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Abstract. This paper focuses on the integration of reachability and ob-
servability concepts within an algebraic, institution-based framework. We
develop the essential notions that are needed to construct an institution
which takes into account both the generation- and observation-oriented
aspects of software systems. Thereby the underlying paradigm is that the
semantics of a specification should be as loose as possible to capture all
its correct realizations. We also consider the so-called “idealized models”
of a specification which are useful to study the behavioral properties a
user can observe when he/she is experimenting with the system. Finally,
we present sound and complete proof systems that allow us to derive
behavioral properties from the axioms of a given specification.

1 Introduction

Reachability and observability concepts are both equally important in system
specifications. Reachability concepts focus on the specification of generation
principles usually presented by a set of constructors. Most algebraic specifi-
cation languages incorporate features to express reachability like, for instance,
the Casl language [1]. Observability concepts are used to specify the desired ob-
servable properties of a program or software system (see, e.g., [17, 18, 15, 16, 8]).
Particular institutions which formalize the syntactic and semantic aspects of ob-
servability were introduced in [10] (hidden algebra) and in [11] (observational
logic). In [5] we have shown that by dualization of observational logic one obtains
a novel treatment of reachability, called the constructor-based logic institution.
Both frameworks capture, either from the observability or from the reachability
point of view, the idea that the model class of a specification SP should describe
all correct realizations of SP. In many examples, however, both aspects have to
be considered simultaneously. The aim of this paper is therefore to integrate our
novel treatment of reachability and observational logic in a common, powerful
institution, called the constructor-based observational logic institution.

Of course, we are aware that many approaches in the literature already cover
in some way reachability and/or observability. However, most of them either are
not based on a loose semantics (like [16]) or are too restrictive w.r.t. the inter-
pretation of reachability in the sense that only reachable models are admitted.
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Thus standard implementations which simply contain junk (like the realization
of the natural numbers by the integers) are ruled out from the models of a
specification. The ultra-loose approach of [20], the notion of behavioral specifi-
cation w.r.t. a partial observational equality in [6, 12] and the hidden algebra
approach are closely related to our framework. The main difference to [20] is
that no explicit notion of observer or constructor operation is used there while
in our approach they are the basic ingredients of a signature which lead to a
specification methodology and to an institution tailored to observability and
reachability. The partial observational equality of [6] does not take into account
a distinguished set of observer and constructor operations which in our case fa-
cilitates proofs and leads to a powerful notion of signature morphism. The main
difference to the presentation of hidden algebra in [10] is that there the reachable
values are given by a fixed data universe while in our approach constructors can
be defined for arbitrary sorts and hence also for hidden state sorts which we
believe is important to deal with reachable states.

We assume that the reader is familiar with the basic notions of algebraic
specifications (see, e.g., [14, 2]), like the notions of (many-sorted) signature
Σ = (S,OP) (where S is a set of sorts and OP is a set of operation sym-
bols op : s1, . . . , sn → s), (total) Σ-algebra A = ((As)s∈S , (opA)op∈OP ), class
Alg(Σ) of all Σ-algebras, Σ-term algebra TΣ(X) over a family of variables X
and interpretation Iα : TΣ(X)→ A w.r.t. a valuation α : X → A. We implicitly
assume throughout this paper that the carrier sets of an algebra are not empty.

2 The Constructor-Based Observational Logic Institution

In this section we develop, step by step, the syntactic and semantic notions
which lead to the constructor-based observational logic institution, called COL
for short. We start by considering so-called COL-signatures which provide the
syntactic basis to integrate reachability and observability concepts in algebraic
system specifications. Technically, a COL-signature consists of a standard alge-
braic signature together with a distinguished set of constructor operations and a
distinguished set of observer operations. Intuitively, the constructors determine
those elements which are of interest from the user’s point of view while the ob-
servers determine a set of observable experiments that a user can perform to
examine hidden states. Thus we can abstract from junk elements and also from
concrete state representations whereby two states are considered to be “obser-
vationally equal” if they cannot be distinguished by observable experiments.

Definition 1 (COL-signature). A constructor is an operation symbol cons :
s1, . . . , sn → s with n ≥ 0. The result sort s of cons is called a constrained sort.
An observer is a pair (obs, i) where obs is an operation symbol obs : s1, . . . , sn →
s with n ≥ 1 and 1 ≤ i ≤ n. The distinguished argument sort si of obs is called
a state sort (or hidden sort).

A COL-signature ΣCOL = (Σ,OPCons,OPObs) consists of a signature Σ =
(S,OP), a set OPCons ⊆ OP of constructors and a set OPObs of observers
(obs, i) with obs ∈ OP.
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The set SCons ⊆ S of constrained sorts (w.r.t. OPCons) consists of all sorts
s such that there exists at least one constructor in OPCons with range s. The
set SLoose ⊆ S of loose sorts consists of all sorts which are not constrained, i.e.
SLoose = S \ SCons.

The set SState ⊆ S of state sorts (or hidden sorts, w.r.t. OPObs) consists
of all sorts si such that there exists at least one observer (obs, i) in OPObs,
obs : s1, . . . , si, . . . , sn → s. The set SObs ⊆ S of observable sorts consists of all
sorts which are not a state sort, i.e. SObs = S \ SState.

