ρ) from process terms to T by: ρ(px) = p ρ(x) and ρ(p) = p.

Sequents will be built from two forms of assertion: verification assertions of
the form p : Φ , where Φ is an extended formula, as in Sect. 2; and transition
assertions of the form p

a→ q. We use J,K, . . . to range over assertions. Given a
declaration context D, an assertion is a D-assertion if it is either a verification
assertion p :Φ with Φ well-formed relative to D, or a transition assertion.

Definition 4 (Sequent). Sequents have the form D ; Γ � ∆ where D is a
declaration context and Γ and ∆ are finite sets of D-assertions.

Semantically, assertions and sequents will always be interpreted relative to
the transition system (T, { a→T }a∈A). Given a D-environment V and a process
environment ρ, the relation |=V ρ J , for D-assertions J , is defined by:

|=V ρ p :Φ iff ρ(p) ∈ ||Φ ||DV
|=V ρ p

a→ q iff ρ(p) a→T ρ(q)

378 Ulrich Schöpp and Alex Simpson

General rules

(Axiom)
D ; Γ � ∆

Γ ∩∆ �= ∅ (Weak)
D ; Γ � ∆

D′ ⊆ D, Γ ′ ⊆ Γ , ∆′ ⊆ ∆
D′ ; Γ ′ � ∆′

(Cut)
D ; Γ � ∆

D ; Γ � ∆, J D ; Γ, J � ∆
(Sub)

D ; Γ [θ] � ∆ [θ]

D ; Γ � ∆

Logical rules

(ffL)
D ; Γ, p : ff � ∆

(ttR)
D ; Γ � ∆, p : tt

(∨L)
D ; Γ, p :ϕ1 ∨ ϕ2 � ∆

D ; Γ, p :ϕ1 � ∆ D ; Γ, p :ϕ2 � ∆
(∨R)

D ; Γ � ∆, p :ϕ1 ∨ ϕ2

D ; Γ � ∆, p :ϕ1, p :ϕ2

(∧L)
D ; Γ, p :ϕ1 ∧ ϕ2 � ∆

D ; Γ, p :ϕ1, p :ϕ2 � ∆
(∧R)

D ; Γ � ∆, p :ϕ1 ∧ ϕ2

D ; Γ � ∆, p :ϕ1 D ; Γ � ∆, p :ϕ2

Modal rules

(〈a〉L)∗
D ; Γ, p : 〈a〉ϕ � ∆

D ; Γ, p a→ x, x :ϕ � ∆
(〈a〉R)

D ; Γ � ∆, p : 〈a〉ϕ
D ; Γ � ∆, p a→ q D ; Γ � ∆, q :ϕ

([a]L)
D ; Γ, p : [a]ϕ � ∆

D ; Γ � ∆, p a→ q D ; Γ, q :ϕ � ∆
([a]R)∗

D ; Γ � ∆, p : [a]ϕ

D ; Γ, p a→ x � ∆, x :ϕ

∗ Restriction on (〈a〉L) and ([a]R): x must not occur free in the goal.

Operational rules

(PiL)
D ; Γ, Pi q

a→ x � ∆
x does not occur in q

{D ; Γ [p q / x] � ∆[p q / x] }Pi
a→p∈P

(εL)
D ; Γ, ε a→ x � ∆

(PiR)
D ; Γ � ∆, Pi q

a→ p q
Pi

a→ p ∈ P

Fig. 1. Basic rules

We write D ; Γ |=V ρ ∆ to mean that if |=V ρ J , for all J ∈ Γ , then there exists
K ∈ ∆ such that |=V ρ K. We write D ; Γ |= ∆ to mean that D ; Γ |=V ρ ∆ for
all V and ρ.

Verifying Temporal Properties Using Explicit Approximants 379

Fixed-point rules

(µL)
D ; Γ, p :µX.ϕ � ∆

D ; Γ, p : 〈X�ϕ〉ϕ � ∆
(µR)

D ; Γ � ∆, p :µX.ϕ

D ; Γ � ∆, p : 〈X�ϕ〉ϕ

(�-µL)
D ; Γ, p : 〈X�ϕ〉Φ � ∆

D ; Γ, p :Φ[µX.ϕ /X] � ∆
(�-µR)

D ; Γ � ∆, p : 〈X�ϕ〉Φ
D ; Γ � ∆, p :Φ[µX.ϕ /X]

(νL)
D ; Γ, p : νX.ϕ � ∆

D ; Γ, p : [X�ϕ]ϕ � ∆
(νR)

D ; Γ � ∆, p : νX.ϕ

D ; Γ � ∆, p : [X�ϕ]ϕ

(�-νL)
D ; Γ, p : [X�ϕ]Φ � ∆

D ; Γ, p :Φ[νX.ϕ /X] � ∆
(�-νR)

D ; Γ � ∆, p : [X�ϕ]Φ

D ; Γ � ∆, p :Φ[νX.ϕ /X]

Approximant rules

(�-XL)∗
D ; Γ, p : 〈X�ϕ〉Φ � ∆
D, X�ϕ ; Γ, p :Φ � ∆

(�-XR)
D ; Γ � ∆, p : 〈X�ϕ〉Φ

X�ϕ ∈ D
D ; Γ � ∆, p :Φ

(XµL)
D ; Γ, p :X � ∆

X�ϕ ∈ D
D ; Γ, p : 〈−X〉ϕ � ∆

(XµR)
D ; Γ � ∆, p :X

X�ϕ ∈ D
D ; Γ � ∆, p : 〈−X〉ϕ

(〈−X〉)
D ; 〈−X〉Γ, Γ ′ � 〈−X〉∆, ∆′

Γ �= ∅, X �∈ UV (D) ∪ FV (Γ ′)
D ; Γ, Γ ′ � ∆, ∆′

(�-XL)
D ; Γ, p : [X�ϕ]Φ � ∆

X�ϕ ∈ D
D ; Γ, p :Φ � ∆

(�-XR)∗
D ; Γ � ∆, p : [X�ϕ]Φ

D, X�ϕ ; Γ � ∆, p :Φ

(XνL)
D ; Γ, p :X � ∆

X�ϕ ∈ D
D ; Γ, p : [+X]ϕ � ∆

(XνR)
D ; Γ � ∆, p :X

X�ϕ ∈ D
D ; Γ � ∆, p : [+X]ϕ

([+X])
D ; [+X]Γ, Γ ′ � [+X]∆, ∆′

∆ �= ∅, X �∈ UV (D) ∪ FV (∆′)
D ; Γ, Γ ′ � ∆, ∆′

∗ Restriction on (�-XL) and (�-XR): X must not occur free in the goal.

Fig. 2. Fixed-point and approximant rules

380 Ulrich Schöpp and Alex Simpson

The proof system provides a means of verifying sequents D ; Γ � ∆ for which
D ; Γ |= ∆. The rules are presented in Figs. 1 and 2. The rules in Fig. 1 concern
the modal fragment of the logic, and are essentially from [17]. Figure 2 presents
the crucial rules for fixed points and explicit approximants. We emphasise again
that we write the rules in tableau style with the goal sequent above the line
and its (possibly empty) set of subgoals below the line. Rules are applicable only
in instances in which the subgoals produced are indeed sequents according to
Definition 4. Certain rules have additional side conditions, written on the right.
In the rules, we use the abbreviations:

Γ [θ] = { p [θ] :Φ | p :Φ ∈ Γ} ∪ { p [θ] a→ q [θ] | p a→ q ∈ Γ},
〈−X〉Γ = { p : 〈−X〉Φ | p :Φ ∈ Γ}, [+X]Γ = { p : [+X]Φ | p :Φ ∈ Γ},