An observer (obs, i) ∈ OPObs with profile obs : s1, . . . , si, . . . , sn → s is called
a direct observer of si if s ∈ SObs, otherwise it is an indirect observer.

Note that in many examples state sorts are also constrained sorts which
allows us to deal with reachable states. We implicitly assume in the following
that whenever we consider a COL-signature ΣCOL, then ΣCOL = (Σ,OPCons,
OPObs) with Σ = (S,OP) and similarly for Σ′COL etc.

Example 1. As a running example we consider the following COL-signature
ΣCOL = (Σ,OPCons,OPObs) for containers of natural numbers where:
Σ = (S,OP), S = { bool, nat, container }
OP = { true : → bool, false : → bool,

0 : → nat, succ : nat→ nat, add : nat× nat→ nat,
empty : → container, insert : container × nat→ container,
remove : container × nat→container, isin : container × nat→ bool }

OPCons = { true, false, 0, succ, empty, insert }
OPObs = { (isin, 1) }
Hence, in this example, all sorts are constrained, container is the only state sort
and the observable sorts are bool and nat. ✸

Any set OPCons of constructor symbols (and hence any COL-signature) de-
termines a set of constructor terms.

Definition 2 (Constructor term). Let ΣCOL be a COL-signature, and let
X = (Xs)s∈S be a family of countably infinite sets Xs of variables of sort s. For
all s ∈ SCons, the set T (ΣCOL)s of constructor terms with “constrained result
sort” s is inductively defined as follows:
1. Each constant cons : → s ∈ OPCons belongs to T (ΣCOL)s .
2. For each constructor cons : s1, . . . , sn → s ∈ OPCons with n ≥ 1 and terms

t1, . . . , tn such that ti is a variable xi:si if si ∈ SLoose and ti ∈ T (ΣCOL)si
if si ∈ SCons, cons(t1, . . . , tn) ∈ T (ΣCOL)s.

The set of all constructor terms is denoted by T (ΣCOL). We implicitly assume in
the following that for any constrained sort s ∈ SCons, there exists a constructor
term of sort s.

Note that only constructor symbols and variables of loose sorts are used to
build constructor terms. In particular, if all sorts are constrained, i.e., SCons = S,
the constructor terms are exactly the (S,OPCons)-ground terms which are built
by the constructor symbols. This is the case, for instance, in the above example.



24 Michel Bidoit and Rolf Hennicker

The syntactic notion of a constructor term induces, for any Σ-algebra A,
the definition of a family of subsets of the carrier sets of A, called reachable
part, which consists of all elements which are reachable (from the loose sorts, if
any) with respect to the given constructors. In the following considerations the
reachable part plays a crucial role since it represents those elements which are
of interest from the user’s point of view.

Definition 3 (Reachable part). Let ΣCOL be a COL-signature. For any
Σ-algebra A ∈ Alg(Σ), the reachable part (w.r.t. OPCons) RΣCOL(A) =
(RΣCOL(A)s)s∈S of A is defined by:
1. RΣCOL(A)s = As, if s ∈ SLoose.
2. RΣCOL(A)s = {a ∈ As | there exists a term t ∈ T (ΣCOL)s and a valuation

α : X → A such that Iα(t) = a}, if s ∈ SCons.

Definition 4 (Reachable algebra). Let ΣCOL be a COL-signature. A Σ-
algebra A is called reachable (w.r.t. OPCons) if it coincides with its reachable
part.

Example 2. Consider the signature ΣCOL of Example 1 and the following Σ-
algebra A with carriers:
Abool = {T, F}, Anat = Z (set of the integers),
Acontainer = Z

∗ × Z
∗ (pairs of finite lists of integers)

and with operations:
trueA = T , falseA = F , 0A = 0, succA(a) = a + 1, addA(a, b) = a + b,
emptyA = (<>,<>),
insertA((< a1, . . . , an >,< b1, . . . , bm >), a) =

(< a, a1, . . . , an >,< b1, . . . , bm >) if a 
= ai for i = 1, . . . , n,
insertA((s, t), a) = (s, t) otherwise,
removeA((< a1, . . . , an >,< b1, . . . , bm >), a) =

(< a1, . . . , ai−1, ai+1, . . . , an >,< a, b1, . . . , bm >) if ai = a and aj 
= a for
j = 1, . . . , i− 1,

removeA((s, t), a) = (s, t) otherwise,
isinA((< a1, . . . , an >, t), a) = F if a 
= ai for i = 1, . . . , n,
isinA((s, t), a) = T otherwise.
The above Σ-algebra A can be considered as an implementation of containers of
natural numbers whereby the natural numbers are implemented by the integers
and containers are implemented by two finite lists s and t such that s stores the
elements which are actually in the container and t is a “trash” which stores those
elements that have been removed from the container. The remove operation is
defined in an efficient way: only one occurrence of a given element is deleted from
the actual elements of a container. This is sufficient since the insert operation
only stores an element if it does not already belong to the actual elements of a
container. The reachable part RΣCOL(A) of A consists of the following sets:
RΣCOL(A)bool = {T, F},
RΣCOL(A)nat = N (set of the natural numbers),
RΣCOL(A)container = {(s,<>) | s ∈ N

∗ and each element of s occurs only once
in s}. ✸
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Let us now focus on the set OPObs of observers declared by a COL-signature
ΣCOL. The observers determine a set of observable contexts which represent the
observable experiments. In contrast to the inductive definition of constructor
terms, observable contexts are defined in a coinductive style.