where, whenever we write 〈−X〉Γ and [+X]Γ , we tacitly assume that Γ contains
only verification assertions. We briefly explain the rule (〈−X〉) which, along with
([+X]), is probably the most obscure. Suppose we have V and ρ invalidating the
goal, i.e. such that D ; 〈−X〉Γ, Γ ′ �|=V ρ 〈−X〉∆, ∆′. We show that the subgoal is
also invalid. Because the goal is invalidated, we have that ρ(pj) ∈ || 〈−X〉Φj ||DV ,
for each pj : Φj ∈ Γ = {p1 : Φ1, . . . , pl : Φl}. So, for each pj : Φj , there exists
Sj ⊂ V (X) with Sj ∈ AµX.ϕV such that ρ(pj) ∈ ||Φj ||DV [Sj /X]. As approximants
are linearly ordered and Γ �= ∅, we can take the largest such Sk ⊂ V (X), and,
by monotonicity considerations, simultaneously satisfy ρ(pj) ∈ ||Φj ||DV [Sk /X] for
all pj :Φj ∈ Γ . Define V ′ = V [Sk /X]. We claim that D ; Γ, Γ ′ �|=V ′ρ ∆, ∆′.
We have seen that the assertions in Γ are satisfied. Those in Γ ′ are because
X �∈ UV (D) ∪ FV (Γ ′). The assertions in ∆ are not satisfied under V ′ because
those in 〈−X〉∆ weren’t under V . Finally, by monotonicity considerations, the
assertions in ∆′ are also not satisfied under V ′, because they weren’t under V .

The above justification for the (〈−X〉) rule modifies a D-environment on X by
mapping it to a strictly smaller µ-approximant. Dually, the ([+X]) rule results in
X being mapped to a strictly larger ν-approximant. By well-foundedness consid-
erations, neither event can occur infinitely often. This observation motivates the
definitions below, which formulate when a derivation tree constitutes a proof.

By a leaf in a derivation tree, we mean a sequent occurrence in the tree such
that no rule has been applied with that sequent occurrence as its goal (thus
sequents to which a rule with an empty set of subgoals has been applied do not
count as leaves, even though they have no child sequents).

Definition 5 (Repeat). In a derivation tree, a leaf D ; Γ � ∆ is a repeat of
another sequent occurrence D′ ; Γ ′ � ∆′ if D′ ⊆ D and there exists a process
substitution θ such that Γ ′ [θ] ⊆ Γ and ∆′ [θ] ⊆ ∆.

Definition 6 (Pre-proof). A pre-proof is a derivation tree in which, to each
leaf D ; Γ � ∆, there is an assigned sequent occurrence D′ ; Γ ′ � ∆′ (the
companion of the leaf) such that D ; Γ � ∆ is a repeat of D′ ; Γ ′ � ∆′.

In the above definitions, it is worth noting that the companion is not required
to appear on the branch from the root sequent to the leaf.

Verifying Temporal Properties Using Explicit Approximants 381

We consider a pre-proof as a directed graph whose vertices are sequent oc-
currences in the pre-proof, and with edges of two kinds: (i) edges from the goal
of a rule application to each subgoal (if any) of the goal; (ii) an edge from each
leaf to its companion. By a (finite or infinite) path through a pre-proof, we mean
a sequence (Si)0≤i<n≤∞ of sequent occurrences forming a directed path through
the graph. We say that a rule is applied along a path (Si) if the path contains
two consecutive sequents Si and Si+1 with Si the goal of the rule and Si+1 one
of its subgoals.

Definition 7 (Preservation). A path preserves an approximant variable X
if, for every sequent D ; Γ � ∆ occurring on the path, X ∈ DV (D).

Definition 8 (Progress). A µ-approximant variable X progresses on a path
if it is preserved by the path and the rule (〈−X〉) is applied along the path.
Similarly, a ν-approximant variable X progresses if it is preserved and the rule
([+X]) is applied.

We say that X progresses infinitely often on an infinite path (Si)i≥0 if, for all
n ∈ N, it holds that X progresses on the tail path (Si)i≥n.

Definition 9 (Proof). A pre-proof is a proof if, for every infinite path (Si)i≥0
through it, there exist an approximant variable X and a tail (Si)i≥n on which
X progresses infinitely often.

We remark that this condition is necessarily global, in the sense that it cannot
be reformulated as a condition to be satisfied by each repeat individually.

Proposition 1. It is decidable whether a pre-proof is a proof or not.

Theorem 1 (Soundness). If D ; Γ � ∆ has a proof then D ; Γ |= ∆.

In Fig. 3 we give an example proof in the system, showing that the process P,
from Example 1, satisfies the property νX. µY. [a]X ∧ [b]Y , stating that action a
occurs infinitely often along any infinite path of a and b actions. The identified
repeats determine a pre-proof, which is easily seen to be a proof.

4 Completeness for Context-Free Processes

We assume a fixed specification of a context-free system, as in Definition 2.

Theorem 2 (Context-free completeness). For any p ∈ Σ∗ and closed µ-
calculus formula ϕ, if p ∈ ||ϕ || then the sequent � p :ϕ has a proof.

The proof uses a variant of the property-checking games described in [19]. In
a transition system (T, { a→T }a∈A), the property-checking game G(s, ϕ), where
s ∈ T and ϕ is a closed µ-calculus formula, is a game played by two players, Veri-
fier and Refuter. Verifier aims to show that s ∈ ||ϕ || whereas Refuter attempts to
refute this. We use an asymmetric variant of property-checking games, designed
to facilitate translating properties of games into the sequent calculus.

382 Ulrich Schöpp and Alex Simpson

Abbreviations: V ≡ νX. µY. [a]X ∧ [b]Y , U ≡ µY. [a]X ∧ [b]Y.

� P :V
� ε : [X�U]U

X�U ; � ε :U

X�U ; � ε : 〈Y � [a]X ∧ [b]Y 〉 [a]X ∧ [b]Y

X�U ; � ε : [a]X ∧ [b]U

X�U ; � ε : [a]X

X�U ; ε a→ x � x :X

X�U ; � ε : [b]U

X�U ; ε b→ x � x :U

ε : [X�U]U � P :V

x : [X�U]U � Px :V

x : [X�U]U � Px : [X�U]U

X�U ; x : [X�U]U � Px :U

...

(Sub)
(Cut)

We continue with the right-hand branch.
...

X�U ; x :U � Px :U (�)

X�U ; x :U � Px : 〈Y � [a]X ∧ [b]Y 〉 [a]X ∧ [b]Y

X�U ; x :U � Px : [a]X ∧ [b]U

X�U ; x :U � Px : [a]X

X�U ; x :U, Px a→ y � y :X

...

X�U ; x :U � Px : [b]U

X�U ; x :U, Px b→ y � y :U
X�U ; x :U � x :U

We continue with the left-hand branch.
...

X�U ; x :U � PPx :X

X�U ; x :U � Px : [+X]U

X�U ; x :U � Px :U
([+X])

X�U ; Px : [+X]U � PPx :X

X�U ; Px : [+X]U � PPx : [+X]U

X�U ; Px :U � PPx :U
([+X])

(Cut)

Both leaves are repeats of the sequent (�).

Fig. 3. Example Proof

For technical convenience, we assume representations of formulae in which
all bound variables have different names, and we assume that we only encounter
fixed-point formulae µX.ϕ, νX.ϕ with X ∈ FV (ϕ). We use sequences, E, of
greatest-fixed-point definitions called ν-contexts, together with their sets of de-
clared variables DV (E). These are defined by: (i) the empty sequence () is a
ν-context with the empty set of declared variables; (ii) if E is a ν-context,
X �∈ DV (E) and FV (ϕ) ⊆ DV (E) ∪ {X} then E, X = ϕ is a ν-context with
DV (E)∪ {X} as its set of declared variables. The equality X=ϕ in a ν-context
declares X to be the greatest fixed-point νX.ϕ.

Verifying Temporal Properties Using Explicit Approximants 383

Definition 10 (Position). A position is a triple (s,E, ϕ) where s ∈ T is any
state, E is a ν-context and ϕ is a formula such that FV (ϕ) ⊆ DV (E) but, for all
proper prefixes E′ of E, FV (ϕ) �⊆ DV (E′).