Definition 5 (Observable context). Let ΣCOL be a COL-signature, let X =
(Xs)s∈S be a family of countably infinite sets Xs of variables of sort s and let
Z = ({zs})s∈SState be a disjoint family of singleton sets (one for each state sort).
For all s ∈ SState and s′ ∈ SObs the set C(ΣCOL)s→s′ of observable ΣCOL-
contexts with “application sort” s and “observable result sort” s′ is inductively
defined as follows:
1. For each direct observer (obs, i) with obs : s1, . . . , si, . . . , sn → s′ and pair-

wise disjoint variables x1:s1, . . . , xn:sn,
obs(x1, . . . , xi−1, zsi , xi+1, . . . , xn) ∈ C(ΣCOL)si→s′ .

2. For each observable context c ∈ C(ΣCOL)s→s′ , for each indirect observer
(obs, i) with obs : s1, . . . , si, . . . , sn → s, and pairwise disjoint variables
x1:s1, . . . , xn:sn not occurring in c,
c[obs(x1, . . . , xi−1, zsi , xi+1, . . . , xn)/zs] ∈ C(ΣCOL)si→s′
where c[obs(x1, . . . , xi−1, zsi , xi+1, . . . , xn)/zs] denotes the term obtained
from c by substituting the term obs(x1, . . . , xi−1, zsi , xi+1, . . . , xn) for zs.

The set of all observable contexts is denoted by C(ΣCOL). We implicitly assume
in the following that for any state sort s ∈ SState there exists an observable
context with application sort s.

Note that only the observer operations are used to build observable contexts
For instance, the context isin(zcontainer, x) is (up to renaming of the variable x)
the only observable context in the container example.

The syntactic notion of an observable context will be used to define, for any
Σ-algebra A, a semantic relation, called observational equality, which expresses
indistinguishability of states. As already pointed out, the observable contexts
represent observable experiments which can be applied to examine states. Then
two states are observationally equal if they cannot be distinguished by these
experiments.

If there is no constructor symbol, this intuitive idea can easily be formalized
as done in the observational logic framework, see [11]. However, if we integrate
observability and reachability concepts, we have to be careful with respect to
the role of constructors in observable experiments. For instance, in the container
example, the observable context isin(zcontainer, x) represents a set of observable
experiments on containers which depend on the actual values of the variable x
of sort nat. Since nat is a constrained sort, from the user’s point of view the
only relevant values are representable by a constructor term (and hence belong
to the reachable part). This leads to the following definition of the observational
equality which depends, in contrast to the pure observational approach in [11],
not only on the observers but also on the chosen constructors.

Definition 6 (Observational equality). Let ΣCOL be a COL-signature. For
any Σ-algebra A ∈ Alg(Σ), the observational ΣCOL-equality on A is denoted
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by ≈ΣCOL,A and defined as follows. For all s ∈ S, two elements a, b ∈ As are
observationally equal w.r.t. ΣCOL, i.e., a ≈ΣCOL,A b, if and only if
1. a = b, if s ∈ SObs ,
2. for all observable sorts s′∈ SObs, for all observable contexts c ∈ C(ΣCOL)s→s′ ,

and for all valuations α, β : X ∪ {zs} → A with α(x) = β(x) ∈ RΣCOL(A) if
x ∈ X, α(zs) = a and β(zs) = b, we have Iα(c) = Iβ(c), if s ∈ SState.

Definition 7 (Fully-abstract algebra). Let ΣCOL be a COL-signature. A
Σ-algebra A is called fully abstract (w.r.t. ΣCOL) if the observational ΣCOL-
equality ≈ΣCOL,A on A coincides with the set-theoretic equality.

Example 3. Consider the signature ΣCOL of Example 1 and the algebra of con-
tainers defined in Example 2 where a container is represented by a pair (s, t)
of finite lists of integers. Two containers (s1, t1) and (s2, t2) are observationally
equal, (s1, t1) ≈ΣCOL,A (s2, t2), if for all natural numbers n, isinA((s1, t1), n) =
isinA((s2, t2), n) holds. By definition of isinA, this means that the same natural
numbers occur in s1 and in s2. Thus the observational equality abstracts not
only from the ordering and multiple occurrences of elements, but also from the
occurrences of negative integers and from the content of each “trash” t1 and t2.
This expresses exactly our intuition according to the given constructors and ob-
servers. For instance, the following container representations are observationally
equal: (< 1, 2 >,<>) ≈ΣCOL,A (< 2,−7, 2,−3, 1 >,< 6,−4 >). ✸

Up to now the syntactic notion of a COL-signature ΣCOL has lead to the
semantic concepts of a reachable part (determined by the constructors) and of
an observational equality (determined by the observers but with an impact of
the constructors) which both have been defined for an arbitrary algebra over the
underlying signature Σ. As we will see in the following discussion, the construc-
tors and the observers induce also certain constraints on algebras which lead to
the notion of a COL-algebra.