Definition 11 (Move). The legitimate moves from one position (s,E, ϕ) to
another are defined by case analysis on ϕ:

ff: It is Verifier’s move, but she is stuck.
tt: It is Refuter’s move, but he is stuck.
ψ1 ∨ ψ2: Verifier chooses a disjunct ψj where j ∈ {1, 2}, and the next position

is (s,E′, ψj), where E′ is the smallest prefix of E with FV (ψj) ⊆ DV (E′).
ψ1 ∧ ψ2: Refuter chooses a conjunct ψj where j ∈ {1, 2}, and the next position

is (s,E′, ψj), where E′ is the smallest prefix of E with FV (ψj) ⊆ DV (E′).
〈a〉ψ: Verifier chooses a transition s

a→T t, and the next position is (t,E, ψ).
[a]ψ: Refuter chooses a transition s

a→T t, and the next position is (t,E, ψ).
µX.ψ: Verifier moves to the next position (s,E, ψ[µX.ψ /X]).
νX.ψ: Refuter moves to the next position (s,E′, ψ), where E′ is E, X=ψ.
X: Refuter moves to the next position (s,E, ψ), where X=ψ ∈ E.

Definition 12 (Play). A play is a finite or infinite sequence (si,Ei, ϕi)i of
positions where each position (sk+1,Ek+1, ϕk+1) is produced from (sk,Ek, ϕk)
by following one of the moves above.

Definition 13 (Preservation). We say that a play (si,Ei, ϕi)i preserves a
variable X if, for each Ei in the play, X ∈ DV (Ei).

Definition 14 (Progress). We say that a fixed-point variable X progresses
along a play if it is preserved by the play and the play contains a move away
from a position (s,E, X).

Definition 15 (Winning play). The Verifier wins a play either if the play is
finite and its last position is one at which it is Refuter’s move, or if the play is
infinite and there exist a variable X and a tail of the play such that X progresses
infinitely often along the tail.

Definition 16 (The game G(s, ϕ)). The game G(s, ϕ), where ϕ is a closed
formula, is played on the set of all positions reachable from the initial position
(s, (), ϕ). The game is a two player game, played by Verifier and Refuter, with
play starting from the initial position.

For ordinary property-checking games, the following result appears in [19, §6.3].
The adaptation to our games is straightforward.

Proposition 2. If s ∈ ||ϕ || then Verifier has a history-free winning strategy for
the game G(s, ϕ).

384 Ulrich Schöpp and Alex Simpson

We now begin the proof of Theorem 2. Henceforth, suppose that p0 ∈ Σ∗

is such that p0 ∈ ||ϕ0 ||. We use the game G(p0, ϕ0) to construct a proof of the
sequent � p0 :ϕ0.

Henceforth, all plays will be of the game G(p0, ϕ0). By Proposition 2, Verifier
has a history-free winning strategy for this game. We henceforth fix on one such
strategy, and we call a play a V-play if all Verifier’s moves in the play follow
the strategy. We write u0 for the initial position (p0, (), ϕ0). From now on,
we shall only consider those positions that arise in some V-play from u0. We
use u,v,w, . . . to range over such positions, and π, τ . . . to range over V-plays
starting from any such position. Note that Verifier wins any infinite V-play. We
write uπ and πv to mean that u and v are the first and last positions in π
respectively. Given two V-plays π1v and vπ2, we write π1π2 for the evident
concatenation of the two plays.

We give a brief summary of the proof structure. Similar to [13], we consider
“canonical” sequents of the restricted form:

D ; x :Ψ1, . . . , x :Ψk � Px :ϕ, (2)

where P is a nonterminal. Each such sequent is constructed with reference to
a position of the form u = (P q,E, ϕ), with each assumption x :Ψi being deter-
mined by a V-play π from u to some position v whose state is q. Importantly, the
extended formula Ψi contains ν-approximant declarations and modifiers that re-
flect preservation and progress properties of the play π. We use Verifier’s strategy
to construct a derivation tree in which individual rule applications can be com-
bined into larger steps between sequents of the form (2). Crucially, only finitely
many distinct such sequents occur in the constructed derivation, enabling the
derivation tree to terminate in repeats. Moreover, paths in the derivation tree
reflect preservation and progress properties of the V-plays used to construct the
derivation, which allows the choice of repeats to be made so that the resulting
pre-proof is a proof.

To define canonical sequents, we need various auxiliary definitions. Given
a play π ending in the position (s,E, ϕ), we define functions decπ(E′, Φ) and
proπ(E′, Φ) for prefixes E′ of E and extended formulae Φ with FV (Φ) ⊆ DV (E′).

proπ(E′, Φ)=
{
decπ(E′, [+X]Φ) if E′ is E′′,X=ϕ and X progresses on a tail of π
decπ(E′, Φ) otherwise

decπ(E′, Φ)=
{
proπ(E′′, [X�ϕ]Φ) if E′ is E′′,X=ϕ and π does not preserve X
Φ otherwise

Definition 17 (Characteristic formula). For any play π ending in (s,E, ϕ),
its characteristic formula χ(π) is proπ(E, ϕ).

Definition 18 (Assumption set). For any position u = (p,E, ϕ), its assump-
tion set relative to q is the set

AS (u, q) = {χ(π) | uπv is a V-play with v = (q,E′, ψ)}.

Verifying Temporal Properties Using Explicit Approximants 385

Definition 19 (Canonical sequent). For any position u = (p q,E, ϕ), the
canonical sequent relative to p is the sequent

S(u, p) = DE ; {x :Ψ | Ψ ∈ AS (u, q)} � px :ϕ,

where DE = {X�ψ | X=ψ occurs in E}.
This is a good definition because the set AS (u, q) is finite.

The next two lemmas show how to build up derivation trees between canon-
ical sequents of the form S(u,P), where P is nonterminal, providing the “larger
steps” between such sequents discussed above.
Lemma 1. Given a position u = (Q1 . . .Qk r,E, ϕ), where Q1, . . . ,Qk are non-
terminals, the sequent S(u,Q1 . . .Qk) occurs as the root of a derivation tree
in which each leaf has the form Sπ = S(vπ,Qi), where uπvπ is a V-play and
vπ = (Qi . . .Qk r,Eπ, ψπ) for some i. Moreover, if the play π preserves (respec-
tively progresses on) X then so does the unique path from the root to Sπ.
The proof repeatedly uses (Cut) and (Sub) to remove each nonterminal Qi from
the sequence Qi . . .Qk, applying appropriate proof rules to convert the induced
subgoal for Qi+1 . . .Qk into the required form for the process to be repeated.
Lemma 2. Given a position u = (Q r,E, ϕ), where Q is nonterminal, the sequent
S(u,Q) occurs as the root of a derivation tree in which each leaf has the form
Sπ = S(vπ,Qπ), where Qπ is nonterminal, vπ = (Qπ qπ r,Eπ, ψπ) and uπvπ
is a V-play containing at least one move. If the play π preserves (respectively
progresses on) X then so does the unique path to Sπ in the derivation tree.
The proof is by case analysis on ϕ using the sequent rules to mimic the possible
moves of any V -play. In the case of the modal rules, Lemma 1 is used to break
down any sequence of nonterminals produced.

Lemma 2 builds derivation trees between canonical sequents and relates
preservation and progress properties of paths through the trees to analogous
properties of the V-plays used to construct them. As discussed above, these
properties allow the derivation trees to be combined into a proof, yielding:
Lemma 3 (Main lemma). For any position u = (p q,E, ϕ) the canonical se-
quent S(u, p) has a proof.
The proof of Theorem 2 is now concluded by using (Cut) and (Sub) to combine
Lemma 3 above with the relatively straightforward:
Lemma 4. For any position u = (p,E, ϕ) and Ψ in the assumption set AS (u, ε)
the sequent � ε :Ψ has a proof.