In traditional approaches to reachability, constructor symbols are used to
restrict the admissible models of a specification to those algebras which are
reachable with respect to the given constructors (i.e. to reachable algebras, see
Definition 4). We do not adopt this interpretation since, as many examples show,
it is too restrictive if the semantics of a specification is expected to capture all
correct realizations. For instance, the container algebra of Example 2 is not reach-
able w.r.t. the given constructors but should be usable as a correct realization
of containers. As a consequence, we are interested in a more flexible framework
where the constructor symbols are still essential, but nevertheless non-reachable
algebras can be accepted as models if they satisfy certain conditions. Since the
reachable part represents the elements of interest, one could simply require that
no further elements should be constructible by the non-constructor operations.
Indeed, if we are working in a pure constructor-based framework, this condition
fits perfectly to our intuition (see [5], Section 3). However, if we deal simulta-
neously with observability, this requirement is still too strong because from the
user’s point of view it doesn’t matter if a non-constructor operation yields an
element outside the reachable part as long as this element is observationally
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equal to some other element inside the reachable part. Formally, this condition
is expressed by the following reachability constraint.

Definition 8 (Reachability constraint). Let ΣCOL be a COL-signature. For
any Σ-algebra A ∈ Alg(Σ), 〈RΣCOL(A)〉Σ denotes the smallest Σ-subalgebra of
A which includes the reachable part RΣCOL(A). 1

A Σ-algebra A satisfies the reachability constraint induced by ΣCOL, if for
any a ∈ 〈RΣCOL(A)〉Σ there exists b ∈ RΣCOL(A) such that a ≈ΣCOL,A b.

Example 4. Let A be the container algebra of Example 2. It is obvious that the
reachable part of A is not closed under the operation removeA. For instance,
removeA((< 1, 2 >,<>), 1) = (< 2 >,< 1 >) /∈ RΣCOL(A)container. In fact,
we have 〈RΣCOL(A)〉Σ,container = {(s, t) | s, t ∈ N

∗ and each element of s occurs
only once in s}. However, any element (s, t) ∈ 〈RΣCOL(A)〉Σ,container is observa-
tionally equal to (s,<>) (see Example 3) which is an element of the reachable
part. Considering the sort nat, the reachable elements (which are just the natural
numbers) are preserved under addA, i.e. 〈RΣCOL(A)〉Σ,nat = RΣCOL(A)nat = N.
Thus A satisfies the reachability constraint induced by ΣCOL. ✸

Let us now discuss the constraints on a Σ-algebra A that are induced by
the observers OPObs of a COL-signature ΣCOL. Since the declaration of ob-
servers determines a particular observational equality on any Σ-algebra A, the
(interpretations of the) non-observer operations should respect this observational
equality, i.e. a non-observer operation should not contribute to distinguish states.
For this purpose one could simply require that the observational equality is a
Σ-congruence on A. Indeed, if we are working in a pure observational framework,
this condition fits perfectly to our intuition (see [11]). However, if we deal simul-
taneously with reachability, this requirement is too strong because computations
performed by a user can only lead to elements in the Σ-subalgebra 〈RΣCOL(A)〉Σ .
As a consequence, it is sufficient to require the congruence property on this sub-
algebra which is expressed by the following observability constraint.

Definition 9 (Observability constraint). Let ΣCOL be a COL-signature. A
Σ-algebra A satisfies the observability constraint induced by ΣCOL, if ≈ΣCOL,A

is a Σ-congruence on 〈RΣCOL(A)〉Σ.

Example 5. The container algebra A of Example 2 satisfies the observability con-
straint of the given COL-signature for containers. Note, however, that ≈ΣCOL,A

is only a Σ-congruence on 〈RΣCOL(A)〉Σ but not on the whole algebra A since
removeA does not respect the observational equality for all elements of A.
Consider, for instance, the element (< 1, 1 >,<>) /∈ 〈RΣCOL(A)〉Σ,container.
(< 1, 1 >,<>) ≈ΣCOL,A (< 1 >,<>) but since removeA((< 1, 1 >,<>), 1) =
(< 1 >,< 1 >), it is not observationally equal to removeA((< 1 >,<>), 1) =
(<>,< 1 >). ✸

1 Indeed 〈RΣCOL(A)〉Σ is the Σ-subalgebra of A generated by the operations OP over
the carrier sets As with loose sort s.
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Definition 10 (COL-algebra). Let ΣCOL be a COL-signature. A ΣCOL-alge-
bra (also called COL-algebra) is a Σ-algebra A which satisfies the reachabil-
ity and the observability constraints induced by ΣCOL. The class of all ΣCOL-
algebras is denoted by AlgCOL(ΣCOL).

Note that the satisfaction of the two constraints is essential for defining the
black box semantics of COL-specifications considered in Section 3 and hence for
guaranteeing the soundness of the proof systems in Section 4. In particular the
instantiation rule and the congruence rule of the equational calculus would not
be sound w.r.t. the COL-satisfaction relation defined below without assuming
both the reachability and observability constraints. The following notion of COL-
morphism is a generalization of standard Σ-homomorphisms.