5 Discussion and Future Work

Our proof of completeness for context-free processes makes essential use of ν-
approximant declarations and modifiers. These features can be incorporated into
Dam and Gurov’s proof system [9], by extending their syntax with ordinal quan-
tifiers ∀κ. ϕ and ∀κ′<κ.ϕ. Indeed, the completeness proof for context-free pro-
cesses was originally developed in this context in the first author’s MSc disser-
tation [16]. We do not know whether context-free completeness holds for Dam
and Gurov’s system without ordinal quantifiers.

386 Ulrich Schöpp and Alex Simpson

It is natural to ask whether the approach in this paper might extend to obtain
completeness for richer classes of processes, such as pushdown processes [15,20,3].
In a different direction, it would be very interesting to ascertain to what extent
one can obtain completeness results for parameterized verification goals of the
form (1), see Sect. 1.

References

1. B. Bloom, S. Istrail, and A.R. Meyer. Bisimulation can’t be traced. J. Assoc.
Comput. Mach., 42:232–268, 1995.

2. O. Burkart, D. Caucal, F. Moller, and B. Steffen. Verification over infinite states.
In Handbook of Process Algebra, pages 545–623. Elsevier, 2001.

3. O. Burkart and B. Steffen. Model checking the full modal mu-calculus for infinite
sequential processes. Theoretical Computer Science, 221(1–2):251–270, 1999.

4. M. Dam. Compositional proof systems for model checking infinite state processes.
In International Conference on Concurrency Theory, pages 12–26, 1995.

5. M. Dam. Proving properties of dynamic process networks. Information and Com-
putation, 140(2):95–114, 1998.

6. M. Dam. Proof systems for π-calculus logics. In R. de Queiroz, editor, Logic for
Concurrency and Synchronisation. OUP, 2001.

7. M. Dam, L. Fredlund, and D. Gurov. Toward parametric verification of open
distributed systems. In A. Pnueli H. Langmaack and W.-P. de Roever, editors,
Compositionality: the Significant Difference. Springer, 1998.

8. M. Dam and D. Gurov. Compositional verification of CCS processes. In Proceedings
of PSI’99. Springer LNCS 1755, 1999.

9. M. Dam and D. Gurov. µ-calculus with explicit points and approximations. Journal
of Logic and Computation, to appear, 2001. Abstract in Proceedings of FICS 2000.

10. J. Esparza and J. Knoop. An automata-theoretic approach to interprocedural
dataflow analysis. In Proceedings of FOSSACS’99. Springer LNCS 1578, 1999.

11. L. Fredlund. A framework for reasoning about Erlang code. PhD Thesis, Swedish
Institute of Computer Science, 2001.

12. M. Hennessy and R. Milner. Algebraic laws for nondeterminism and concurrency.
J. Assoc. Comput. Mach., 32:137–161, 1985.

13. H. Hungar and B. Steffen. Local model checking for context-free processes. Nordic
Journal of Computing, 1(3):364–385, Fall 1994.

14. D. Kozen. Results on the propositional µ-calculus. Theoretical Computer Science,
27:333–354, 1983.

15. D.E. Muller and P.E. Schupp. The theory of ends, pushdown automata, and second-
order logic. Theoretical Computer Science, 37:51–75, 1985.

16. U. Schöpp. Formal verification of processes. MSc Dissertation, University of Ed-
inburgh, 2001. Available as http://www.dcs.ed.ac.uk/home/us/th.ps.gz.

17. A.K. Simpson. Compositionality via cut-elimination: Hennessy-Milner logic for an
arbitrary GSOS. In Logic in Computer Science, pages 420–430, 1995.

18. C.P. Stirling. Modal logics for communicating systems. Theoretical Computer
Science, 49:311–347, 1987.

19. C.P. Stirling. Modal and temporal properties of processes. Texts in Computer
Science. Springer, 2001.

20. I. Walukiewicz. Pushdown processes: games and model-checking. Information and
Computation, 164(2):234–263, January 2001.

	Verifying Temporal Properties Using Explicit Approximants: Completeness for Context-free Processes
	1 Introduction
	2 Modal µ-Calculus and Explicit Approximants
	3 The Proof System
	4 Completeness for Context-Free Processes
	5 Discussion and Future Work
	References