Definition 11 (COL-morphism). Let A,B ∈ AlgCOL(ΣCOL) be two ΣCOL-
algebras. A ΣCOL-morphism (also called COL-morphism) h : A → B is an
S-sorted family (hs)s∈S of relations hs ⊆ 〈RΣCOL(A)〉Σ,s× 〈RΣCOL(B)〉Σ,s with
the following properties, for all s ∈ S:
1. For all a ∈ 〈RΣCOL(A)〉Σ,s, there exists b ∈ 〈RΣCOL(B)〉Σ,s such that a hs b.
2. For all a ∈ 〈RΣCOL(A)〉Σ,s, b, b′ ∈ 〈RΣCOL(B)〉Σ,s, if a hs b, then (a hs b′

if and only if b ≈ΣCOL,B b′).
3. For all a, a′ ∈ 〈RΣCOL(A)〉Σ,s, b ∈ 〈RΣCOL(B)〉Σ,s, if a hs b and a ≈ΣCOL,A

a′, then a′ hs b.
4. For all op : s1, . . . , sn → s∈OP, ai ∈ 〈RΣCOL(A)〉Σ,si , bi ∈ 〈RΣCOL(B)〉Σ,si ,

if ai hsi bi for i = 1, . . . , n, then opA(a1, . . . , an) hs opB(b1, . . . , bn).

For any COL-signature ΣCOL, the class AlgCOL(ΣCOL) together with the
ΣCOL-morphisms is a category which, by abuse of notation, will also be denoted
by AlgCOL(ΣCOL).

In the next step we generalize the standard satisfaction relation of first-order
logic by abstracting with respect to reachability and observability. First, from
the reachability point of view, the valuations of variables are restricted to the
elements of the reachable part only.2 From the observability point of view, the
idea is to interpret the equality symbol = occurring in a first-order formula ϕ
not by the set-theoretic equality but by the observational equality of elements.

Definition 12 (COL-satisfaction relation). The COL-satisfaction relation
between Σ-algebras and first-order Σ-formulas (with variables in X) is denoted
by |=ΣCOL and defined as follows. Let A ∈ Alg(Σ).
1. For any two terms t, r ∈ TΣ(X)s of the same sort s and for any valuation

α : X → RΣCOL(A), A,α |=ΣCOL t = r holds if Iα(t) ≈ΣCOL,A Iα(r).
2. For any arbitrary Σ-formula ϕ and for any valuation α : X → RΣCOL(A),

A,α |=ΣCOL ϕ is defined by induction over the structure of the formula ϕ
in the usual way. In particular, A,α |=ΣCOL ∀x:s. ϕ if for all valuations
β : X → RΣCOL(A) with β(y) = α(y) for all y 
= x, A, β |=ΣCOL ϕ.

2 This idea is related to the ultra-loose approach of [20] where the same effect is
achieved by using formulas with relativized quantification.
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3. For any arbitrary Σ-formula ϕ, A |=ΣCOL ϕ holds if for all valuations α :
X → RΣCOL(A), A,α |=ΣCOL ϕ holds.

The notation A |=ΣCOL ϕ is extended in the usual way to classes of algebras
and sets of formulas. Note that the COL-satisfaction relation is defined for ar-
bitrary Σ-algebras though it will only be used in this paper for COL-algebras.
Note also that for COL-algebras, the COL-satisfaction relation would be the
same if we would have used valuations “α : X → 〈RΣCOL(A)〉Σ” instead of
“α : X → RΣCOL(A)” in the above definition.

Definition 13 (Basic COL-specification). A basic COL-specification SPCOL
= 〈ΣCOL,Ax〉 consists of a COL-signature ΣCOL = (Σ,OPCons, OPObs) and a
set Ax of Σ-sentences, called axioms. The semantics of SPCOL is given by its
signature SigCOL(SPCOL) and by its class of models ModCOL(SPCOL) which
are defined by:

SigCOL(SPCOL) def= ΣCOL

ModCOL(SPCOL) def= {A ∈ AlgCOL(ΣCOL) | A |=ΣCOL Ax}

In the following, SPCOL |=ΣCOL ϕ means ModCOL(SPCOL) |=ΣCOL ϕ . Ac-
cording to the flexible satisfaction relation, the model class of a COL-specification
SPCOL describes all algebras which can be considered as correct realizations of
SPCOL.

Example 6. The following specification extends the COL-signature of Example 1
by appropriate axioms for containers of natural numbers.3

spec Container =
sorts bool ,nat , container
ops true, false : bool ;

0 : nat ; succ : nat → nat ; add : nat × nat → nat ;
empty : container ; insert : container × nat → container ;
remove : container × nat → container ;
isin : container × nat → bool ;

constructors true, false, 0 , succ, empty , insert
observer (isin, 1 )
axioms
∀x , y : nat ; c : container
%% standard axioms for booleans and natural numbers, plus
• isin(empty , x ) = false (1)
• isin(insert(c, x ), x ) = true (2)
• x 
= y ⇒ isin(insert(c, y), x ) = isin(c, x ) (3)
• remove(empty , x ) = empty (4)
• remove(insert(c, x ), x ) = remove(c, x ) (5)
• x 
= y ⇒ remove(insert(c, y), x ) = insert(remove(c, x ), y) (6)

end

3 We use here a syntactic sugar similar to the one of Casl.
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It is important to note that the declaration of constructors and observers
leads to corresponding specification methods. As usual, non-constructor opera-
tions can be defined by a complete case distinction w.r.t. the given constructors.
For instance, the axioms (1) - (3) define the non-constructor isin by a complete
case analysis w.r.t. empty and insert and, similarly, remove is specified by a
constructor complete definition according to the axioms (4) - (6).

On the other hand, also the observers give rise to a specification method
whereby the observable effect of the non-observer operations can be defined by a
complete case distinction w.r.t. the given observers. For instance, axiom (1) can
be considered as an observer complete definition of empty and axioms (2) and
(3) can be considered as an observer complete definition of insert (see [3] for a
general schema of observer complete definitions). Thus the axioms (1) - (3) can
be seen from both sides, from the observational or from the reachability point
of view, the result is the same.

However, this is not the case for the axioms (4) - (6) that specify remove
(which is neither a constructor nor an observer). In this case we have chosen a
constructor style, but we can ask whether we couldn’t use just as well an observer
style with the same semantic result. Indeed it is simple to provide an observer
complete definition of remove by the following two formulas:

• isin(remove(c, x ), x ) = false (7)
• x 
= y ⇒ isin(remove(c, x ), y) = isin(c, y) (8)

Obviously, with a standard interpretation, the formulas (7) and (8) are quite
different from the axioms (4) - (6). However, in the COL framework developed
in this paper it turns out that indeed the axioms (4) - (6) could be replaced
by the formulas (7) and (8) without changing the semantics of the container
specification. A formal proof of this fact (using the proof systems developed in
Section 4) is provided in [4].

Let us still point out that the container algebra A of Example 2 is a model
of Container. Thereby it is essential that the COL-satisfaction relation inter-
prets the equality symbol by the observational equality. Otherwise, axiom (5)
would not be satisfied by A. For instance, if we interpret c by the empty con-
tainer (<>,<>) and x by 1, we have removeA((<>,<>), 1) = (<>,<>) and
removeA(insertA((<>,<>), 1), 1) = removeA((< 1 >,<>), 1) = (<>,< 1 >)
where the results (<>,<>) and (<>,< 1 >) are not the same but are observa-
tionally equal.

On the other hand, if we would use (7) and (8) for specifying remove then
it is essential that the COL-satisfaction relation interprets variables by values in
the reachable part. Otherwise, axiom (7) would not be satisfied by the container
algebra A. For instance, if we would interpret c by the non reachable container
(< 1, 1 >,<>) and x by 1, we would obtain:
isinA(removeA((< 1, 1 >,<>), 1), 1) = isinA((< 1 >,< 1 >), 1) = true. ✸

The definitions stated above provide the basic ingredients for defining the
constructor-based observational logic institution. Thereby it is particularly im-
portant to use an appropriate morphism notion for COL-signatures which guar-
antees encapsulation of properties with respect to the COL-satisfaction relation
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(formally expressed by the satisfaction condition of institutions, see [9]). To en-
sure that the satisfaction condition holds, the crucial idea is to require that
neither “new” constructors nor “new” observers are introduced for “old” sorts
when composing systems via signature morphisms. This requirement is formally
captured by the following definition.

Definition 14 (COL-signature morphism).
Let ΣCOL = (Σ,OPCons,OPObs) and Σ′COL = (Σ′,OP ′Cons,OP

′
Obs) be two

COL-signatures with Σ = (S,OP) and Σ′ = (S′,OP ′). A COL-signature mor-
phism σCOL : ΣCOL → Σ′COL is a signature morphism σ : Σ → Σ′ such that:
1. If op ∈ OPCons, then σ(op) ∈ OP ′Cons.
2. If op′ ∈ OP ′Cons with op′ : s′1, . . . , s

′
n → s′ and s′ ∈ σ(S), then there exists

op ∈ OPCons such that op′ = σ(op).
3. If (op, i) ∈ OPObs, then (σ(op), i) ∈ OP ′Obs.
4. If (op′, i) ∈ OP ′Obs with op

′ : s′1, . . . , s
′
n → s′ and s′i ∈ σ(S), then there exists

op ∈ OP such that (op, i) ∈ OPObs and op′ = σ(op).

As a consequence of the definition, for all s ∈ S, the following holds:
s ∈ SCons if and only if σ(s) ∈ S′Cons, s ∈ SLoose if and only if σ(s) ∈ S′Loose,
s ∈ SState if and only if σ(s) ∈ S′State, s ∈ SObs if and only if σ(s) ∈ S′Obs.

COL-signatures together with COL-signature morphisms form a category
which has pushouts. Moreover, to any COL-signature morphism σCOL : ΣCOL →
Σ′COL is associated a reduct functor |σCOL : AlgCOL(Σ′COL)→ AlgCOL(ΣCOL).
One can also show that the satisfaction condition holds, i.e., for any Σ′COL-
algebra A′ ∈ AlgCOL(Σ′COL) and Σ-sentence ϕ: A′ |=Σ′COL

σ(ϕ) if and only if
A′|σCOL |=ΣCOL ϕ.

Thus we obtain the constructor-based observational logic institution in a
straightforward way. This institution provides also a suitable framework for
instantiating the institution-independent specification-building operators intro-
duced in [19] and hence for defining structured COL-specifications (which will
not be detailed here).

3 Logical Consequences of Specifications:
The Black Box View

So far we have emphasized the fact that the model class ModCOL(SPCOL) of
a COL-specification SPCOL reflects all its correct realizations. In the following
we will refer to ModCOL(SPCOL) as the glass box semantics of the specification
SPCOL. Glass box semantics is appropriate from an implementor’s point of view.

Of equal importance are the logical consequences of a given specification.
In this section we focus on the properties ϕ that can be inferred from a given
specification SPCOL. This means that we are interested in statements of the form
SPCOL |=ΣCOL ϕ .
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For this purpose it is convenient to abstract the models of a specification into
“idealized” models, such that the consequences of the actual models of a COL-
specification are exactly the consequences of its idealized models, in standard
first-order logic. Hence to any specification SPCOL we will associate the class
of its “idealized” models (which lie in the standard algebraic institution), and
this class will be called the black box semantics of the specification. Black box
semantics is appropriate from a client’s point of view.

Let ΣCOL be a COL-signature and A be a ΣCOL-algebra. As pointed out in
the previous section, 〈RΣCOL(A)〉Σ represents the only elements a user can com-
pute (over the loose carrier sets) by invoking operations. Hence, in a first step, we
can restrict to these elements. Since the observational ΣCOL-equality ≈ΣCOL,A

on A is a Σ-congruence on 〈RΣCOL(A)〉Σ , we can then construct the quotient
〈RΣCOL(A)〉Σ/≈ΣCOL,A which identifies all elements of 〈RΣCOL(A)〉Σ which are
indistinguishable “from the outside”. 〈RΣCOL(A)〉Σ/≈ΣCOL,A can be considered
as the black box view of A and represents the “observable behavior” of A. Note
that 〈RΣCOL(A)〉Σ/≈ΣCOL,A is fully abstract since the observational equality
(w.r.t. ΣCOL) on 〈RΣCOL(A)〉Σ/≈ΣCOL,A coincides with the set-theoretic equal-
ity. Moreover, since A satisfies by assumption the reachability constraint induced
by ΣCOL, any element in 〈RΣCOL(A)〉Σ is observationally equal to a reachable
element (w.r.t. ΣCOL), and therefore 〈RΣCOL(A)〉Σ/≈ΣCOL,A is also a reach-
able algebra. By considering the ΣCOL-algebra 〈RΣCOL(A)〉Σ/≈ΣCOL,A just as
a Σ-algebra, we obtain (for any signature ΣCOL) a functor from the category
AlgCOL(ΣCOL) of ΣCOL-algebras into the category Alg(Σ) of (standard) Σ-
algebras.

Theorem 1 (Behavior functor). For any COL-signature ΣCOL = (Σ,
OPCons,OPObs), the following defines a full and faithful functor
RIΣCOL : AlgCOL(ΣCOL)→ Alg(Σ). 4

1. For each A ∈ AlgCOL(ΣCOL), RIΣCOL(A) def= 〈RΣCOL(A)〉Σ/≈ΣCOL,A and
is called the observational behavior of A.

2. For each COL-morphism h : A→ B,
RIΣCOL(h) : 〈RΣCOL(A)〉Σ/≈ΣCOL,A → 〈RΣCOL(B)〉Σ/≈ΣCOL,B is defined
by RIΣCOL(h)([a]) = [b] if a h b.

Definition 15 (Black box semantics). Let SPCOL be a COL-specification
with signature SigCOL(SPCOL) = ΣCOL. Its black box semantics is defined by
[[SPCOL]] def= RIΣCOL(ModCOL(SPCOL)).

Theorem 2 (Behavioral consequences). Let ΣCOL = (Σ,OPCons,OPObs)
be a COL-signature, let ϕ be a Σ-formula, let A be a ΣCOL-algebra, and let
SPCOL be a COL-specification with signature ΣCOL.
1. A |=ΣCOL ϕ if and only if RIΣCOL(A) |= ϕ .
2. SPCOL |=ΣCOL ϕ if and only if [[SPCOL]] |= ϕ .

4 The notation RIΣCOL is chosen to emphasize the intuitive relationship to the
“restrict-identify” steps used in various algebraic implementation concepts.
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This theorem shows the adequacy of the black box semantics. The proof of
the theorem is straightforward by induction on the structure of the formulas.
The next theorem provides a characterization of the black box semantics of a
COL-specification.

Theorem 3 (Black box semantics relies on reachable fully abstract
models). Let SPCOL = 〈ΣCOL,Ax〉 be a basic COL-specification with signature
ΣCOL = (Σ,OPCons,OPObs).
[[SPCOL]] = {Σ−algebra A | A |= Ax and A is both reachable and fully abstract
w.r.t. ΣCOL}.

For a proof see [4]. For instance, the black box semantics of the container
specification given in Example 6 is (up to isomorphism) the algebra of finite sets
of natural numbers.

4 Proof Systems
for Proving Consequences of Specifications

In the previous section we have shown how to relate the behavioral consequences
of a COL-specification to the consequences in standard first-order logic of the
black box semantics of the given specification. The next step is to find adequate
axiomatizations of the black box semantics in order to be able to define sound
and complete proof systems. According to Theorems 2 and 3, this amounts to
find an axiomatic characterization of reachability and full abstractness. The next
definitions provide the required axiomatizations which, in general, can only be
stated by using infinitary first-order formulas.

Definition 16 (Reachability axiom). Let ΣCOL be a COL-signature with un-
derlying signature Σ. The reachability axiom associated to ΣCOL is the sentence
REACH(ΣCOL) defined by:
REACH(ΣCOL) def=

∧
s∈SCons

REACH(ΣCOL)s

where for each constrained sort s ∈ SCons, REACH(ΣCOL)s is defined by:
REACH(ΣCOL)s

def= ∀x:s.
∨

t∈T (ΣCOL)s

∃Var(t). x = t .5

Definition 17 (Fully abstract axiom). Let ΣCOL be a COL-signature with
underlying signature Σ. The fully abstract axiom associated to ΣCOL is the
sentence FA(ΣCOL) defined by:
FA(ΣCOL) def=

∧
s∈SState

FA(ΣCOL)s

5 ∃Var(t) is an abbreviation for ∃x1:s1. . . . ∃xn:sn where x1, . . . , xn are the variables
(of sort s1, . . . , sn) of the constructor term t.
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where for each state sort s ∈ SState, FA(ΣCOL)s is defined by:

FA(ΣCOL)s
def= ∀x, y:s.


 ∧
s′∈SObs,c∈C(ΣCOL)s→s′

∀Var(c). c[x] = c[y]


⇒ x = y .6

Note that in special cases the above axioms may reduce to finitary ones. For
instance, in the container example, the fully abstract axioms reads:
∀c1, c2:container. (∀x:nat. isin(c1, x) = isin(c2, x))⇒ c1 = c2 .

Proposition 1. Let ΣCOL be a COL-signature with underlying signature Σ.
A Σ-algebra A is both reachable and fully abstract w.r.t. ΣCOL if and only if
A |= REACH(ΣCOL) ∧ FA(ΣCOL).

Now let ΠIFOLEq be a sound and complete proof system for infinitary first-
order logic with equality (see [13]). We obtain a sound and complete proof sys-
tem ΠCOL for COL by adding to ΠIFOLEq, as an extra axiom, REACH(ΣCOL)∧
FA(ΣCOL) (see [4] for details). The difficulty with the proof system ΠCOL is that,
in general, it uses infinitary formulas (and also infinitary proof rules of ΠIFOLEq).
An alternative is to restrict to finitary formulas and to use only a particular set
of infinitary proof rules (see the discussion in [2, Chapter 11]). The idea now
is, instead of “capturing” reachability (full abstractness, respectively) by the
infinitary axiom REACH(ΣCOL) (FA(ΣCOL), respectively), to “capture” it by
specialized infinitary proof rules called infinitary induction (infinitary coinduc-
tion, respectively). These infinitary rules are necessary to ensure completeness.

Definition 18 (Infinitary induction). Let ΣCOL be a COL-signature with
underlying signature Σ. The infinitary induction rule iI(ΣCOL) associated to
ΣCOL is defined by:
iI(ΣCOL) def= {iI(ΣCOL)s | s ∈ SCons}
where for each constrained sort s ∈ SCons, iI(ΣCOL)s is defined by:

iI(ΣCOL)s
ϕ[t/x] for all constructor terms t ∈ T (ΣCOL)s

∀x:s. ϕ

where ϕ denotes an arbitrary Σ-formula (with at least a free variable x of sort s).

Definition 19 (Infinitary coinduction). Let ΣCOL be a COL-signature with
underlying signature Σ. The infinitary coinduction rule iCI(ΣCOL) associated to
ΣCOL is defined by:
iCI(ΣCOL) def= {iCI(ΣCOL)s | s ∈ SState}
where for each state sort s ∈ SState, iCI(ΣCOL)s is defined by:

iCI(ΣCOL)s
ϕ⇒ ∀Var(c). c[x] = c[y]

for all observable sorts s′ ∈ SObs
and all contexts c ∈ C(ΣCOL)s→s′

ϕ⇒ x = y

where ϕ denotes an arbitrary Σ-formula.
6 ∀Var(c) is an abbreviation for ∀x1:s1. . . . ∀xn:sn where x1, . . . , xn are the variables

(of sort s1, . . . , sn) of the context c, apart from its context variable zs.
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Now let ΠFOLEq be a sound and complete proof system for finitary first-
order logic with equality. We obtain a sound and complete (semi-formal) proof
system Π �

COL for COL by adding to the finitary proof system ΠFOLEq the extra
infinitary proof rules iI(ΣCOL) and iCI(ΣCOL).

Theorem 4. For any COL-signature ΣCOL, let

Π �
COL

def= ΠFOLEq ∪ iI(ΣCOL) ∪ iCI(ΣCOL).

Then for any basic COL-specification SPCOL = 〈ΣCOL,Ax〉 and any Σ-formula
ϕ, we have:
SPCOL |=ΣCOL ϕ if and only if Ax �Π �

COL
ϕ.

In practice, for proving the infinitely many hypotheses ϕ[t/x] of the rule
iI(ΣCOL)s, one would use an induction scheme like structural induction with
respect to the constructor terms T (ΣCOL)s. Similarly, to prove the infinitely
many hypotheses ϕ ⇒ ∀Var(c). c[x] = c[y] of the rule iCI(ΣCOL)s, one would
use a coinduction scheme according to the coinductive definition of the contexts
C(ΣCOL)s→s′ provided in Definition 5.

5 Conclusion

We have seen that the integration of the observational and the constructor-based
logics presented in [11] and [5] leads to a powerful formalism which integrates
observability and reachability concepts in a common institution. An important
aspect, which has not been worked out here, concerns structuring mechanisms
for specifications and structured proof systems which can be defined on top of the
given institution by applying the institution-independent specification-building
operators of [19] and the proof rules for structured specifications of [7]. Future
research concerns the investigation of refinement notions for COL-specifications
and corresponding proof methods.
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